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ABSTRACT

Learning group representation is a commonly concerned issue in tasks where the
basic unit is a group, set or sequence. Previously, the computer vision community
tries to tackle it by aggregating the elements in a group based on an indicator either
defined by human such as the quality or saliency of an element, or generated by a
black box such as the attention score or output of a RNN.
This article provides a more essential and explicable view. We claim the most sig-
nificant indicator to show whether the group representation can be benefited from
an element is not the quality, or an inexplicable score, but the discrimiability. Our
key insight is to explicitly design the discrimiability using embedded class cen-
troids on a proxy set, and show the discrimiability distribution w.r.t. the element
space can be distilled by a light-weight auxiliary distillation network (DDNet).
This procedure is denoted as discriminability distillation learning (DDL). We
show the proposed DDL can be flexibly plugged into many group based recog-
nition tasks without influencing the training procedure of the original tasks. Com-
prehensive experiments on set-to-set face recognition and action recognition valid
the advantage of DDL on both accuracy and efficiency, and it pushes forward the
state-of-the-art results on these tasks by an impressive margin.

1 INTRODUCTION

With the rapid development of deep learning and the easy access to large-scale group data, recog-
nition tasks using group information have drawn great attention in the computer vision community.
The rich information provided by different elements can complement each other to boost the per-
formance of tasks such as face recognition, action recognition, and person re-identification (Wang
et al., 2017b; Zhong et al., 2018; Girdhar et al., 2017; Simonyan & Zisserman, 2014; Yang et al.,
2017; Liu et al., 2019a; Rao et al., 2017b). While traditional practice for group-based recognition
is to either aggregate the whole set by average (Li et al., 2014; Taigman et al., 2014) or max pool-
ing (Chowdhury et al., 2016), or just sampling randomly (Wang et al., 2016), the fact that certain
elements contribute negatively in recognition tasks has been ignored. Thus, an important issue is to
select representatives from sets for efficient group understanding.

To tackle such cases, previous methods aim at defining the “quality” or “saliency” for each element
in a group (Liu et al., 2017c; Yang et al., 2017; Rao et al., 2017b; Nikitin et al., 2017). The weights
for each element can be automatically learned by self-attention. For example, Liu et al. (2017c)
proposes the Quality Aware Network (QAN) to learn quality score for each image inside an image
set during network training. Other works adopt the same idea and extend to specific tasks such as
video-based person re-identification (Li et al., 2018; Wu et al., 2018) and action recognition (Wang
et al., 2018c) by learning spatial-temporal attentions. However, the whole online quality or atten-
tion learning procedures are either manually designed or learned through a black box, which lacks
explainability.

In this work, we explore deeper into the underlying mechanism for defining effective elements in-
stead of relying on self-learned attention. Assuming that a base network has already been trained
for element-based recognition using class labels, we define the “discriminability” of one sample
by how difficult it is for the network to discriminate its class. As pointed out by Liu et al. (2018)
that the feature embedding of elements lies close to the centroid of their corresponding class are
the representatives, while features far away or closer to other classes are the confusing ones which
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are not discriminative enough. Inspired by this observation, we identify a successful discriminabil-
ity indicator by measuring one embedding’s distance with class centroids and compute the ratio
of between positive and hardest-negative, where the positive is its distance with its class’s corre-
sponding centroid and the hardest-negative is the closest counterpart. This indicator is defined as the
discriminability distillation regulation (DDR).

Armed with recent theories on the homogeneity between class centroids and projection weights of
classifiers (Wang et al., 2017a; Liu et al., 2017b; 2018; Deng et al., 2019a), the entire distance-
measuring procedure can be easily accomplished by simply encoding all elements in one group.
Thus, the DDR scores can be assessed for each element after the training of the base network. This
assessing procedure is highly flexible without human supervision nor re-training the base network,
so it can be adapted to any existing base. With our explicitly designed discriminability indicator on
the training set, the distillation of such discriminability can be successfully performed with a light-
weight discriminability distillation network (DDNet), which shows the superiority of our proposed
indicator. We call the whole procedure uniformly as discriminability distillation learning (DDL).

The next step is towards finding a better aggregation policy. At the test phase, all elements are
firstly sent to the light-weight DDNet. Then element features will be weighted aggregated by their
DDR score into group representation. Moreover, in order to achieve the trade-off between accu-
racy and efficiency, we can filter elements by DDR score and only extract element features of high
score. Since the base model tends to be heavy, the filter can save much computation consump-
tion. We evaluate the effectiveness of our proposed DDL on several classical yet challenging tasks.
Comprehensive experiments show the advantage of our method on both recognition accuracy and
computation efficiency. We achieve state-of-the-art results without modifying the base networks.

We highlight our contributions as follows: (1) We define the discriminability of one element within
a group from a more essential and explicable view, and propose an efficient indicator. (2) We verify
that a light-weight network has the capacity of distilling discriminability from the assessed elements.
Combining the post-processing with the network, the great computation burden can be saved com-
paring with existing methods. (3) We validate the effectiveness of DDL for both efficiency and
accuracy on set-to-set face recognition and action recognition through extensive studies. State-of-
the-art results can be achieved.

2 RELATED WORK

2.1 SET-TO-SET RECOGNITION

Set-to-set recognition which utilizes a group of data of the same class, has been proved efficient on
various tasks and drawn much attention these years since the more videos and group datasets are
available. Compared with recognition with a single image, set-to-set recognition can further explore
the complementary information among set elements and benefit from it. Particularly in this paper,
we care for the basic task of face and action recognition.

Face Recognition. To tackle set-to-set face recognition problem. (Wolf et al., 2011; Kalka et al.,
2018; Beveridge et al., 2013; Klare et al., 2015), traditional methods directly estimate the feature
similarity among sets of feature vectors (Arandjelovic et al., 2005; Harandi et al., 2011; Cevikalp
& Triggs, 2010). Other works seek to aggregate element features by simply applying max pooling
(Chowdhury et al., 2016) or average pooling (Li et al., 2014; Taigman et al., 2014) among set fea-
tures to form a compact representation. However, since most set images are under unconstrained
scenes, huge variations on blur, resolution, and occlusion appear, which will degrade the set feature
discrimination. How to design a proper aggregation method for set face representation has been the
key problem for this approach.

Recently, a few methods explore the quality or attention mechanism to form set representation.
GhostVLAD (Zhong et al., 2018) improves traditional VLAD and down weight low quality element
features. While Rao et al. (2017a) combine LSTM and reinforcement learning to discard low quality
element features. Liu et al. (2017c) and Yang et al. (2017) introduce attention mechanisms to assign
quality scores for different elements and aggregate feature vectors by quality weighted sum. To
predict the quality score, an online attention network module is added and co-optimized by the target
set-to-set recognition task. However, the definition of generated ’quality’ score remains unclear and
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the learning procedures are learned through a black box, which lacks explainability. In our work, we
claim that the most significant indicator to show whether the group representation can be benefited
from an element is not the quality or an inexplicable score, but the discriminability. And a novel
discriminability distillation learning procedure is proposed.

Action recognition. With the advance of multimedia era, millions of hours of videos are uploaded
to video platforms every day, so video understanding task like action recognition has become a
popular research topic. Real-world videos contain variable frames, so it is not practical to put the
whole video to a memory limited GPU. The most usual approach for video understanding is to
sample frames or clips and design late fusion strategy to form video-level prediction.

Frame-based methods (Yue-Hei Ng et al., 2015; Simonyan & Zisserman, 2014; Girdhar et al., 2017)
firstly extract frame features and aggregate them. Simonyan & Zisserman (2014) propose the two-
stream network to simultaneously capture the appearance and motion information. Wang et al.
(2017b) add attention module and learn to discard unrelated frames. Frames-based methods are
computational efficient, but only aggregate high-level frame feature tends to limit the model ability
to handle complex motion and temporal relation.

Clip-based method (Tran et al., 2015; 2018; Feichtenhofer et al., 2018) use 3D convolutional neu-
ral network to jointly capture spatio-temporal features, which perform better on action recognition.
However, clip-based methods highly rely on the dense sample strategy, which introduces huge com-
putational consumption and makes it unpractical to application. In this article, we show that by
combing our DDL, the clip-based methods can achieve both excellent performance and computa-
tion efficiency.

3 DISCRIMINABILITY DISTILLATION LEARNING

In this section, we first formulate the problem of group representation learning in section 3.1 and
then define the discriminability distillation regulation (DDR) in section 3.2. Next, we introduce the
whole discriminability distillation learning (DDL) procedure in section 3.3. In sections 3.4 and 3.5,
we discuss the aggregation method and the advantage of our DDL, respectively.

3.1 FORMULATION OF GROUP REPRESENTATION LEARNING

Group representation learning focuses on formulating a uniform representation for a whole set of
elements. The core of either verification task or classification task is how to aggregate features of a
given element group.

Define fi as the embedded feature of element Ii in a group IS , then the uniform feature representa-
tion of the whole group is

FIS = G(f1, f2, · · · , fi), (1)

where G indicates the feature aggregation module. While previous research has revealed that con-
ducting G with quality scores (Liu et al., 2017c) has priority over simple aggregation, this kind of
methods is not explainable. In this article, we propose a discriminability distillation learning (DDL)
process to generate the discriminability of feature representation.

3.2 DISCRIMINABILITY DISTILLATION REGULATION

Towards learning efficient and accurate G, we design the discriminability distillation regulation
(DDR) to generate the discriminability to replace the traditional quality score. In DDR, we jointly
consider the feature space distribution and explicitly distill the discriminability by encoding the
intra-class distance and inter-class distance with class centroids. Let X denote the training set with
the identities C and Wj , j ∈ [1, C] is the class centroid. For feature fi, i ∈ [1, s] with class c where

3



Under review as a conference paper at ICLR 2020
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Figure 1: The pipeline of group representation learning with our DDL. Given a base feature extract
model, we first compute the DDR score for each training element and then train a light-weight
discriminability distillation network (DDNet) to distill it. During testing, the DDNet will predict
discriminability for each element in the test set.

s denotes the size of X , the intra-class distance and inter-class distance are formulated as

Cic =
fi ·Wc

‖fi‖2 ‖Wc‖2
,

Cij =
fi ·Wj

‖fi‖2 ‖Wj‖2
, j 6= c.

(2)

The intra-class distance Cic and inter-class distance Cij are shown in Figure 2. After training the
base model on classification task, features of the elements from the same class are projected to
hyperspace tightly in order to form an explicit decision boundary. Furthermore, elements close to
the centroid of their corresponding class are the representative ones, while elements far away from
their corresponding class or closer to other classes are not discriminative enough. Based on this
observation, we define the discriminability Qi of fi as:

Qi =
Cic

max {Cij | j ∈ [1, C], j 6= c}
, (3)

i.e., the ratio of feature distance between the centroids of its class and the hardest-negative class.
Considering the variant number of elements in different groups, we further normalize the discrim-
inability by:

Di = τ

(
Qi − µ({Qj | j ∈ [1, s]})
σ({Qj | j ∈ [1, s]})

)
(4)

where τ(·), µ(·) and σ(·) denote the sigmoid function, the mean value and the standard deviation
value of {Qj | j ∈ [1, s]}, respectively. We denote Di as the discriminability distillation regulation
(DDR) score.

Cooperated with the feature space distribution, the DDR score Di is more interpretable and rea-
sonable than the quality score in traditional quality learning. It can discriminate features better by
explicitly encoding the intra- and inter-class distances with class centroids.

3.3 DISCRIMINABILITY DISTILLATION LEARNING

From section 3.2, given a training dataset θ and a corresponding model, the DDR score Di of fi can
be naturally computed by Eq (2)-(4). However, in group representation learning,Di is unavailable to
test set T without Wj . In order to better embed Di to the group representation learning procedure,
we introduce the discriminability distillation learning (DDL) to generate an approximated DDR
score D̂i for Di. Given an arbitrary CNN architecture N and an image Ii, D̂i can be approximated
by

D̂i = N (Ii;θ), (5)
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Figure 2: The formulation of discriminability distillation regulation. It is the ratio of element feature
distance with its class centroids and the hardest-negative class’s. After training the base model with
classification task, element features from the same class are projected to hyperspace tightly in order
to form a clear decision boundary. While the outliers who lie far away from its centroids or closer
to other classes are of low discriminability.

where θ is the parameter of the light-weight DDNetN . At the training stage, we apply mean squared
error between D̂i and target Di as

L =
1

2N

N∑
i

(D̂i −Di)
2 (6)

where N is the batch size.

3.4 FEATURE AGGREGATION G

At the test stage, we can generate D̂i via Eq (5) for each test element Ii in the given element set IS .
The feature aggregation G in Eq (1) can be formulated as

FIS = G(f1, f2, · · · , fn) =
n∑
i

R̂ifi

R̂i

, (7)

where n is the element number of IS , and R̂i is the re-scaled DDR score of D̂i via

R̂i = KD̂i +B. (8)

In Eq (8), we scale the DDR score of element set IS between 0 and 1 to ensure a same range for
element sets with different lengths. K and B are formulated as

K =
1

max{D̂i | i ∈ [1, n]} −min{D̂i | i ∈ [1, n]}
, (9)

B = 1−Kmax{D̂i | i ∈ [1, n]}. (10)

3.5 ADVANTAGE OF DISCRIMINABILITY DISTILLATION LEARNING

Different from the subjective quality judgment of an image or quality learning via attention mech-
anism, we explicitly assign discriminability for each element via the feature space distribution. By
jointly considering the inter- and intra-class distances with class centroids, DDL can effectively
approximate how discriminative a feature is. According to aggregating more information from fea-
tures with high discriminability in an element set, the recognition performance can be significantly
boosted. With the assistant of DDL, both hard samples (the model is easy to fail on them) or low-
quality images (the model is easy to give wrong predict results) can be weakened. Moreover, the
well design discriminability distillation learning process needn’t modify the base model, making it
easy to be plugged into many popular recognition frameworks.
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Figure 3: The pipeline of the test stage of DDL. For a set of elements, we first predict DDR score
by the trained-well DDNet for each element. Then the feature extracted by the base model will
be weighted aggregation to form the group representation. To achieve accuracy and computation
consumption trade-off, a top-K filter can also be applied to select the most discriminative elements
and only extract features and aggregate with them.

4 EXPERIMENTS

4.1 SET-TO-SET FACE RECOGNITION

DATASETS AND PROTOCOLS

In this section, we evaluate DDL for set-to-set face recognition on four datasets including two video
sets: the YouTube Face (YTF) Wolf et al. (2011), iQIYI-VID-FACE iQIYI (2019); and two template-
based sets: the IARPA Janus Benchmark A (IJB-A) Klare et al. (2015) and the IARPA Janus Bench-
mark C (IJB-C).

YTF: The YouTube Face dataset includes 3425 videos of 1595 identities with an average of 2.15
videos per identity. The videos vary from 48 frames to 6,070 frames. We report the 1:1 face verifi-
cation rate of the given 5,000 video pairs in our experiments without fine-tuning.

iQIYI-VID-FACE: The iQIYI-VID-FACE dataset iQIYI (2019) aims to identify the person in en-
tertainment video by face images. It is the largest video face recognition test benchmark so far,
containing 643,816 video clips of 10,034 identities. The test protocol is 1:1 verification and the True
Positive Rate (TAR) under False Positive Rate (FAR) at 0.01% is reported.

IJB-A: The IARPA Janus Benchmark A (IJB-A) Klare et al. (2015) is an unconstrained face recog-
nition benchmark, containing 25, 813 faces images of 500 identities. It is a template-based test
benchmark where both still images and video frames are included in templates. We report 1:1 veri-
fication results by following official protocol.

IJB-C: The IARPA Janus Benchmark C (IJB-C) is an extended version of IJB-A. It has 140, 740
faces images of 3, 531 subjects, so we can test under more strict False Accept Rates (FAR). Since
the images in IJB-C dataset have large variations, it is regarded as a challenging set-to-set face
recognition benchmark.

THE DETAILS OF DISCRIMINABILITY DISTILLATION NETWORK

All set images will be sent to the DDN at the inference stage, so the DDN is sensitive to computa-
tional burden. To make the inference stage efficient, the DDN is designed to be light-weighted. The
typical DDN is a channel reduced ResNet-18 network, which only introduces 81.9 Mflops computa-
tion for 112×112 input. Compared with base feature extraction models which often reach 24 Gflops
(ResNet-101), it is super-efficient. More discussions on the DDN architecture can be found in the
Appendix A.

EVALUATION ON YOUTUBE FACE AND IQIYI-VID-FACE

As shown in Table 1, our DDL achieves state-of-the-art performance on the Youtube Face bench-
mark. It outperforms Deng et al. (2019a) by 1.17% and other set-to-set face recognition methods
by impressive margins. Since we train a stronger base model, the baseline average method is higher
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Method Accuracy(%) Method Accuracy(%)
Li et al. (2014) 84.8 Taigman et al. (2014) 91.4

Schroff et al. (2015) 95.52 Yang et al. (2017) 95.72
Sun et al. (2015) 93.20 Liu et al. (2017c) 96.17

Gong et al. (2019) 96.50 Rao et al. (2017b) 96.52
Liu et al. (2019b) 96.21 Rao et al. (2017a) 94.28

Wang et al. (2018b) 97.6 Deng et al. (2019a) 98.02
Average 98.27 Top 1 97.11

DDL 99.19

Table 1: Video face verification performance on YouTube Face dataset, compared with state-of-the
art methods and baseline methods.

Method TPR@FPR=1e-4(%) Method TPR@FPR=1e-4(%)
MSRA 71.59 Alibaba-VAG 71.10

Insightface 67.00 DDL (PolyNet) 72.98
Average 65.84 Top 1 65.22

DDL 69.05

Table 2: Comparsion with different participants and aggreation stragey on the IQIYI-VID-
FACE challenge. By combing with PolyNet, DDL achieves state-of-the-arts peformance.
(http://www.insightface-challenge.com/results)

than Deng et al. (2019a), but for comparison with different aggregation strategies like average pool-
ing, DDL can also boost performance by 0.92%, which indicates DDL has learned a meaningful
pattern for discriminability. As a post-training module, DDL can cooperate with any pre-trained
model. To prove the robustness and good generalization ability of our DDL, we re-implement more
baseline and combine them with DDL, the results are shown in the Appendix A.

Since the results on YouTube Face benchmark tend to be saturated, we test our DDL on the chal-
lenging video face verification dataset IQIYI-VID-FACE, which is of large scale and more close to
industrial application. Compared with the average pooling, DDL improves performance by 3.21%.
Even aggregating the top 1 DDR score features only can still achieve the performance of average
aggregation for all frames. It shows that our DDL has selected the most discriminative element of
the set. By combining PolyNet base model, our DDL achieves the state-of-the-arts performance on
the IQIYI-VID-FACE dataset.

What’s more, the good performance of only aggregating top 1 discriminability frame shows that
we needn’t extract all frames by a heavy base model, but only the most discriminative one during
inference. Since the computational consumption for DDNet is efficient, usually only one-tenth of
other heavy models. It can be seen that DDL makes a huge difference for industrial video face
recognition application.

EVALUATION ON IJB-A AND IJB-C

Tables 3 and 4 show the results on the IJB-A and IJB-C dataset for different methods. From the two
tables, we can see that our DDL improves verification performance by a convincing margin with
average pooling for both two benchmarks, especially under severe FAR at 0.001% by 1.94% and
FAR at 0.0001% by 6.88% on IJB-C. Compared with IJB-A, IJB-C has more images and covers
more variations among images, such as pose, blur, resolution, and conditions. So the performance
gain with DDL is huger.

Compared with the state-of-the-art methods, our DDL improves IJB-A by 4.83% when FAR =0.001
and IJB-C by 4.89% when FAR = 0.0001%. These results indicate the effectiveness and robustness
of our DDL. What’s more, unlike many previous methods that need fine-tune with the base model
on set-to-set recognition training datasets, the only supervision for DDL training is the feature dis-
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Method IJB-A (TAR@FAR)
FAR=0.001 FAR=0.01 FAR=0.1

Crosswhite et al. (2018) 83.6 ± 2.7 93.9 ± 1.3 97.9 ± 0.4
Sankaranarayanan et al. (2016) 81.30 ± 2.0 91.0 ± 1.0 96.4 ± 0.5

Xie & Zisserman (2018) 92.0 ± 1.3 96.2 ± 0.5 98.9 ± 0.2
Liu et al. (2017c) 89.31 ± 3.92 94.2 ± 1.53 98.02 ± 0.55
Cao et al. (2018) 92.1 ± 1.4 96.8 ± 0.6 99 ± 0.2
Yang et al. (2017) 88.1 ± 1.1 94.1 ± 0.8 97.8 ± 0.3
Liu et al. (2017c) 89.31 ± 3.92 94.2 ± 1.53 98.02 ± 0.55

Zhong et al. (2018) 93.5 ± 1.5 97.2 ± 0.3 99.0 ± 0.2
Liu et al. (2019b) 93.61 ± 1.51 97.28 ± 0.28 98.94 ± 0.31

Deng et al. (2019a) 97.89 ± 1.5 98.51 ± 0.3 99.05 ± 0.2
Average 97.71 ± 0.6 98.43± 0.4 99.01± 0.2

DDL 98.44 ± 0.3 98.79 ± 0.2 99.13 ± 0.1

Table 3: Peformance comparsions on IJB-A verificatiton benchmark. The True Accept Rates (TAR)
vs. False Postive Rate (FAR) are reported.

Method IJB-C (TAR@FAR)
0.0001% 0.001% 0.01% 1% 1%

Yin et al. (2019) - - - 0.1 83.8
Xie et al. (2018) - - 88.5 94.7 98.3

Zhao et al. (2019) - 82.6 89.5 93.5 96.2
Xie & Zisserman (2018) - 77.1 86.2 92.7 96.8

Cao et al. (2018) - 74.7 84.0 91.0 96.0
Shi & Jain (2019) - 89.64 93.25 95.49 97.17

Deng et al. (2019a) 86.25 93.15 95.65 97.20 98.18
Average 84.06 93.81 95.73 96.98 97.87

DDL 91.14 95.75 96.94 97.72 98.36

Table 4: Peformance comparsions on IJB-C verificatiton benchmark. The True Accept Rates (TAR)
vs. False Postive Rate (FAR) are reported.

criminability generated with the base model on the same training set. So the fine-tune process is not
needed.

To qualitatively evaluate the discriminability pattern learned by our DDL, we visualize the discrim-
inability score distribution for two template images in IJB-C datasets. As shown in Figure 4, DDL
can effectively identify image discriminability. Pictures with large poses, visual blur, occlusion, and
incomplete content are regarded to be low discriminative. The efficient discriminability judgment
ability for our DDL leads to an extraordinary performance on set-to-set face recognition problem.
More visualization examples can be found in the Appendix A.1.

4.2 VIDEO ACTION RECOGNITION

DATASETS

ActivityNet-1.2. The ActivityNet-1.2 dataset Caba Heilbron et al. (2015) contains 4,819 training
videos and 2,383 validation videos for 100 action class. The duration of those videos varies from
2 seconds to 4 minutes and the average length of videos is 2 minutes. We carefully remove videos
with more than one label. Frames are extracted from videos and their width is resized to 240 pixels.
It is an untrimmed dataset, so large visual and content variation exists.

Kinetics-700. Kinetics Kay et al. (2017) is a well-trimmed and popular action recognition bench-
mark. Since around 2% videos of Kinetics-600 and 12% of videos of Kinetics-400 are not accessi-
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Figure 4: The visualization results of discriminability for images of Template ID 17762 and 16800
from IJB-C dataset.

ble from youtube, we conduct experiments on the Kinetics-700 dataset. Kinetics-700 contains 700
classes and 650k videos, and each action class has at least 600 video clips. Each clip is human
annotated with a single action class and lasts around 10s.

BASE MODEL AND TEST PROTOCOL

To combine and compare with DDL, we choose three clip-based 3D CNN models 3D-ResNet-50
Hara et al. (2018), SlowFast-50 Feichtenhofer et al. (2018) and R(2+1)D-50 Tran et al. (2018). For
testing, they firstly split the whole videos into clips and inference them individually. Then clip-level
results will be average pooled to get the whole video’s prediction. All three methods hugely rely on
the dense sampling strategy during testing, which is quite computational consumed.

For our DDL, we firstly filter clips by the light-weight DDNet. Then we only extract and aggre-
gate features from the top-K discriminability clips. The K value selected for Activitiynet-1.2 and
Kinetics-700 is 9 and 5 respectively, for that they achieve the best efficiency and accuracy trade-off
in our experiments. For comparison, we randomly or uniformly sample K clips in videos. Dense
sampling is also used to compare.

EVALUATION ON ACTIVITYNET-1.2

As shown in Table 5, DDL improves recognition performance for all baseline models. For the
state-of-the-art clips-based model SlowFast, combining it with DDL can achieve around 4% accu-
racy gain compared with randomly or uniformly sample. What’s more, DDL can even outperform
dense evaluation along with the whole video by a huge margin. It is reasonable as DDL can select
and aggregate clips with the highest discriminability, which avoids video clips with visual blur or
ambiguous content to pollute the video-level prediction.

What’s more, combining with DDL, the inference process can be hugely accelerated. For testing a
two minute videos with SlowFast-50 model as example, original dense sampling strategy introduces
17 Glops × 60 computation , but for DDL enhanced, only top discriminability videos need to be
predicted by the heavy base model. The total consumption is 1.7 Glops× 60 for assessing the
discriminability plus 9×17 Gflops for extracting the top discriminability clip feature, which achieves
4x speed up.

EVALUATION ON KINETICS700.

As shown in Table 6, DDL outperforms random sampling by 1.84% and uniform sampling by
2.18%. For dense sampling, DDL can achieve 0.86% gain with 6x speed up. Since Kinetics-700
is well trimmed, the improvement is not so significant compared with the untrimmed video dataset
ActivityNet-1.2. However, as a post-training module, DDL can be incorporated with any clip-based
3D action recognition model without base model re-trained. It can achieve more efficient and accu-
rate inference, which is very suitable for real-world video understanding applications.
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Model
DDL (9 clips)

Acc(%) GFLOPs×clips
Random ( 9 clips)

Acc(%) GFLOPs×clips
Uniform (9 clips)

Acc(%) GFLOPs×clips
Dense ( all clips)

Acc(%) GFLOPs×clips
3D-RS-50 86.38 37×9+1.7×60 82.83 37×9 83.14 37×9 83.92 37×60

R(2+1)D-RS-50 89.08 39×9+1.7×60 84.51 39×9 84.89 39×9 85.46 39×60
SlowFast-RS-50 90.21 16×9+1.7×60 85.92 16×9 86.14 16×9 87.72 16×60

Table 5: Video action recognition results on ActivityNet-1.2 dataset. We compare randomly, uni-
formly and filter by DDL to select 9 clips to aggregate. Accuracy is reported on the valiation set.
And the compute consumption is estimated on a 2 minutes videos (above 60 clips), for that 2 minutes
is the average video length of ActivityNet-1.2.

Model
DDL (5 clips)

Acc(%) GFLOPs×clips
Random ( 5 clips)

Acc(%) GFLOPs×clips
Uniform (5 clips)

Acc(%) GFLOPs×clips
Dense ( 30 clips)

Acc(%) GFLOPs×clips
3D-RS-50 71.01 37×5+1.7×30 68.26 37×5 67.43 37×5 68.83 37×30

R(2+1)D-RS-50 72.51 35×5+1.7×30 69.24 35×5 68.79 35×5 70.94 35×30
SlowFast-RS-50 74.23 16×5+1.7×30 72.39 16×5 72.05 16×5 73.37 16×30

Table 6: Video action recognition results on Kinetics-700 dataset. We compare randomly, uniformly
and filter by DDL to select 5 clips to aggregate. Accuracy is reported on the validation set and is the
average of top1 and top 5 accuracy. Dense sample strategy sample 10 clips along the temporal axis
and random crop 3 clips on the spatial axis.

CROSS DATASET AND MODEL EVALUATION.

In the last two sections, we train specialized DDNet for different datasets and base models, respec-
tively. To demonstrate the generalization ability of our DDL, we conduct the cross dataset and cross
model evolution experiment. Action recognition model R(2+1)D for ActivityNet-1.2 dataset is com-
bined with DDL trained with Kinetics-700 and base model SlowFast, the results are shown in Table
7. It can be found that through training with the different dataset and base model causes a perfor-
mance drop, DDL can still improve about 1% accuracy for dense sampling. These results show
that the discriminability pattern learned by DDL is robust and well to generalize to other datasets.
What’s more, the generalization ability can avoid training the DDL model for each action model and
each dataset, making the DDL more efficient and practical.

Base Model, Datatset Accuracy(%) Base Model, Datatset Accuracy(%)
SlowFast-RS-50, ActivityNet-1.2 87.91 R(2+1)D, ActivityNet-1.2 89.08

SlowFast-RS-50, Kinetics-700 86.31 R(2+1)D, Kinetics-700 86.92
Uniform 84.51 Dense 85.46
Random 84.80

Table 7: Results for cross dataset and cross model experiment. All results are reported with base ac-
tion recognition R(2+1)D-ResNet-50 on ActivityNet-1.2 dataset. The training procedures for DDL
vary from dataset and base model.

5 CONCLUSION

In this paper, we have proposed a novel post-processing module called DDL for all group-based
recognition tasks. We explicitly define the discriminability with observations on feature embed-
ding, then apply a light-weight network for discriminability distillation and feature aggregation. We
identify the advantage of our proposed methods in the following aspects: (1) The entire discrim-
inability distillation is performed without modifying the pre-trained base network, which is highly
flexible comparing with existing quality-aware or attention methods. (2) Our distillation network
is extremely light-weighted with great computational cost salvage. (3) With our DDL and feature
aggregation, we achieve state-of-the-art results on set-to-set face recognition and action recognition
tasks.
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A APPENDIX

IMPLEMENTATION DETAILS FOR SET-TO-SET FACE RECOGNITION

Pre-processing: RetinaFace Deng et al. (2019b) is used to detect faces and their corresponding
landmarks for all datasets. Images are aligned to 112 × 112 by similarity transformation based on
their landmarks.

Training: We train our base recognition model and DDL on MS-Celeb-1M dataset Guo et al. (2016).
Since the original dataset has been proved to be dirty, we use the cleaned version by Deng et al.
(2019a), which consists of 5,179,510 pictures from 93,431 identities. For the base model training,
we select the modified version of ResNet-101 He et al. (2016) introduced by Deng et al. (2019a)
and PolyNet Zhang et al. (2017b) as the backbone network.The loss function is ArcFaceDeng et al.
(2019a). The learning rate starts from 0.1 and is divided by 10 after 60k, 80k iterations, and we
finish our training at 11k. The base model is trained on 16 GPUs with a total batch size of 1024
and based on Pytorch Paszke et al. (2017) framework. After training the base network, we extract
features for each picture from the training set and compute its DDR score as discussed in section
3.2. Then the light-weight DDNet will regress the score by L2 loss with the same training image
input. The learning rate for training our DDNet starts from 0.1 and is divided by 10 after 30k, 60k,
and 80k iterations, and the total number of iterations is 100k. Linear warm-up with 10k iterations is
applied towards stable training. The DDNet is trained on 8 GPUs with a total batch size of 512 are
used.

14



Under review as a conference paper at ICLR 2020

DISCUSSION OF DDNET ARCHITECTURE

As has discussed in section 4.1, the design principle of our DDNet is computation efficient, to
introduce less computation burden. The typical architecture of DDNet is shown in Table 8, which is
a channel reduction Resnet-18 network. We also conduct experiments on deeper DDNet which has
34 layers and wider DDNet which is a standard Resnet-18 network. As shown in Table 9, neither the
deeper or the wider network leads to better performance, which illustrates that the discriminability
of face images can be well learned with limited parameters. As for action recognition, we utilize the
same DDNet architecture where the 2D convolution kernel is replaced by 3D.

stage DDNet output sizes H ×W
raw input 112×112

conv1
3× 3, 8

stride 1, 1
112×112

res2

[
1× 1, 8, stride2, 2
1×1, 8, stride1, 1

]
× 2 56×56

res3

[
1× 1, 16, stride2, 2
1× 1, 16, stride1, 1

]
× 2 28×28

res4

[
1× 1, 32, stride2, 2
1× 1, 32, stride1, 1

]
× 2 14×14

res5

[
1× 1, 48, stride2, 2
1× 1, 48, stride1, 1

]
× 2 7×7

global average pool, fc DDR score

Table 8: The architecture of our light-weight DDNet. Typical DDNet is a channel reduction Resnet-
18 network and only introduces 81.9 Mflops computation, which is super efficient.

Architecture IJB-C(TAR@FAR)
0.0001% 0.001% 0.01% 1% 1%

ResNet-18 90.93 95.74 96.92 97.73 98.35
ResNet-34-CD 91.13 95.74 96.90 97.72 98.33
ResNet-18-CD 91.14 95.75 96.94 97.72 98.36

Table 9: Peformance comparsions for different architecture on IJB-C verificatiton benchmark. The
True Accept Rates (TAR) vs. False Postive Rate (FAR) are reported. CD represents channel reduc-
tion as shown in Table 8.

RESULT OF COMBINING MORE BASELINE WITH DDL ON YOUTUBEFACE

The baseline model we select in the main part is trained with ArcFace loss function Deng et al.
(2019a). We also re-implement more baseline model with different loss function like Wang et al.
(2018b), Liu et al. (2017a). As shown in Table 10, when enhanced by DDL, all baseline achieve
performance above 1% performance gain, which indicates the good robustness and generalization
ability of our DDL.

DISCUSSION ON UNBALANCED DATA CLASS WHEN TRAINING DDL

Since the data imbalance between classes and such a long-tail distribution has become concerns for
training recognition models Zhang et al. (2017a); Van Horn & Perona (2017), we conduct experi-
ments with two settings for MS1M dataset Guo et al. (2016) :

• Tail data: We use one-tenth of raw data with the minimum sample count in each class. It
has insufficient data per class and contains 519,379 pics from 29,210 classes.
• Head data: We use one-tenth of raw data with the maximum sample count in each class. It

has enough data per class and contains 544,381 pics from 4,833 classes.
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SF SF(DDL) CF CF(DDL) AF AF(DDL)
95.8 97.1 97.8 98.7 98.3 99.2

Table 10: Combine DDL with more baselines including SphereFace (SF) and CosFace (CF). All
baseline models are trained with same backbone and datasets. Average pooling is used as the default
aggregation strategy.

The comparison results for the two settings on IJB-C datasets are illustrated in Table 11. The per-
formance for tail data and head data are almost the same because the formulation of DDR doesn’t
explicitly encodes identity information. For the classification task, insufficient data for one class
may lead to bad representation for that class in subspace, but for our DDL training, the DDR defini-
tion is class-unspecified, which means only the feature’s intra- class and inter-class distance matters,
but not the identity information.

What’s more, the slight performance drop for training with one of the tens of amount indicates that
by increasing the training sample, the performance of DDL can further improve. But around 500,000
data are enough for training a good DDL model.

Data IJB-C(TAR@FAR)
0.0001% 0.001% 0.01% 1% 1%

Tail 89.81 95.38 96.62 97.48 98.14
Head 89.92 95.41 96.59 97.51 98.13
Full 91.14 95.75 96.94 97.72 98.36

Table 11: Peformance comparsions for discussion of class data imbalance when training DDL. Head
and tail data setting are of near same number samples, but varies from class numbers.

RESULTS OF TRAINING DDL WITH OTHER DATASETS.

In the main article, we train our base model and DDL on the MS1M dataset Guo et al. (2016), which
is the largest open face datasets. In this section, we also train our base model and DDL on the IMDB
dataset Wang et al. (2018a), which contains 59k identities and 1.7M images. The results on IJB-C
dataset are in Table 12. Training with the smaller dataset, DDL also achieves competitive results
and better than average pooling for a huge margin. At FPR=0.01%, compared with average pooling,
DDL boosts the performance by 29.64%. This indicates that a weak model can benefit more from
DDL.

Method IJB-C(TAR@FAR)
0.0001% 0.001% 0.01% 1% 1%

average 0.002 0.22 39.39 91.55 96.34
DDL 0.002 0.40 66.33 94.83 97.55

Table 12: Peformance for training both base model and DDL on IMDB dataset on IJB-C benchmark.
The True Accept Rates (TAR) vs. False Postive Rate (FAR) are reported.

RESULTS OF CASCADE TRAINING WITH DDL

Applying cascade training to refine a better centroid could be a reasonable idea. We conduct exper-
iments. After training one DDL, we use the DDR scores to weighted refine each class’s centroid
and generate new DDR scores for DDNet to regress. The results are in Table 13. By cascade train-
ing and refined centroids, DDL boosts performance for 0.4% at FAR=0.0001%, which means good
centroids leading to a better discriminability representation.
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Method IJB-C(TAR@FAR)
0.0001% 0.001% 0.01% 1% 1%

DDL 91.14 95.75 96.94 97.72 98.36
cascade training 91.53 95.91 97.01 97.82 98.40

Table 13: Peformance comparsions for cascade training on IJB-C dataset. By refining the class
centroid and cascade training, DDL achieves performance gain.

DISCUSSION OF NORMALIZATION AND SCORE SCALE FOR DDL

In Eq(4), we normalize the discriminability by the mean and standard deviation to deal with a variant
number of elements in different groups. In our experiments, if the normalization step is removed,
the DDNet can’t converge.

As for linear map the minimum and maximum DDR score of the element set to 0 and 1 in
Eq(8)(9)(10), this step leading to 0.4% performance gain for YTF and 1.6% performance gain for
IQIYI-VID-FACE. But the scale process doesn’t contribute to template-based set-to-set recognition
like IJB-A and IJB-C dataset. The reason is that in a video, frames are captured in the almost
same condition, so the variation of frames tends to be limited. The mapping process will separate
the score distribution, making it more focuses on frames with higher discriminability. While for
template-based set-to-set recognition like IJB-A and IJB-C, the variation of elements is large and
the discriminability score distribution has been separated well, so there is no obvious gain when
applying score re-scale. More aggregation strategy scripts can found in our GitHub.

IMPLEMENTATION DETAILS FOR ACTION RECONGNTION

To train on ActivityNet-1.2 dataset, we pre-trained our model on Kinetics-700 datasets. Video clips
with adjacent 64 frames are randomly sampled from raw videos for training and testing. For the
spatial domain, we randomly crop 112×112 pixels with a shorted side randomly sampled in [128,
160] pixels. 32 NVIDIA V100 GPUS with synchronized SGD training and global BN are used to
train and we find that result for typical training in one 8 GPU machine is the same. Similar to the
2D-DDL, we generate the pseudo discriminability label for each clip and use a channel reduction
3D resnet-18 network to regress the score after training the base model. The training setting for
Kinetics is the same with ActivityNet-1.2, except we sample clips with adjacent 32 frames.

A.1 QUALITATIVE ANALYSIS

In the main part, we visualize two templates from IJB-C datasets. In this subsection, we visualize
more examples from YouTube Face dataset. As we can see in these experiments, our DDL has
learned meaningful discriminative patterns.
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Figure 5: Visualization discrimiability of frames from different videos.
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Figure 6: Visualization discrimiability of frames from one video.
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