
Medical Image Analysis 36 (2017) 147–161 

Contents lists available at ScienceDirect 

Medical Image Analysis 

journal homepage: www.elsevier.com/locate/media 

Automated annotation and quantitative description of ultrasound 

videos of the fetal heart 

Christopher P. Bridge 

a , ∗, Christos Ioannou 

b , J. Alison Noble 

a 

a Institute of Biomedical Engineering, University of Oxford, Oxford, United Kingdom 

b Fetal Medicine Unit, John Radcliffe Hospital, Oxford, United Kingdom 

a r t i c l e i n f o 

Article history: 

Received 26 March 2016 

Revised 17 November 2016 

Accepted 18 November 2016 

Available online 19 November 2016 

Keywords: 

Ultrasound 

Fetal 

Heart 

Cardiac 

View detection 

Rotation-invariant 

Random forests 

Particle filter 

a b s t r a c t 

Interpretation of ultrasound videos of the fetal heart is crucial for the antenatal diagnosis of congenital 

heart disease (CHD). We believe that automated image analysis techniques could make an important con- 

tribution towards improving CHD detection rates. However, to our knowledge, no previous work has been 

done in this area. With this goal in mind, this paper presents a framework for tracking the key variables 

that describe the content of each frame of freehand 2D ultrasound scanning videos of the healthy fetal 

heart. This represents an important first step towards developing tools that can assist with CHD detection 

in abnormal cases. We argue that it is natural to approach this as a sequential Bayesian filtering problem, 

due to the strong prior model we have of the underlying anatomy, and the ambiguity of the appearance 

of structures in ultrasound images. We train classification and regression forests to predict the visibility, 

location and orientation of the fetal heart in the image, and the viewing plane label from each frame. 

We also develop a novel adaptation of regression forests for circular variables to deal with the predic- 

tion of cardiac phase. Using a particle-filtering-based method to combine predictions from multiple video 

frames, we demonstrate how to filter this information to give a temporally consistent output at real-time 

speeds. We present results on a challenging dataset gathered in a real-world clinical setting and com- 

pare to expert annotations, achieving similar levels of accuracy to the levels of inter- and intra-observer 

variation. 

© 2016 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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. Introduction 

Congenital heart disease (CHD) is one of the most common

efects affecting infants at birth and covers a range of specific

ssues that affect the normal function of the heart. The estab-

ished method for in utero detection of CHD is antenatal ultrasound

creening of the fetal heart. Typical screening procedures are con-

ucted at a gestational age of 18–22 weeks and involve the use of

 two dimensional (2D) ultrasound transducer to examine visually

he development and function of the different structures ( Carvalho

t al. (2013) ). Unfortunately, detection rates of CHD vary widely

ue to a number of different factors including the training of the

onographer ( Pézard et al. (2008) ; Allan (2000) ), the nature of the

efect, and the affluence of the region ( Hill et al. (2015) ). 

A recent survey in the United States of America suggested that

ne of the key factors that limits the diagnosis rate is that many
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orms of CHD cannot be identified from a four-chamber view alone

 Hill et al. (2015) ). Recent guidelines ( Carvalho et al. (2013) ) have

lso emphasised the importance of using a number of different

iewing planes , in addition to the common four-chamber view, in

rder to increase the rate of diagnosis of certain types of CHD. 

Analysis of clinical fetal cardiac ultrasound videos is a challeng-

ng task, even for humans, for a number of reasons. Firstly, the in-

istinct appearance of anatomical structures in ultrasound images

akes image interpretation difficult. This is compounded by vari-

tions in contrast levels and imaging parameters, as well as the

resence of imaging artefacts such as speckle, shadowing and en-

ancement. In fetal cardiac videos (unlike adult echocardiography),

he heart may take up only a small fraction of the screen and

ts location in the image can change due to motion of the probe

nd/or the fetus during scanning. The orientation of the fetus rel-

tive to the direction of the propagation of sound is also unknown

nd potentially variable. The appearance of the heart changes sig-

ificantly throughout the cardiac cycle, and there may also be fetal

otion in the direction perpendicular to the imaging plane that

ay cause the appearance to change or cause the heart to disap-
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 
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pear altogether. Furthermore, while scanning, a sonographer will

often review the different viewing planes of the fetal heart in rel-

atively quick succession. 

Computer-aided methods have the potential to improve detec-

tion rates of CHD, but little previous work has been carried out

towards this aim. The focus of this paper is the general problem of

automatically estimating key information of interest from videos of

the healthy fetal heart during acquisition within a standard screen-

ing scan. This represents a critical first step in an image processing

pipeline and could support good-quality acquisition and assist an

operator in interpretation. Furthermore it provides a basis for fur-

ther work towards automatic quantification and diagnosis of ab-

normal hearts. 

In order to have a thorough and useful description of the state

of the healthy heart at a given point in time, we must estimate the

key parameters including its visibility, position and orientation in

the image as well as the current viewing plane and the position in

the cardiac cycle. Our approach is to pose this problem as an infer-

ence problem using sequential Bayesian filtering . There are a num-

ber of reasons for this choice. Sequential Bayesian filtering tech-

niques allow a probabilistic belief over the ‘state’ of a ‘system’ (in

our case the heart is the system and the state is its position, ori-

entation, viewing plane and cardiac cycle position) to be updated

on-line – and often in real-time – using all the observations that

have been made so far. In particular, they naturally account for the

uncertainty in individual observations made from the images, and

balance them against a prior model of how the ‘system’ behaves in

order to enforce temporal consistency. This is particularly impor-

tant in this setting, where the information in each frame is often

relatively weak or ambiguous due to the difficulty in interpreting

ultrasonic reflection patterns, while the temporal model of heart

behaviour over a number of frames is comparatively strong. 

The outline of the remainder of the paper is as follows. Hav-

ing reviewed related literature in Section 2 , we formally define

our problem in Section 3 and outline our proposed model in

Section 4 , with key components described in Sections 5 and 6 . In

Section 7 we describe the evaluation of the model on a dataset of

fetal heart videos captured in a clinical setting. We present results

in Section 8 and concluding remarks in Section 9 . 

2. Related work 

To the best of our knowledge, this is the first work to at-

tempt to automate analysis of fetal cardiac ultrasound videos. Pre-

vious authors have successfully performed view detection in im-

ages obtained from adult echocardiographic images using a variety

of techniques ( Agarwal et al. (2013) ; Wu et al. (2013) ; Zhou et al.

(2006) ; Park et al. (2007) ; Qian et al. (2013) ; Kumar et al. (2009) ;

Ebadollahi et al. (2004) ), while others have had success in auto-

matic recognition of other fetal structures in images ( Carneiro et al.

(2008) ; Rahmatullah et al. (2012) ; Namburete et al. (2013) ; Yaqub

et al. (2012) ) and, more recently, in videos ( Maraci et al. (2014) ;

Chen et al. (2015) ). Finally, some work has attempted to estimate a

more detailed description of the adult heart in echocardiographic

data in the form of boundaries ( Nascimento and Marques (2008) ;

Carneiro and Nascimento (2013) ; Yang et al. (2008) ). 

2.1. View detection in adult echocardiagraphy 

Several approaches to view detection in adult echocardiogra-

phy make use of global image properties in order to deduce the

view label. For example, Agarwal et al. (2013) use a histogram of

oriented gradients (HOG) descriptor on the whole image, broken

into four non-overlapping blocks. This can distinguish between two

very different views (long axis and short axis) with a support vec-

tor machine (SVM) classifier. Wu et al. (2013) employ a similar
ethod, using ‘GIST’ descriptors ( Oliva and Torralba (2001) ) in 16

mage blocks instead of HOG descriptors. Zhou et al. (2006) use

 multi-class classifier based on LogitBoost and rectangular fil-

ers (‘Haar-like’ filters) in order to distinguish between apical two-

hamber and four-chamber views. Such global methods are not

ell-suited to fetal echocardiography because they assume a rela-

ively consistent layout of frames, but in fetal imagery the position

nd orientation of the heart is unknown. Also, in our application,

nly small areas of the fetal images are relevant to view classifica-

ion, and the rest of the image is taken up by the fetal abdomen

nd the womb. 

This is overcome, to some extent, in the work of Park et al.

2007) , which builds on the work in Zhou et al. (2006) by adding

 left ventricle detection stage, which is then used to position the

ulti-class view classifier in the image. However, this relies upon

he appearance of the left ventricle being fairly consistent between

iews, and there is unfortunately no such guarantee of consistency

n the fetal views of interest to us. Furthermore, although it solves

he problem of unknown position it does not solve the problem of

nknown orientation. 

Other methods rely on first detecting keypoints in the frame.

ian et al. (2013) detect space-time interest points in the video

tream and describe them using a 3D scale-invariant feature tran-

orm (SIFT) descriptor (in the two spatial dimensions plus time).

imilarly, Kumar et al. (2009) detect interest points using the SIFT

eypoint detector in the motion magnitude image, and describe

hem using local histograms of motion magnitude and intensity.

n both cases, the extracted descriptors are quantised according

o a pre-trained codebook, and an SVM classifier is used on the

odebook histogram for classification. Such approaches are also un-

ikely to be effective in fetal imagery for the same reasons as the

lobal methods. It is also difficult to estimate other information

uch as position, orientation and cardiac phase information from

he frames using this approach. 

Ebadollahi et al. (2004) first use the grey-scale symmetric axis

ransform (GSAT) to detect the “blobs” that are potential heart

hambers. They then connect them in a Markov Random Field

MRF) graph structure in order to label the chambers and hence

educe the view label. This approach depends on reliable detec-

ion of chambers, and the authors showed that accuracy dropped

ramatically when chamber detection was not reliable, as is likely

o be the case in fetal imaging where structures other than the

eart are visible. 

.2. Structure detection in fetal ultrasound imagery 

Several authors have used ensemble methods that combine

eak classifiers based on rectangular block filters to detect partic-

lar structures in fetal ultrasound imagery. For example Carneiro

t al. (2008) used a Probabilistic Boosting Tree and rectangular

lters to detect a number of different structures including the

etal head, abdomen and femur. Rahmatullah et al. (2012) and

amburete et al. (2013) used similar features and an Adaboost

lassifier to detect abdominal and cerebral landmarks in fetal im-

ges, and Yaqub et al. (2012) used random forest classifiers with

ectangular filters for cerebral structures. We draw on these works

y using random decision forests for detection of and discrimina-

ion between the different fetal heart views. However since rectan-

ular block filters do not deal well with unknown orientations, we

ave instead chosen to use a alternative set of rotation invariant

eatures (see Section 6.1 ). 

One approach to fetal ultrasound video analysis is that of Maraci

t al. (2014) , who model the frames in short video sequences as

he output of a linear dynamical system, and construct a SVM

lassifier based on kernels between the model parameters in or-

er to detect subsequences containing structures of interest. This
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ethod provides a general method for exploiting the information

ontained within motion patterns for detection. However it detects

tructures in time but not space and is not well suited to on-line

pplications as the complete sequence is needed to deduce model

arameters. 

Perhaps the work with the most similar aims to ours is that

f Chen et al. (2015) , who use a deep architecture that combines

 spatial convolutional neural network and a temporal recurrent

eural network to make use of temporal context features for stan-

ard viewing plane detection in fetal ultrasound videos. Unfortu-

ately, that approach requires a large amount of training data and

he technique has not yet been used for full state tracking in the

ense that we are attempting here. Gao et al. (2016) have recently

emonstrated that the data requirements for using deep networks

ith fetal ultrasound can be reduced by using transfer learning

rom models trained on natural images. However, neither of these

apers are specifically dealing with the fetal heart. 

.3. Boundary tracking in adult echocardiagraphy 

Another area of related work is automatic boundary tracking

n (adult) echocardiography using 2D (e.g. Jacob et al. (1998) ;

ascimento and Marques (2008) ; Carneiro and Nascimento (2013) )

r 3D (e.g. Yang et al. (2008) ) video data. Like our work, these al-

orithms track a high-dimensional representation of the heart as it

volves through video frames, and like in this paper, they tend to

se a strong temporal prior model in order to provide robustness

o ambiguous image information. For example, in early work Jacob

t al. (1998) used a Kalman filter to model the evolution of the

eft ventricular boundary. Nascimento and Marques (2008) built on

his with multiple predictive models and robust data association

o eliminate erroneous boundary candidates. Carneiro and Nasci-

ento (2013) track points on the left ventricle endocardium using

 robust particle filtering framework that couples a linear transi-

ion model (in fact one model for diastole and another for systole)

ith an observation model built with deep neural networks. Such

echniques are also applicable for the higher dimensional problem

f 3D boundary tracking, such as the work of Yang et al. (2008) ,

hich uses a prediction model based on manifold learning of left

entricle boundary trajectories, and combines it with an observa-

ion model using probabilistic boosting trees. 

Whilst the methodologies in these papers are related to our

ork, their aims are somewhat different from ours as they specif-

cally aim to track the ventricle boundary, and assume carefully

aptured data that reliably contains the boundary of interest and in

hich there are no changes in viewing plane or significant changes

n heart location. Our aim is to provide a more broadly applica-

le set of measurements and descriptions of fetal heart scans, that

ould could provide useful information in less constrained scan-

ing sessions. 

. Problem definition 

We formulate our problem within the framework of Bayesian

ltering. We therefore have an unobserved state , s t , at time t that

ontains variables describing the visibility of the heart, the location

f the heart centre in the image, the current view category label,

he orientation of the heart in the image, and the current cardiac

hase. We wish to estimate this state from image data at test time.

To demonstrate our approach we use a slight simplification of

he viewing plane taxonomy that is recommended for visualisation

uring a fetal cardiac assessment ( Carvalho et al. (2013) ) and de-

ne three viewing plane labels: the four chamber (4C) view, the

eft ventricular outflow tract (LVOT) view, and the three vessels (3V)

iew. This gives a discrete, categorical view label variable v t ∈
4C, LVOT, 3V}. The definitions of the location of the heart cen-

re x t ∈ R 

2 , in pixels, and the heart orientation θ t ∈ [0, 2 π ), de-

ned anti-clockwise from the increasing x -direction, differ for each

f the three views. 

Definitions of these views and their coordinate systems are

hown in Fig. 1 . The four chamber view contains all four cham-

ers, with the centre at the crux. The orientation is defined by the

rientation of the interventricular septum. The radius is defined in

his view as that which encompasses both atria. The left ventricular

aortic) outflow tract view is defined by the presence of the aorta

eaving the left ventricle. The centre is defined by the centre of the

orta where it crosses the interventricular septum and the orien-

ation is again defined by that of the interventricular septum. The

hree vessels view is defined by the simultaneous presence of the

ulmonary artery, aorta and superior vena cava. The centre is de-

ned as the centre of the pulmonary artery at the point where it is

n line with the other two vessels, and the orientation is defined by

hat of the right wall of the pulmonary artery. These three planes

an be viewed in sequence by sweeping the probe in a cephalad

irection from the four-chamber view. 

The cardiac cycle is described by a cardiac phase variable φt 

 [0, 2 π ) in rad, where φt = 0 denotes end-diastole and φt = π
enotes end-systole, and other values are interpolated linearly be-

ween these key points (see Fig. 2 ). Because the heart rate in the

ideos is unknown but relatively constant, we find that using a

econd-order model for the cardiac phase is advantageous. There-

ore the state vector also contains the current cardiac phase rate
˙ 
t ∈ [ ˙ φmin , 

˙ φmax ] in rad s −1 . (i.e. the rate of change of the car-

iac phase variable with respect to time), where hard limits are

laced on the permissible values for the phase rate to avoid tem-

oral aliasing and other unexpected behaviour. By contrast, we find

hat using second-order models for position and orientation is un-

ecessary because changes in these values are small. 

Finally we track the visibility of the heart with a Boolean vari-

ble h t ∈ {0, 1} , which represents whether the heart is currently

isible (0) or hidden (1). The intention is to allow the algorithm

o cope with frames where the heart is not visible or heavily

bscured due to imaging artefacts or slight misalignment of the

robe, rather than gross misalignment of the probe. We therefore

ssume that when the heart is hidden during the scanning pro-

ess, it makes sense to continue to track the other state variables

ecause the heart will soon become visible again in a similar state

o that in which it was last observed. 

If the gestational age of the fetus and magnification factor of

he ultrasound system are known, the size of the heart in the im-

ge is relatively well-constrained and could be estimated from fe-

al growth chart, for example ( Kim et al. (1992) ). For this reason,

e choose to assume that the fetal heart size (radius r ) is known

o the algorithm at test time. However, in principle, the heart size

ould be incorporated into the state vector as well. 

The six state variables are grouped together to form the state

ector , s t , of the system, which we estimate on-line from unseen

ideos. 

 t = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

h t 

v t 
x t 

θt 

φt 

˙ φt 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

(1) 

Our aim is to predict the state vector s t at time t , using all the

mage information z 0: t available up to this point. This is a filtering

roblem, and the corresponding posterior distribution, p ( s t | z 0: t ), is

nown as the filtering distribution . 

Unfortunately, there is inherent ambiguity in many of the vari-

bles that we are trying to estimate, which limits the accuracy it
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Fig. 1. Definition of the three viewing planes and their annotations. Top row schematics showing the anatomic structures visible within the fetal abdomen in each view. Bot- 

tom row example image and annotation. The colour scheme introduced in this figure will be used throughout the article ( cyan four-chamber (4C) view, green left ventricular 

outflow tract (LVOT) view, yellow three vessels (3V) view). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 

this article.) 
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is possible to achieve. For example, the categorisation of the dif-

ferent viewing planes is not clear in some cases, and the cardiac

phase is difficult to measure with a high degree of accuracy from

video data alone. 

4. Proposed model definition 

In general terms, the sequential Bayesian filtering problem

is solved by applying the recursive Bayesian filtering equations

( Doucet et al. (2001) ; Thrun et al. (2005) ). However, exact appli-

cation of these equations is only possible in a few restrictive spe-

cial cases. One such case is when the variables that make up the

state are discrete, in which case the problem reduces to the well-

known hidden Markov model . It is possible to discretise a continu-

ous state onto a finite grid in order to create a discrete state, and

then solve the resulting discrete problem. However, in our case a

fine grid over each continuous dimension of the state space would

be needed to give useful results. This would result in a very large

number of discrete states, meaning that the resulting filter would

likely be inefficient. 

A second common case where exact inference is possible is

where the state variables are continuous, the state transition

model is linear, and the distributions over the observed and state

variables are all Gaussian. The resulting algorithm is the Kalman

filter . Unfortunately, the Kalman filter would not be able track our

state, since it consists of a combination of real-valued variables

(position, cardiac phase rate), discrete-valued variables (visibility,

viewing plane label), and circular variables (orientation, cardiac

phase). Furthermore, the assumption of Gaussian likelihood distri-
utions is restrictive and more complex models are needed to cope

ith the challenging task of recognising the patterns found in fetal

ltrasound images. 

However, it is possible to relax many of these restrictions if one

s prepared to accept approximate inference methods in place of

xact inference. Fortunately, excellent results can be achieved in

ractice using approximate methods. We therefore turn to parti-

le filters , which have become an established method in computer

ision for a number of recursive estimation problems due to be-

ng effective, efficient and highly flexible ( Doucet et al. (2001) ). A

article filter is a stochastic model that approximates the distribu-

ion over the state at each time point with a large set of weighted

amples (‘particles’) drawn from it. At each time step, the parti-

les evolve in the prediction step according to a prior model of the

ystem’s behaviour and are then re-weighted and resampled in an

pdate step according to some observation model and the newly

bserved data. 

The standard particle filtering algorithm assumes a generative

odel for the observations z t given the current state s t , and hence

he distribution over the unobserved state given the observation

s implicitly modelled via Bayes’ rule. However, using generative

odels involves unnecessary modelling of the joint probability dis-

ribution and in practice limits the flexibility of the models that

an be used. We therefore choose to use the conditional random

eld filter (CRF-filter) introduced by Limketkai et al. (2007) , which

s a simple modification of the standard particle filter where gen-

ral prediction and observation potential functions model the in-

eractions between variables in the cliques of an undirected graph-

cal model. The graphical structure of the CRF-filter is shown in
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Fig. 2. 2D ultrasound images of the fetal heart (four-chamber view). The six images 

appear at different points in the cardiac cycle. We represent cardiac phase by a 

circular variable in the range 0 to 2 π . 

Fig. 3. Graphical structure of the CRF-filter model. At each timestep, t , there is a 

node representing the state s t and a node representing the observed image z t . A 

prediction potential ψ p (s t , s t−1 ) measures the compatibility of successive states and 

an observation potential ψ o ( z t , s t ) measures the compatibility of a state value and 

the image evidence. 

F  
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u  
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Input: a set of N P particles s (i ) 
t−1 

with associated weights w 

(i ) 
t−1 

, i = 

0 , . . . , N P − 1 , the observed image z t 
Output: a new set of N P particles s (i ) 

t with associated weights w 

(i ) 
t , 

i = 0 , . . . , N P − 1 

N e f f ← 

1 ∑ N P −1 

i =0 

(
w 

(i ) 
t−1 

)2 { calculate the effective number of particles } 

if ( N e f f < N thresh ) then { if effective sample size is low } 

for all particles i in the set i = 0 , . . . , N P − 1 do 

sample j i ∼ P ( j i = k ) = w 

(k ) 
t−1 

{ choose new particle index ac- 

cording to the particle weights } 

end for 

for all particles i in the set i = 0 , . . . , N P − 1 do 

s (i ) 
t−1 

← s 
( j i ) 

t−1 
{update resampled particle} 

w 

(i ) 
t−1 

← 

1 
N p 

{reset weights} 

end for 

end if 

for all particles i in the set i = 0 , . . . , N P − 1 do 

sample s (i ) 
t ∼ ψ p (s (i ) 

t , s (i ) 
t−1 

) { state update according to Algorithm 

2 } 

w 

(i ) 
t ← w 

(i ) 
t−1 

· ψ o (z (i ) 
t , s (i ) 

t ) { re-weight the particles (see Section 

6) } 

end for 

for all particles i in the set i = 0 , . . . , N P − 1 do 

w 

(i ) 
t ← 

w 

(i ) 
t ∑ N P −1 

j=0 

(
w 

( j) 
t−1 

) { re-normalise the particle weights } 

end for 

Algorithm 1 : A single step of the particle filtering algorithm. 
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ig. 3 . Intuitively, the prediction potential , ψ p (s t , s t−1 ) , measures

he compatibility of the current state and previous state, and the

bservation potential, ψ o ( z t , s t ), measures the compatibility of the

urrent state and the current observation. In order to make use of

he particle filtering paradigm, it is necessary to be able to sam-

le from the prediction potential. However, the observation poten-

ial function can in principle be any non-negative function of its

rguments, which affords us far greater modelling flexibility. This

llows us to define complex, discriminative observation potentials

sing the random forests algorithm. 

The particle set in our algorithm is updated at each time step

sing the procedure summarised in Algorithm 1 . In the follow-

ng two sections we describe the two key remaining parts of our
odel: Section 5 describes the prediction model used to update

he particles, and Section 6 describes the specification of the ob-

ervation potentials used to re-weight the particles. 

. State evolution model 

.1. State update 

Recall from Section 4 that the particle filtering state-update

tep takes each particle and stochastically updates it according to

 prediction potential function at each time step. Because of the

eed to sample from the prediction potential function, it is realised

s a true conditional probability distribution, i.e. ψ p ( s t , s t−1 ) =
p( s t | s t−1 ) . To simplify the model, we assume that the changes in

everal (but not all) of the state variables are independent of each

ther so that the distribution can be decomposed as follows: 

p(s t | s t−1 ) = p(h t | h t−1 ) ×
p(v t | v t−1 ) ×
p(x t | x t−1 , θt−1 , v t , v t−1 ) ×
p(θt | θt−1 , v t , v t−1 ) ×
p(φt | φt−1 , ˙ φt−1 ) ×
p( ˙ φt | ˙ φt−1 ) (2) 

We now describe each of these terms in turn. 

.1.1. Visibility update 

At each time step, a hidden particle becomes visible with a

xed probability p h → v , and a visible particle becomes hidden with

 fixed probability p v → h , i.e. 

p(h t | h t−1 ) = 

⎧ ⎪ ⎨ 

⎪ ⎩ 

p h → v , h t = 0 , h t−1 = 1 

1 − p h → v , h t = 1 , h t−1 = 1 

p v → h , h t = 1 , h t−1 = 0 

1 − p v → h , h t = 0 , h t−1 = 0 

(3) 
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Input: a particle s t−1 at time t − 1 described by associated vari- 

ables v t−1 , x t−1 , θt−1 , φt−1 and 

˙ φt−1 , and a motion field estimate 

m (x ) 

Output: an updated particle s t at time t described by associated 

variables v t , x t , θt , φt and 

˙ φt 

sample h t according to the discrete distribution in Equation 3 

sample v t according to the discrete distribution in Equation 5 

sample n ∼ N 2 D (n ; 0 , I 2 ×2 ) { standard i.i.d. 2D Gaussian noise } 

R ← r × rotation _ matrix (θt−1 ) { calculate rotation and scaling 

matrix } 

x t ← x t−1 + m (x ) + R 

(
ˆ μx , v t−1 → v t + cholesky ( ̂  �x , v t−1 → v t ) n 

)
{ find 

position update } 

sample ζ ∼ N 1 D (ζ ; 0 , 1) { standard Gaussian noise } 

θt ← θt−1 + ˆ μθ, v t−1 → v t + ˆ σθ, v t−1 → v t ζ { update the orientation } 

φt ← φt−1 + 

˙ φt−1 
�t 

{ update the cardiac phase } 

sample ζ ∼ N 1 D (ζ ; 0 , 1) { standard Gaussian noise } 
˙ φt ← 

˙ φt−1 + σ ˙ φ
ζ { update the cardiac phase rate } 

Algorithm 2 : Algorithm for sampling a single particle from the 

prediction potential. 
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These probabilities are chosen carefully to give a desired equi-

librium fraction of hidden particles, i.e. the fraction of particles

that are hidden when the stationary distribution of the result-

ing Markov chain is reached assuming that all particles are re-

weighted equally. If we specify a desired hidden fraction at equi-

librium of q h , then we must choose 

p v → h = p h → v 

q h 
1 − q h 

(4)

to ensure that this equilibrium is achieved. 

5.1.2. Viewing plane update 

The probability of a transition between the different viewing

planes is implemented simply as a discrete distribution with a con-

stant probability of moving to each new state: 

p(v t | v t−1 ) = 

{
p same , v t = v t−1 

p change , v t � = v t−1 
(5)

where generally p same >> p change . However, it is often helpful to

slightly overestimate the probability of transition to allow the filter

to recover from mistakes. 

5.1.3. Location update 

Because the heart centre, x t , is defined differently in each view

(see Fig. 1 ) it is necessary to model the position change that oc-

curs when the view changes. We use a 2D Gaussian distribution

to model each offset. The distributions are learnt at training time

relative to a heart at orientation zero and with unit radius, giv-

ing relative offset distributions with means ˆ μv 1 → v 2 and covariances

ˆ �v 1 → v 2 , where the ‘ ̂ ·’ is used to distinguish the relative distribution

parameters. At test time, these are then scaled by the radius r and

rotated by the orientation θt−1 to give the absolute mean and co-

variance of the offset. Furthermore, we attempt to track the likely

changes in heart centre position using a simple off-the-shelf opti-

cal flow estimator ( Farnebäck (2003) ), giving a dense estimate of

the displacement field m ( x ) between the previous frame and the

current frame. 

Specifically we have: 

p(x t | x t−1 , θt−1 , v t , v t−1 ) = N 2 D (x t ; μt , �t ) (6)

where the (absolute) mean and covariance are given by: 

μt = x t−1 + m (x t−1 ) + rR [ θt−1 ] ̂
 μv t−1 → v t (7)

�t = rR [ θt−1 ] ̂
 �v t−1 → v t R 

T 
[ θt−1 ] 

(8)

Here, N 2 D ( · ; μ, �) is the probability density function (PDF) of

a 2D Gaussian distribution with mean μ and covariance �, and

R [ θ ] is the 2 × 2 rotation matrix representing a rotation through

angle θ . Note that we constrain the mean of the relative offset dis-

tribution, ˆ μv 1 , v 1 , to be zero when the view does not change. How-

ever the covariance, ˆ �v 1 , v 1 , is non-zero to represent random mo-

tion. In practice, sampling from the 2D Gaussian is achieved using

the precomputed Cholesky decomposition of the covariance matrix

(see Algorithm 2 ). 

5.1.4. Orientation update 

The change in orientation accompanying each view transition

is modelled by a wrapped normal distribution ( Jammalamadaka and

SenGupta (2001) ) as this gives rise to a simple sampling method.

Each view transition uses its own mean, ˆ ξv 1 → v 2 and covariance

τv 1 → v 2 for the orientation offset, which are learnt at training time:

p(θt | θt−1 , v t , v t−1 ) = WN (θt ; ξt , τv 1 → v 2 ) (9)
here 

t = θt−1 + 

ˆ ξv t−1 → v t (10)

nd WN ( · ; ξ , τ ) is the PDF of the wrapped normal distribution.

gain we assume zero mean but non-zero variance when no view

ransition has occurred. 

.1.5. Cardiac phase update 

The second order cardiac phase model applies a deterministic

ardiac phase update according to the current cardiac phase rate

in s −1 ) 

t = φt−1 + 

˙ φt−1 

�t 
(11)

here �t is the (constant) time elapsed between video frames.

he purpose of dividing by �t here is to ensure that the state evo-

ution model is not sensitive to the frame rate of the video being

nalysed. 

.1.6. Cardiac phase rate update 

Finally, to model the uncertain and variable cardiac phase rate,

t is updated according to simple Gaussian noise with standard de-

iation υ: 

p( ˙ φt | ˙ φt−1 ) = N 1 D ( ˙ φt ; ˙ φt−1 , υ) (12)

This choice of state evolution model leads to a straightforward

nd efficient sampling algorithm, as outlined in Algorithm 2 . 

.2. Initialisation 

Before the first video frame, the set of particles s (i ) 
0 

, i =
 , . . . , N p − 1 is randomly initialised by drawing samples from ini-

ial distributions independently for each of the state variables. The

nitial distributions are: a discrete distribution representing the in-

ended equilibrium hidden fraction q h for the hidden/visible vari-

bles h , a discrete uniform distribution for the class label variables

 , a continuous uniform distribution within the ultrasound fan area

or the location variables x , a circular uniform distribution for the

rientation and phase variables θ and φ, and a gamma distribu-

ion fitted from the training set for the phase rate variables ˙ φ. The

article weights are initialised to a uniform value w 

(i ) 
0 

= 

1 
N . 
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1 our C++ implementation using OpenCV is available at https://github.com/ 

CPBridge/RIFeatures . 
. Observation model 

The purpose of the observation potential function is to model

he compatibility of a hypothesis about the current state, s t , with

easurements from the observed image, z t (see Fig. 3 ). This pro-

ess is performed differently for hidden and visible particles. The

verall form of the observation potential is: 

 o (s t , z t ) = 

⎧ ⎪ ⎪ ⎨ 

⎪ ⎪ ⎩ 

ψ a (v t , x t | z t ) ×
ψ b ( φt | v t , x t , z t ) × h t = 0 

ψ c ( θt | v t , x t , φt , z t ) , 

w hidden , h t = 1 

(13)

The observation potential for a hidden particle is a constant

alue, w hidden (see Section 6.5 ). We choose to decompose the ob-

ervation potential function for non-hidden particles into three

erms relating to the different variables that form the state. The

rst term, ψ a ( ·), acts as a detector for a given heart view (in any

rientation and phase) at a given position in the image. The sec-

nd term, ψ b ( ·), is a cardiac phase prediction term given the view

lassification and position. The final term, ψ c ( ·), predicts the orien-

ation given the predicted view classification, position and cardiac

hase. Note that the cardiac phase rate is not observed explicitly,

ut rather observed implicitly by successive updates of the cardiac

hase variable. 

In order to construct models for the first two terms, we make

se of random decision forests ( Breiman (1999) ; 2001 )) for three

ey reasons. Firstly, they are flexible and a similar algorithm can

e applied to a variety of tasks, including classification and regres-

ion. Secondly, they are usually highly accurate discriminative clas-

ifiers/regressors and can naturally manage complex data without

he tendency to overfit. Finally they can be highly efficient, partic-

larly as only a subset of the available features need to be eval-

ated in order to make a decision. This is particularly important

hen evaluating each feature is relatively expensive. 

In Section 6.1 we describe the image features we use for these

hree terms, and then in Sections 6.2–6.4 we describe the three

erms in turn. In Section 6.5 we explain the choice of observation

otential for hidden particles. 

.1. Rotation invariant image features 

In this work we choose to use rotation invariant features (RIFs)

o describe circular regions of the image (as first introduced by

iu et al. (2014) and used in our earlier work, Bridge and Noble

2015) ). This allows us to test the image at an arbitrary number of

rientations without having to rotate the image before conducting

ach test. We will give only a brief overview of the method here

nd refer the reader to Liu et al. (2014) for more details. Under-

inning our use of these features is an assumption that the acous-

ic reflection patterns from the tissue do not depend upon the in-

onification angle. While in general there are appearance variations

ith insonification angle in ultrasound imaging, particularly with

ighly reflective structures such as bone, we have found that RIFs

ork well in practice in our application. 

RIFs are extracted from a circular region of the image by con-

olving it with a set of complex-valued rotation invariant basis

unctions. Each such convolution yields a complex number, and to-

ether these numbers describe the circular region. Taking the mag-

itude of these complex numbers gives a description of the region

hat is analytically invariant to the orientation of the underlying

mage region. 2D vector-valued image representations, such as a

radient or motion field, can also be described in this framework

y first representing each vector as a magnitude-weighted delta

unction in a continuous orientation histogram and expressing this

ontinuous histogram in terms of a truncated set of Fourier series
oefficients. Then, the same basis functions can be used on these

ourier coefficients to yield a set of complex numbers whose mag-

itudes are invariant to the orientation of the underlying image.

 set of basis functions can be described by its number of radial

ivisions J and its maximum rotation order K , and the number of

ourier coefficients M is a further parameter of the feature extrac-

ion stage. 

In this work, we experimented with using intensity , intensity

radient and motion representations of the frames, as well as com-

inations of these where features from either set may be chosen by

he split nodes in the forests. We denote the set of complex-valued

IFs that may be calculated from the image z t at image location x t 
y the vector f ( z t , x t ). The split functions in our random forests

esign are comparisons of the magnitude of a single RIF from this

et with a threshold, or a comparison of the result of coupling two

IFs of the same rotation order with a threshold. 

Where applicable, the motion estimate used is the one ob-

ained for the state evolution model ( Section 5 ). In order to apply

n approximate correction for the fact that the motion patterns

ill depend upon the video’s frame rate, we normalise the mag-

itude of the motion field by the frame period before extracting

eatures. Despite being a crude approximation, we have found that

his works well in practice. We believe that this is because the ran-

om forests learn to look only for features that encode very coarse

otion patterns (i.e. roughly which areas of the image patch are

oving in roughly what direction) rather than fine detail. 

In order to make the feature extraction process as efficient

s possible, we have implemented the algorithm of Liu et al.

2014) with the following alterations 1 : 

• Individual features are only calculated as they are required by

the random forests algorithm. Furthermore, once calculated, in-

dividual feature results are stored so that they may be effi-

ciently used again if required later in the processing of the

same frame. 
• Where the same feature is required for a large number of im-

age locations at once (typically at nodes near the root of the

trees), it becomes far more efficient to implement the convolu-

tions as Fourier domain multiplications (via the 2D fast Fourier

transform). This requires the Fourier-domain representations of

the basis functions, which we derive and present in the supple-

mentary materials. 
• Images are scaled at training time and test time such that the

radius of the detection window is a constant value, r RIF , across

all samples. A small window size results in faster calculations

but may result in loss of detail from the image patches before

the RIFs are extracted. In practice we have found that a rel-

atively small value (around 30 pixels) can be chosen without

significant loss of accuracy. 

.2. Classification forests 

In order to detect and distinguish between the three different

iews of the fetal heart given appearance features from the image,

e use a four-class classification forest. In this case, the view label

s a discrete class identifier from the set V = { BG , 4C , LVOT , 3V } ,
epresenting the background, four-chamber view, left ventricular

utflow tract view and three vessel view respectively. Accordingly,

ach leaf node consists of an empirical discrete distribution over

hese labels. The training objective function that governs which

plit functions are chosen at the nodes during training is the in-

ormation gain (e.g. Criminisi et al. (2011) ), which measures the

hange in entropy between the label sets before and after the split:

https://github.com/CPBridge/RIFeatures
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Fig. 4. PDFs of three von Mises distributions defined over the interval 0 to 2 π shown in both polar ( left ) and Cartesian ( right ) form. The μ parameter represents the mean 

angle, and the κ parameter describes the concentration of probability mass around this mean. 
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I v (S n , S L , S R ) = H(S n ) −
∑ 

i ∈ { L,R } 

|S i | 
|S n | H(S i ) (14)

where S n is the set of labels in the n th node (being trained), and

S L and S R are respectively the sets of labels in the left and right

nodes after the proposed split. H ( ·) represents the entropy of a set

of discrete labels: 

H(S) = −
∑ 

v ∈V 
p(v ) log p(v ) (15)

A forest consists of N trees trees, and training is stopped after a

maximum tree depth ( d max ), or when the number of training data

in a node goes below a threshold ( N nodemin ), or when the infor-

mation gain from splitting goes below a threshold I v, min . After the

classification forest has been trained, the resulting probability den-

sity function (PDF) is used straightforwardly as the first term of the

observation potential from Eq. 13 . 

ψ a (v t , x t | z t ) = p ( v = v t | f (z t , x t ) ) (16)

6.3. Circular regression forests 

We use a circular regression forest to predict the cardiac phase

of the heart given appearance features from the image. In this case

the label is a real number φ in the range [0, 2 π ). Because of the

wrapped nature of circular variables, it would be incorrect to treat

this task as a standard regression problem. We therefore adapt the

random forests algorithm to deal with angular variables correctly. 

Firstly we define a circular mean for a set of N angular labels

( Jammalamadaka and SenGupta (2001) ): 

φ̄ = atan 2 

( 

1 

N 

N ∑ 

i =1 

sin φi , 
1 

N 

N ∑ 

i =1 

cos φi 

) 

(17)

where atan2( ·) is the four quadrant arctangent function. 

We then use an approximate measure of circular information

gain found by substituting the notion of a circular distance from

( Jammalamadaka and SenGupta (2001) ) in place of linear distance

in the commonly-used regression objective function. 

I φ(S n , S L , S R ) = 

∑ 

i ∈S n 

1 

2 

(
1 − cos (φi − φ̄S n ) 

)2 

−
∑ 

j∈ { L,R } 

( ∑ 

i ∈S j 

1 

2 

(
1 − cos (φi − φ̄S j ) 

)2 

) 

(18)
here φ̄S j is the mean of the angular labels in set S j . This cost

unction measures the difference between the sum of squared dis-

ances from the mean in the node before and after splitting, and

herefore favours splits that cluster similar angular labels together.

The leaf distribution in the case of the circular regression for-

st is a von Mises distribution (also known as the circular normal

istribution, Jammalamadaka and SenGupta (2001) ). This is a com-

only used distribution when working with circular data, as it has

 convenient form and is the maximum entropy distribution for

ircular variables with a given circular mean and circular variance.

he distribution has two parameters: the mean angle μ and the

oncentration κ , where μ and 1/ κ are analogous to the μ and σ 2 

arameters from the Gaussian distribution. The probability density

unction of the von Mises distribution is: 

p(φ | μ, κ) = 

1 

2 π I 0 (κ) 
e κ cos (φ−μ) (19)

here I 0 ( ·) is the modified Bessel function of the first kind and or-

er zero. See Fig. 4 for examples of von Mises PDFs. We refer the

eader to ( Jammalamadaka and SenGupta (2001) ) for further de-

ails on fitting a von Mises distribution using maximum likelihood

stimation. 

We train one circular regression forest with N trees trees for

hase regression in each of the non-background classes separately.

he stopping criteria were the same as for the classification forests,

ith an appropriate information gain threshold I φ, min . At test time,

he data point is passed down each tree in the relevant forest until

t reaches a leaf node, and the PDF is then calculated for the car-

iac phase value φt given the distribution parameters ( μb , κb ) at

hat leaf node. The second part, ψ b ( ·), of the observation potential

rom Eq. 13 is then given by the averaged PDF across the trees in

he forest. 

.4. Orientation regression model 

The orientation prediction step takes advantage of the fact that

he complex-valued image features (that is, the raw feature values

efore the magnitude is taken to give rotation invariance) are in

act equivariant under rotation of the underlying image window.

e can therefore use the complex arguments of RIFs with a rota-

ion order of 1 (or -1) as an indication of the orientation of the

eart. 

We find that it is not necessary to build new decision forests

or the task of orientation prediction. Rather, the clustering that

esults at the end of the phase prediction term is sufficient to give

ood results for orientation prediction, even though it is not op-

imised for this purpose. Therefore, after we have trained a phase
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Table 1 

Random forest training parameters. 

Parameter Value 

r RIF 30 pixels 

N trees 8 

d max 10 

N nodemin 50 

I v, min 0.5 bits 

I φ, min 0 .01 

Table 2 

Particle filter parameters. 

Parameter Value 

N P 10 0 0 

N thresh 0 .3 N P 
p same 0 .9 
ˆ �v 1 → v 2 for v 1 = v 2 1 .0 × I pixels 2 

τv 1 → v 2 for v 1 = v 2 0.05 rad 

υ 0.2 rads 
−1 

˙ φmin , 
˙ φmax 10 0, 20 0 bpm 

q h 0 .3 

p h → v 0 .4 
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rediction forest, we simply fit an individual orientation prediction

odel to the data in each leaf node. For each data point we calcu-

ate the offset angle between the orientation label θ i and j th com-

lex feature f j ( x i ) calculated at the image patch with centre x i to

e 

i j = arg 
(

f j (x i ) 
)

− θi (20) 

We then fit a von Mises distribution ( μc , κc ) of this offset angle

cross all the datapoints i in the leaf node for each feature j of

otation order one, and choose the feature j ∗ that has the largest

oncentration parameter κ . Then, at test time, the PDF at each leaf

ode, n , is calculated using this chosen feature and its von Mises

istribution 

p(θt | v t , f (z t , x t )) = p 
(
arg 

(
f j ∗ (x t ) 

)
− θt | μc,n , κc,n 

)
(21)

Again, the final part, ψ c ( ·), of the observation potential from

q. 13 is found by averaging the PDF predictions from the individ-

al trees. 

.5. Observation potential for hidden variables 

Recall that at each resampling step in the particle filter, the

article weights are normalised to sum to unity. This means that

he values of the observation functions only matter relative to the

ther particles in the set, and the absolute values make no differ-

nce to the behaviour of the overall filter. If there were no hidden

articles, this would mean that when the heart becomes hidden,

he filter would continue to track whichever area of the image re-

ults in the largest observation potential, regardless of the absolute

alue of those observation function evaluations. As a result there

ould be no easy way to decide whether the heart is visible in

he image or not. 

For this reason, we re-weight the hidden particles (those with

 t = 1 ) with a small constant weight value, w hidden , that does not

epend on the other state variables or image information ( Eq. 13 ).

hen the majority of non-hidden particles receive a large weight

rom the random forests, indicating that the random forests are

onfident about the presence of a heart, the weights of the hid-

en particles are relatively insignificant and most will not survive

he next resampling step. However, when most of the non-hidden

articles are given a small weight by the random forests, the fixed

eights of the hidden particles become relatively more significant

nd may come to dominate the particle set. 

The value of w hidden controls the sensitivity of the filter, and

ust be selected carefully to give the desired behaviour. 

. Experiments 

.1. Experimental data 

We acquired a diverse dataset of 91 short ultrasound videos

f the fetal heart drawn from 12 subjects during routine clinical

cans using a GE Voluson E8 ultrasound device. Each video had a

ength of between 2 and 10 seconds and a frame rate between 25

nd 76 frames per second, and contained one or more of the three

iews of the fetal heart defined in Section 3 . The videos captured

he healthy fetal heart in a range of magnifications and orienta-

ions, though with the heart taking up approximately 30% or more

f the image. There was a range of gestational ages from 20 to 35

eeks. All videos were gathered such that the fetal head would be

owards the viewer when viewed on a screen, or were flipped hor-

zontally for consistency before being used for training and testing.

Each frame of each video was manually annotated according to

he criteria shown in Fig. 1 in order to provide labels for training

nd validating the model. These annotations were approved by a

linician experienced in interpreting ultrasound videos of the fetal

eart (C. Ioannou). 
.2. Implementation details 

Our framework was implemented in the C++ programming lan-

uage using the OpenCV 3.1.0 and Eigen 3.2.5 software libraries.

everal processes were parallelised using OpenMP compiler exten-

ions of the G++ 4.8.4 compiler. All timings were obtained on a

esktop computer (8-core Intel Core i7-3770 3.4 GHz running a 64-

it OS). 

.3. Training 

Due to the relatively small number of subjects, we used a leave-

ne-out cross-validation procedure across each subject. Specifically

e tested every video in the dataset with a model trained on the

ata from all other subjects in the dataset. The training procedure

or each partition involved randomly selecting 50 0 0 positive ex-

mple windows for each of the three cardiac views, and an equiva-

ent number of background examples from random image locations

n the same videos, but at least 0.3 r from the labelled heart cen-

re, where r is the heart radius. The selected examples were used

o train the view classification forest, ψ a ( ·), and then the positive

xamples from the relevant class were used to train a phase re-

ression model, ψ b ( ·), and an orientation regression model, ψ c ( ·),
or each class individually. Furthermore, a simple maximum like-

ihood model was fitted for the various phase transition distribu-

ions in Section 5 by finding view transitions in the labelled videos.

ther parameters for training the random forest models and for

he state evolution model were chosen empirically and are shown

n Tables 1 and 2 . In particular, previous experiments (unreported)

ave shown that increasing the number of trees in the random

orests does not significantly improve the accuracy of the models,

ut does increase the execution time due to the increased number

f feature evaluations. 

.4. Validation methodology 

We evaluated the performance of our framework in two vari-

nts: the first used just the observation potentials at each frame

ndividually with no particle filtering, whilst the second used full

emporal filtering. 

For the variant in which just the observation potentials were

sed, all image patches in each image were passed through the

lassification forest and the predicted position was chosen to be
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Fig. 5. (a)(b) Classification/detection error, (c)(d) orientation error, and (e)(f) phase error versus time for a selection of feature extraction methods. Each feature extraction 

method appears as a separate marker which appears in the legend with the name of the image representation ( int intensity, denoted by a diamond marker; grad gradient, 

denoted by a triangle marker; or a combination of gradient and motion , denoted by a circle marker). After each name the parameters of the basis function set are listed 

(number of radial profiles J , number of rotation orders K and, where relevant, number of Fourier coefficients M ). So, for example, int43 refers to using features from an 

intensity representation with parameters J = 4 and K = 3 , and grad543motion322 refers to a combination of features from a gradient representation (parameters J = 5 , K = 4 , 

M = 3 ) with those from a motion field representation (parameters J = 3 , K = 2 , M = 2 ). 
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Fig. 6. Average confusion matrices over videos for some parameter sets. Matrices are normalised such that each row sums to one. Top row without filtering, bottom row with 

filtering. The heart was ‘missed’ if the location of the detected centre was greater than 0.25 r from the true centre. 
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he patch with the highest probability of having any of the non-

ackground labels. The predicted view label was chosen to be the

abel giving this highest probability. The predicted cardiac phase

nd orientation were then determined using the phase/orientation

orest at only that image location and taking the mean of the re-

ulting von Mises distribution. 

For the particle filtered variant, the particle filtering model de-

cribed in Section 5 was used with the parameter values in Table 2 ,

hich were chosen by empirically following previous experiments

unreported). A single state prediction was determined at each

ime step using the mean-shift algorithm on the particles. All re-

orted accuracy values were averaged over all videos, with each

ideo given equal weight regardless of its length. In the particle

ltered variant, accuracy values from five test runs were averaged

ue to the inherently stochastic nature of the filter’s output. 

For the purposes of reporting accuracy, we considered the

eart view to be correctly detected if the predicted view label,

 , matched the annotation and the predicted heart centre, x , was

ithin 0.25 r of the annotated centre. This corresponds to approxi-

ately 2.5 mm 4.5 mm at the gestational ages we are considering.

rror between the true and predicted values of the angular vari-

bles (orientation θ and cardiac phase φ) was assessed using the

ollowing normalised circular distance metric between two angles

1 and θ2 : 

1 

2 

( 1 − cos ( θ1 − θ2 ) ) (22) 

iving a value in the range 0 (meaning precisely correct) to 1

meaning an error of 180 ◦ or π rad). Error values for orientation

nd cardiac phase were only averaged over frames where the view

lassification and position were correctly determined. 

The two variants deal with the possibility of the heart being

idden in very different ways. When no filtering is used the pos-

erior detection probability of the maximum class can be simply

hresholded to determine whether the heart is hidden. When fil-

ering is used, the prediction is instead based on whether the total

eight of ‘hidden’ particles is greater than the total weight of ‘visi-

le’ particles. These methods are both sensitive to the relevant pa-

ameters, which are the threshold value for the former case and
he ‘hidden’ weight w hidden in the latter. In order to give a fair

omparison between the two algorithms, we conducted initial ex-

eriments with the most sensitive setting (threshold of 0.0 and

 hid d en = q h = 0 . 0 ), and then performed a second experiment in

hich the threshold was varied. 

.5. Analysis of inter- and intra-observer variation 

In order to place our results in context, we analysed the inter-

nd intra-observer variation of our annotations. Due to time con-

raints, a subset of the full dataset consisting of 12 videos (one

ideo from each subject) was used for this purpose, however this

as deemed sufficient to quantify approximately the degree of

ariation in the annotations. The annotations were repeated on

hese videos by the same annotator approximately 10 months after

he initial annotations to estimate the intra-observer variation. Ad-

itionally, a second annotator was trained to annotate the videos

sing the same guidelines and provide a third set of annotations

n the smaller dataset to estimate the inter-observer variation.

hese new annotations were compared to the ground truth anno-

ations in exactly the same way as the predictions from the auto-

atic algorithm. 

. Results and discussion 

We present results of the leave-one-out cross-validation exper-

ments in the two variants (with and without filtering) and using

 number of different sets of features. Results are shown in Figs. 5 ,

 and 8 . 

Fig. 5 shows a comparison of results obtained using the full fil-

ering framework (right hand plots 5 b, d and f) and using the ob-

ervation potentials alone (left hand plots 5 a, c and e). These plots

how computation speed per frame on the y -axis and prediction

rror (in the relevant sense) with respect to the manual ground

ruth annotations on the x -axis. Results for a number of different

eature extraction methods are shown, and highlight that there is

enerally a trade-off between speed and accuracy when choosing

he feature extraction method. All the results in Fig. 5 where ob-
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Fig. 7. Results of the algorithm on two example sequences (in each sequence the top row shows the prediction, and the bottom row shows the ground truth). See Fig. 1 for 

the meaning of the annotations including the view label colour scheme. Times shown are frame numbers. Parameters were as listed in Section 7 with w hidden = 0 . 025 , and 

combined gradient and motion features with J = 3 , K = 3 , M = 2 were used. Additionally, the position of the arrow head represents the position in the cardiac cycle (pointing 

outwards represents systole and pointing inwards represents diastole). See the online supplementary materials for full video. 
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tained using a threshold of posterior detection threshold of 0.0 (for

the unfiltered case) and w hid d en = q h = 0 . 0 (for the filtered case). 

The first pair of plots ( Fig. 5 a and b) show the per-frame con-

mbined detection and classification error rate averaged over every

video in the cross-validation regime, where this error rate is de-

fined as the fraction of ‘positive’ frames (those labelled as contain-

ing a view of the heart in the ground truth) in which the heart was

either detected in the incorrect location (i.e. more than 0.25 r from

the labelled centre location) and/or the predicted view label was

incorrect. The best feature extraction methods are able to achieve

under 20% error rate on this challenging imagery. The second and

third pairs of plots respectively show the orientation ( Fig. 5 c and

d) and cardiac phase ( Fig. 5 e and f) error rates, defined using the

normalised angular distance metric ( Eq. 22 ) over only the frames

with correct classification and detection . Again these are averaged

over all videos in the cross-validation regime. An ideal feature ex-

traction method would be fast and accurate and therefore appear

close to the bottom left of all plots. 

By comparing the plots in the left and right columns, we can

see that, for a given feature extraction method, the addition of the

particle filtering framework to the random forest observations sig-
ificantly reduces all three of the error rates (for some feature ex-

raction methods the classification error rate can be reduced by 10

ercentage points or more) at the expense of making the algorithm

lower by 5-10 ms per frame. The speed reduction is primarily due

o the need to calculate the phase and orientation output values at

 large number of image locations, rather than a single location (as

s required by the observation potentials only regime), and not due

o the overhead of the filter implementation itself. 

We also see that the choice of features is another important

onsideration, and all plots show a similar trend here. Using simple

ntensity features (diamond markers) gives a very fast ( < 20 ms per

rame) but less accurate prediction over classification, orientation

nd cardiac phase (e.g. with classification error rates of around 50%

r more), whereas using gradient features (triangle markers) gives

 lower error rate (e.g. around 30% classification error rate) and can

un only slightly slower at around 20 ms per frame. The inclusion

f motion features (circular markers) further reduces the classifi-

ation error rate to under 20% and greatly improves the cardiac

hase prediction (as might be expected), but at the expense of a

ignificant reduction in speed, resulting in speeds of around 25 ms

er frame. However even this lower frame rate (around 40 frames
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Fig. 8. True positive and false positive detection rates as the relevant parameter is varied for some typical parameter sets. a) The unfiltered case where the detection 

threshold parameter is varied from 0 to 1. b) The filtered case where w hidden is varied from 0.00 to 0.01. 
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er second) is fast enough to process the majority of ultrasound

ideos in real time. We also tried using the monogenic odd fil-

er as an alternative image representation, as in our previous work

 Bridge and Noble (2015) ), but found that this did not have any

dvantages over the image gradient. Intensity features tend to per-

orm much better when more features are available (high J , and K

alues). By contrast gradient features only require a smaller num-

er (around J = 3 , K = 3 , M = 2 ) to give a sufficiently rich descrip-

ion, and there is little or no increase in performance above this

ut a large reduction in speed. 

The dashed vertical lines in Fig. 5 show the ‘error rate’ (i.e.

isagreement) between the ground truth and the annotations per-

ormed for a second time by the first annotator (orange line) and

y the second annotator (magenta line), evaluated in the same way

s the automatic predictions. This gives us a target region for the

erformance of our automatic method. We can see that there is a

ignificant disagreement between the different sets of annotations,

eflecting the highly ambiguous nature of the annotation task. The

erformance of the best automatic methods is in approximately

he same region as this agreement for the classification/detection

nd cardiac phase prediction tasks, and slightly worse for the ori-

ntation prediction tasks. 

Fig. 6 shows average confusion matrices for a few representa-

ive parameter sets. It is clear from these confusion matrices that

he three vessel (3V) view is the most commonly missed view,

hich is unsurprising given that its appearance is less distinctive

han the other anatomical two views. Furthermore, we see that the

ajority of inter-class confusion arises between the four chamber

4C) and left ventricular outflow tract (LVOT) views, which is again

nsurprising given the sometimes ambiguous distinction between

he views when the probe is physically located in the space be-

ween the two. 

In order to investigate the performance of the proposed frame-

ork at detecting when the heart is hidden, we performed a fur-

her experiment using a subset of the feature extraction methods.

y increasing the relevant parameters (the detection threshold in

he unfiltered case and the hidden particle weight in the filtered

ase) it is possible to eliminate many false positive detections, but

here is inevitably a trade-off here with the true positive classifica-
 s  
ion rate. This is illustrated in Fig. 8 . For the filtered case we deter-

ined good values for the other parameters of the hidden particles

ia pilot experiment ( q h = 0 . 3 , p h → v = 0 . 4 ) and kept them constant

uring the experiment. 

However, these figures are somewhat misleading, as many of

he frames that were labelled negative in the training set in fact

ontained an obscured view heart set. This can happen if, for ex-

mple, the heart appears indistinct due to motion blurring or shad-

wing artefacts. If the algorithm detects that such a frame con-

ains the heart, this is classified as a false positive and leads to a

educed performance. We therefore also evaluated the false posi-

ive rate using a different set of “generous” labels, in which these

orderline cases were not considered incorrect if the position and

lass was correct. The results are shown in Fig. 8 with dashed lines,

here it can be seen to reduce the false positive rate. 

Again, we compared the performance of the automatic method

o the agreement between the human annotators. The plotted

oints in Fig. 8 show the true positive and false positive rates of

he alternative sets of annotations with respect to the ground truth

et. Whilst the algorithm approaches the performance of the inter-

bserver variation, it is significantly worse than the intra-observer

ariation when considering the false-positive rate. Partly this re-

ects the fact that different annotators have different thresholds

or when the heart is ‘visible’, as it is very difficult to establish an

bjective threshold. 

Fig. 7 shows the performance on two example test sequences.

he full sequences may be viewed in the supplementary materials.

. Conclusions and future work 

In this paper we have presented a method for extracting key

nformation from 2D ultrasound videos of the fetal heart at high

rame rates (average of about 40 frames per second for the best pa-

ameter sets). We chose to use a particle-filtering based method to

vercome the intractability of the recursive state estimation prob-

em with our state definition, and employed random forest based

redictors as effective, discriminative observation potentials. The

se of a relatively strong model of heart dynamics was found to

ignificantly improve upon prediction on a frame-by-frame basis.
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We validated our model on real data gathered in a clinical setting,

with promising results. Future work should investigate ways to op-

timise systematically the various parameters of the particle filter. 

We hope that this paper will inform and inspire further work

towards providing automated tools for the diagnosis of CHD from

cardiac ultrasound videos. In particular there are a number of open

questions raised by this work. Firstly it remains to be shown how

the information that we are currently able to extract can be used

to maximal benefit in clinical practice. We envisage three particu-

lar possible uses, the first is that the information could be fed back

live to the sonographer via on-screen graphical cues. This would

be particularly useful for trainee sonographers and would enable

them to confirm their own assessments of the images and ensure

that they have visualised all the correct views. Secondly, informa-

tion about several scanning sessions could be stored and sonog-

raphers’ scanning habits analysed to be ensure that scans are be-

ing conducted consistently. Thirdly, if the scan video is stored for

later review, the extracted information could be stored alongside

as metadata in order to enable easy retreival of relevant parts of

the video. 

Further it remains to be shown how the model can be extended

to cope with, and identify cases of, CHD. CHD represents a large

variety of interacting abnormalities, and therefore this will likely

entail a variety of approaches. Some indicators of CHD may be de-

duced from the information the existing method provides with lit-

tle or no extension. For example abnormal heart rate could be de-

tected from our algorithm, and abnormal cardiac situs or abnormal

axis (orientation with repect to the abdomen) could be assessed

by coupling this work with an abdomen detector. Other subtle

or highly-localised problems, such as small septal defects, abnor-

mal alignment of valves or vessel coarctation, are unlikely to af-

fect the functioning of the algorithm and could be detected by fur-

ther learning-based processes that make use of the coordinate sys-

tem our framework can provide. More significant problems, such

as ventricular hypertrophy and conotruncal anomalies, significantly

alter the appearance of the heart and will therefore require more

substantial changes to the framework. This would entail training

the observation models and state update models with abnormal

data, and then distinguishing abormal cases either by extending

the state vector to contain these variables, or through secondary

processes that operate on the estaimted heart location. Fortunately

however problems in this final class are typically the easiest to de-

tect without computer assistance. 
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