
2nd Symposium on Advances in Approximate Bayesian Inference, 2019 1–7

Neural Permutation Processes

Ari Pakman
Yueqi Wang
Liam Paninski
Columbia University

Abstract

We introduce a neural architecture to perform amortized approximate Bayesian inference
over latent random permutations of two sets of objects. The method involves approximating
permanents of matrices of pairwise probabilities using recent ideas on functions defined over
sets. Each sampled permutation comes with a probability estimate, a quantity unavailable
in MCMC approaches. We illustrate the method in sets of 2D points and MNIST images.

1. Introduction

Posterior inference in generative models with discrete latent variables presents well-known
challenges when the variables live in combinatorially large spaces. In this work we focus on
the popular and non-trivial case where the latent variables represent random permutations.
While inference in these models has been studied in the past using MCMC techniques (Di-
aconis, 2009) and variational methods (Linderman et al., 2018; Mena et al., 2018), here
we propose an amortized approach, whereby we invest computational resources to train a
model, which later is used for very fast posterior inference (Gershman and Goodman, 2014).
Unlike the variational autoencoder approach (Kingma and Welling, 2013), in our case we
do not learn a generative model. Instead, the latter is postulated (through its samples) and
posterior inference is the main focus of the learning phase. This approach has been recently
explored in sundry contexts, such as Bayesian networks (Stuhlmüller et al., 2013), sequen-
tial Monte Carlo (Paige and Wood, 2016), probabilistic programming (Ritchie et al., 2016;
Le et al., 2016), neural decoding (Parthasarathy et al., 2017) and particle tracking (Sun
and Paninski, 2018).

Our method is inspired by the technique introduced in (Pakman and Paninski, 2018)
to perform amortized inference over discrete labels in mixture models. The basic idea is
to use neural networks to express posteriors in the form of multinomial distributions (with
varying support) in terms of fixed-dimensional, distributed representations that respect the
permutation symmetries imposed by the discrete variables.

After training the neural architecture using labeled samples from a particular genera-
tive model, we can obtain independent approximate posterior samples of the permutation
posterior for any new set of observations of arbitrary size. These samples can be used to
compute approximate expectations, as high quality importance samples, or as independent
Metropolis-Hastings proposals.

c© A. Pakman, Y. Wang & L. Paninski.



Neural Permutation Processes

2. Amortizing Permutations

Let us consider the generative model

N ∼ p(N) c1:N ∼ p(c1:N ) xci , yi ∼ p(xci , yi) (1)

Here p(c1:N ) = 1/N ! is a uniform distribution over permutations, with the random variable

ci ∈ {1, . . . , N}, ci 6= cj for i 6= j

denoting that xci is paired with yi. As a concrete example, think of yi as a noise-corrupted
version of a permuted sample xci . Given two sets of N data points x = {xi}, y = {yi}, we
are interested in iid sampling the posterior of the ci’s, using a decomposition

p(c1:N |x,y) = p(c1|x,y)p(c2|c1,x,y) . . . p(cN |c1:N−1,x,y); (2)

note now that p(cN |c1:N−1,x,y) = 1, since the last point yN is always matched with the
last unmatched point among the xi’s. A generic factor in (2) is

p(cn|c1:n−1,x,y) =
p(c1 . . . cn,x,y)∑

c′n

p(c1, . . . , c
′
n,x,y)

(3)

where cn takes values in {1, . . . , N} not taken by c1:n−1. Consider first

p(c1, . . . , cn,x,y) = (N !)−1p(xc1 , y1) . . . p(xcn , yn)R(cn+1:N ,x,y|c1 . . . cn) (4)

where we defined

R(cn+1:N ,x,y|c1 . . . cn) =
∑

{cn+1...cN∈sn}

N∏
i=n+1

p(xci , yi) (5)

and sn = {1 . . . N}/{c1 . . . cn} is the set of available indices after choosing c1:n. Note that
R in (5) is the permanent of a (N − n)×(N− n) matrix, an object whose computation is
known to be a #P problem (Valiant, 1979). Inserting (4) into (3) gives

p(cn|c1:n−1,x,y) =
p(xcn , yn)R(cn+1:N ,x,y|c1 . . . cn)∑
c′n
p(xc′n , yn)R(cn+1:N ,x,y|c1 . . . c′n)

. (6)

Note that (6) does not depend on {xci}n−1i=1 or {yi}n−1i=1 , except for restricting the allowed
values for cn. Now, the function R in (5) depends on the unmatched points {xci}Ni=n+1, and
{yi}Ni=n+1, in such a way that it is invariant under separate permutations of the elements
of each set. Following (Zaheer et al., 2017; Gui et al., 2019), these permutation symmetries
can be captured by introducing functions h : Rdx → Rdh , f : R2dh → R, defining

Hy =

N∑
i=n+1

h(yi) Hx,cn =

N∑
i=n+1

h(xci) , (7)

2



Neural Permutation Processes

and approximating

R(cn+1:N ,x,y|c1 . . . cn) ' ef(Hx,cn ,Hy) . (8)

The subindex cn in Hx,cn indicates a value that cannot be taken by the ci’s in the sum
in (7). Inserting (8) into (6) gives

qθ(cn|c1:n−1,x,y) =
p(xcn , yn)ef(Hx,cn ,Hy)∑
c′n
p(xc′n , yn)e

f(Hx,c′n
,Hy)

(9)

which is our proposed approximation for (6), with θ representing the parameters of the
neural networks for h, f . The neural architecture is schematized in Figure 2. The pairwise
density p(yn, xcn) can be either known in advance, or represented by a parametrized function
to be learned (in the latter case we assume we have samples from it). We call this approach
the Neural Permutation Process (NPP).

3. Objective Function

In order to learn the parameters θ of the neural networks h, f (and possibly p(xcn , yn)), we
use stochastic gradient descent to minimize the expected KL divergence,

Ep(N)p(x,y)DKL(p(c|x,y)‖qθ(c|x,y)) = −Ep(N)Ep(c1:N ,x,y)

[
N∑
n=2

log qθ(cn|c1:n−1,x,y)

]
+ const.

Samples from p(N)p(c1:N ,x,y) are obtained from the generative model (1). If we can take
an unlimited number of samples, we can potentially train a neural network to approximate
p(cn|c1:n−1,x) arbitrarily accurately.

4. Examples

In Figure 1 we show results for the following two examples. Both cases illustrate how a
probabilistic approach captures the ambiguities in the observations.
Noisy pairs in 2D: the generative model is

xci ∼ N(0, 3) yi ∼ N(xci , 0.612) i = 1 . . . N. (10)

MNIST digits: the generative model is

yi, xci ∼ Unif [Pairs of MNIST digits with same label ] i = 1 . . . N. (11)

An additional symmetry. Note finally that if p(yn, xcn) = p(xcn , yn) (as is the case in
these examples), the additional symmetry f(Hx,cn , Hy) = f(Hy, Hx,cn) can be captured by
introducing a new function g and defining f(Hx,cn , Hy) = f(g(Hx,cn)+g(Hy)). Interestingly,
as shown in Figure 2, we find that a higher likelihood is obtained instead by f(Hx,cn , Hy) =
f(Hx,cn � Hy), where � indicates componentwise multiplication. To our knowledge, this
type of encoding has not been studied in the literature, and we plan to explore it further
in the future.

3



Neural Permutation Processes

Observed 25 Pairs Prob: 0.07 Prob: 0.06

Prob: 0.05 Prob: 0.04 Prob: 0.04

Observed 6 Pairs NPP: 0.91   Exact: 0.93 NPP: 0.07   Exact: 0.06

Prob:0.73

Prob:0.27

Figure 1: Neural Permutation Process. Left: Noisy pairs in 2D. N = 25 pairs from
the model (10), and five different samples from the posterior. Red links indicate
departures from the highest probability matchings. Upper right: N = 6 pairs
from the same model. In this case we can compute the exact probabilities, which
track the NPP approximate values well. Lower right: Two posterior samples
from from the model (11), given ten pairs of distinct MNIST digits. Note that
the samples capture well the ambiguity between digits ‘4’ and ‘9’.

5. Conclusion

Our results on simple datasets validate this approach to posterior inference over latent
permutations. More complex generative models with latent permutations can be approached
using similar tools, a research direction we are presently exploring.

h

xCNxCn xCn+1 xCn+2

Neural Permutation Process

softm
ax

0.03

0.10

0.01

h h h

y1 y2 yNyn yn+1 yn+2

h h h h

p(xCn , yn) f(Hx,cn , Hy)

xC1 xC2

cn=1

cn=2

cn=3

matched un-matched
0 2000 4000 6000 8000 10000

Iterations

10 2

10 1

100

M
ea

n 
N

LL

f = 0
f(g(Hx) + g(Hy))
f(Hx  Hy)

Figure 2: Left: The NPP neural architecture. Right: Pairwise symmetric mod-
els. The curves show mean training negative log-likelihood/iteration in the
MNIST example. f = 0 is a baseline model, were we ignore the unassigned
points in (9). The other two curves correspond to encoding the symmetry
p(yn, xcn) = p(xcn , yn) as f(g(Hx,cn) + g(Hy)) or as f(Hx,cn �Hy).

4



Neural Permutation Processes

.

References

Persi Diaconis. The Markov chain Monte Carlo revolution. Bulletin of the American Math-
ematical Society, 46(2):179–205, 2009.

Samuel Gershman and Noah Goodman. Amortized inference in probabilistic reasoning. In
Proceedings of the annual meeting of the cognitive science society, volume 36, 2014.

Shupeng Gui, Xiangliang Zhang, Pan Zhong, Shuang Qiu, Mingrui Wu, Jieping Ye, Zheng-
dao Wang, and Ji Liu. Pine: Universal deep embedding for graph nodes via partial
permutation invariant set functions. arXiv preprint arXiv:1909.12903, 2019.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR,
2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Tuan Anh Le, Atilim Gunes Baydin, and Frank Wood. Inference compilation and universal
probabilistic programming. arXiv preprint arXiv:1610.09900, 2016.

Scott W Linderman, Gonzalo E Mena, Hal Cooper, Liam Paninski, and John P Cunning-
ham. Reparameterizing the Birkhoff polytope for variational permutation inference. In
AISTATS, 2018.

Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. Learning latent per-
mutations with gumbel-sinkhorn networks. In International Conference on Learning Rep-
resentations, 2018. URL https://openreview.net/forum?id=Byt3oJ-0W.

Brooks Paige and Frank Wood. Inference networks for sequential Monte Carlo in graphical
models. In International Conference on Machine Learning, pages 3040–3049, 2016.

Ari Pakman and Liam Paninski. Amortized Bayesian Inference for Clustering Models.
arXiv:1811.09747, BNP@NeurIPS 2018 Workshop, 2018.

Nikhil Parthasarathy, Eleanor Batty, William Falcon, Thomas Rutten, Mohit Rajpal, E.J.
Chichilnisky, and Liam Paninski. Neural Networks for Efficient Bayesian Decoding of
Natural Images from Retinal Neurons. In Advances in Neural Information Processing
Systems 30, pages 6434–6445. 2017.

Daniel Ritchie, Paul Horsfall, and Noah D Goodman. Deep amortized inference for proba-
bilistic programs. arXiv preprint arXiv:1610.05735, 2016.

Andreas Stuhlmüller, Jacob Taylor, and Noah Goodman. Learning stochastic inverses. In
Advances in neural information processing systems, pages 3048–3056, 2013.

Ruoxi Sun and Liam Paninski. Scalable approximate Bayesian inference for particle tracking
data. In Proceedings of the 35th International Conference on Machine Learning, 2018.

5

https://openreview.net/forum?id=Byt3oJ-0W


Neural Permutation Processes

Leslie G Valiant. The complexity of computing the permanent. Theoretical computer sci-
ence, 8(2):189–201, 1979.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabás Póczos, Ruslan Salakhut-
dinov, and Alexander J. Smola. Deep sets. In Advances in neural information processing
systems, 2017.

6



Neural Permutation Processes

Appendix A. Neural architectures in the examples

To train the networks in the examples, we used stochastic gradient descent with ADAM (Kingma
and Ba, 2015), with learning rate 10−4. The number of samples in each mini-batch were:
1 for p(N), 1 for p(c1:N ), 64 for p(x,y|c1:N ). The architecture of the functions in each case
were:

Permutations 2D

• h: MLP [2-64-64-64-256] with ReLUs

• f : MLP [512-64-64-64-1] with ReLUs

Permutations MNIST

• h: 2 layers of [convolutional + maxpool + ReLU] + MLP [256-256] with ReLUs

• f : same as above

7


	Introduction
	Amortizing Permutations
	Objective Function
	Examples
	Conclusion
	Neural architectures in the examples

