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ABSTRACT

Deep neural networks (DNNs) dominate current research in machine learning.
Due to massive GPU parallelization DNN training is no longer a bottleneck, and
large models with many parameters and high computational effort lead common
benchmark tables. In contrast, embedded devices have a very limited capability.
As a result, both model size and inference time must be significantly reduced if
DNNs are to achieve suitable performance on embedded devices.
We propose a soft quantization approach to train DNNs that can be evaluated
using pure fixed-point arithmetic. By exploiting the bit-shift mechanism, we de-
rive fixed-point quantization constraints for all important components, including
batch normalization and ReLU. Compared to floating-point arithmetic, fixed-point
calculations significantly reduce computational effort whereas low-bit representa-
tions immediately decrease memory costs. We evaluate our approach with dif-
ferent architectures on common benchmark data sets and compare with recent
quantization approaches. We achieve new state of the art performance using 4-bit
fixed-point models with an error rate of 4.98% on CIFAR-10.

1 INTRODUCTION

Deep neural networks (DNNs) are state of the art in many machine learning challenges, pushing
recent progress in computer vision, speech recognition and object detection (Deng & Yu (2014);
Lecun et al. (2015); Karki et al. (2019)). However, the greatest results have been accomplished by
training large models with many parameters using large amounts of training data. As a result, mod-
ern DNNs show an extensive memory footprint and high-precision floating-point multiplications are
especially expensive in terms of computation time and power consumption. When deployed on em-
bedded devices, the complexity of DNNs is necessarily restricted by the computational capability.
Therefore, efforts have been made to modify DNNs to better suit specific hardware instructions.
This includes both the transfer from floating-point to fixed-point arithmetic and the reduction in
bit-size. This process is termed fixed-point quantization and especially low-bit representations si-
multanouesly reduce memory cost, inference time, and energy consumption. A survey is given in
Sze et al. (2017). Furthermore, ternary-valued weights or even binary-valued weights allow replace-
ment of many multiplications with additions1.
However, most quantization approaches do not fit to the common structure in modern DNNs. State of
the art architectures (such as ResNet, DenseNet, or MobileNetV2) consist of interconnected blocks
that combine a convolution or fully-connected layer, a batch normalization layer and a ReLU ac-
tivation function. Each block can be optionally extended by a pooling layer, as shown in Figure
1. Since both convolution and fully-connected layers perform weighted sums, we summarize the
two as a Linear component. In contrast to the block structure, recent quantization approaches focus
on the Linear component while preserving floating-point batch normalization (BN) layers. This is
crucial, since BN layers are folded into the preceding layer after the training and consequently de-
stroy its fixed-point representation. Even when performed separately, channel-wise floating-point
multiplications make a pure fixed-point representation impossible. Furthermore, many quantization
methods strictly binarize activations which only works for very large models.

1Binary-coded weight vectors, e.g. with values from {−1, 1} or {0, 1}, replace multiply-accumulate op-
erations by simple additions and subtractions, respectively. Since each ternary-coded vector with values from
{−1, 0, 1} can be converted into two binary-coded vectors, the same goes for ternary-coded weights.
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In this paper, we propose a soft quantization approach to learn pure fixed-point representations of
state of the art DNN architectures. Thereby, we follow the block structure and transfer all individual
components into fixed-point representations before combining them appropriately. We follow the
same approach as Enderich et al. (2019) and formulate bit-size dependent fixed-point constraints
for each component before transferring these constraints into regularization terms. To the best of
our knowledge, we are the first to provide a soft quantization approach to learn pure fixed-point
representations of DNNs. We extensively validate our approach on several benchmark data sets and
with state of the art DNN architectures. Although our approach is completely flexible in bit-size, we
test two special cases:

• A pure fixed-point model with 4-bit weights and 4-bit activations which performs explicitly
well, outperforming the floating-point baseline in many cases.

• A model with ternary-valued weights and 4-bit activations that can be evaluated using ad-
ditions, bit shifts and clipping operations alone (no multiplications needed).

…

Linear BN ReLU Pool

Basic Block l

L1 L2 L3 … Conv/
FC BN ReLU Max

Pool
X1 X2

DNN architecture Block architecture

X1X0 X2

𝑎𝑎l𝑥𝑥l-1 𝑎𝑎l 𝑥𝑥l 𝑥𝑥l
^

𝑥𝑥0 𝑥𝑥1 𝑥𝑥2

Figure 1: DNNs consist of interconnected
blocks which combine a convolution or fully-
connected layer (Linear), batch normalization
(BN), ReLU, and pooling (optional).

Method Linear Act. BN

Courbariaux et al. (2015) 1 32 32
Li & Liu (2016) 2 32 32
Hubara et al. (2016) 1 1 32
Uhlich et al. (2019) 2-4 4-32 32
Lin et al. (2016) 4 4-32 32
Yin et al. (2018) 2 32 32
Chen et al. (2017) 1 1 ?
Enderich et al. (2019) 2 32 32
Achterhold et al. (2018) 2 32 32
Ours 2-4 2-4 2-4

Table 1: Survey of recent quantization methods
and their bit-size configuration in different layers

2 RELATED WORK

Considering that the optional pooling layer is of minor importance for quantization2, three main
components remain in each block: convolution and fully-connected layers (Linear), batch normal-
ization (BN) and the non-linear activation function ReLU. Since each component differs in its com-
putation task, different quantization strategies can be followed. Table 1 gives an overview of recent
approaches including the respective bit-sizes during test time. Components encoded with 32 bits
remain in high-precision floating-point arithmetic.
Courbariaux et al. (2015) use binarized weights during both forward and backward passes, but up-
date their high-precision counterparts instead, which are kept during the whole optimization process.
Thus, stochastic gradient descent is able to converge by doing small steps in the direction of the neg-
ative gradients. Li & Liu (2016) increased the model capacity by combining ternary-valued weights
and a real-valued step-size. Since the step-size is a non-trainable parameter, its value is optimized by
approximating the euclidean distance between the scaled ternary-weights and their high-precision
counterparts. Hubara et al. (2016) amplifed the approach of Courbariaux et al. (2015) by discretiz-
ing both weights and activations to ±1 during the forward pass. During the backward pass, the
straight-through estimator (STE, Hinton (2012)) is used to estimate the local gradient of the round-
ing function. This way, the upstream gradient can be passed on during backpropagation.
Recently, approaches have been proposed that operate on fixed-point quantization functions with
learnable function parameters. Jain et al. (2019) investigated signed quantization functions whose
uniform step-size can be learned for a given number of bits. Uhlich et al. (2019) extended this
approach and learned both step-size and dynamic range of symmetric and uniform quantization
functions. Additionally, Uhlich et al. (2019) proposed optimization constraints to limit the overall

2Pooling reduces dimensionality in DNN propagation. While average-pooling was used mainly for his-
torical reasons, max-pooling has recently gained acceptance due to better performance and practical reasons.
However, both computations can also be done in fixed-point arithmetic.
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memory costs.
Moreover, Enderich et al. (2019) proposed a soft quantization approach to train DNNs with multi-
modal fixed-point weights. Soft quantization means to use high-precision weights during the train-
ing, but simultaneously promote posterior distributions that are well qualified for post-quantization.
Another soft quantization approach by Choi et al. (2018) investigated regularization terms for dis-
crete activations. Furthermore, Achterhold et al. (2018) proposed a Bayesian method to train DNNs
with quantizing priors that result in multimodal weight distributions.
However, high-precision BN layers are still a critical factor for success. The channel-wise floating-
point multiplications within BN significantly increase the model capacity, especially for low-bit
quantization, but at the same time eliminate the possibility of pure fixed-point arithmetic on dedi-
cated hardware. Chen et al. (2017) introduced a hard quantization framework to completely train
DNNs in low-bit fixed-point arithmetic, including fixed-point BN layers. But, Chen et al. (2017)
focus only on computations and variables within the training procedure. Since BN layers operate
on different statistics after training, the fixed-point representation during evaluation stays unclear.
Furthermore, Chen et al. (2017) use 32-bit fixed-point multiplications which makes it impossible to
fold the BN layer into the preceding Linear layer after quantization.

2.1 CORE CONTRIBUTIONS

In this work, we complete the soft quantization approach and learn pure fixed-point representations
on state of the art DNN architectures. We claim the following contributions:

• We follow the block structure in Figure 1 and formulate fixed-point constraints for each
component that can be used during training. The fixed-point BN constraint is an especially
novel and important feature in soft quantization. The resulting fixed-point block can be
used in nearly all state of the art DNN architectures.

• We propose an exponentially increasing regularization parameter to control the model ca-
pacity immediately at training time. A set of clipping functions improves numerical stabil-
ity and accelerates training time.

• We demonstrate that our fixed-point model outperforms other quantization approaches on
common benchmark data sets and varying model sizes, from small- to large-scale.

3 FIXED-POINT REPRESENTATION

Fixed-point numbers consist of an N -bit - signed or unsigned - integer and a global scaling factor.
The scaling factor is always a power of two whose exponent indicates the position of the decimal
point: Integer× 2−f , f ∈ Z. Thus, multiplications with powers of two result in bit shift operations,
which can significantly accelerate computations on adequate fixed-point hardware (Hennessy &
Patterson (2017)). In order to evaluate DNNs using pure fixed-point arithmetic, all individual layers
must be converted into fixed-point representations and put together in a meaningful way. Depending
on the layer type, different conditions must be fulfilled and we describe those conditions by several
regularization terms Ri. In the end, the training objective is a composition such that the actual
learning task, which is described by the cost function C, and the fixed-point constraints Ri are
solved simultaneously during training:

Ctotal = C +
∑
i

λiRi . (1)

3.1 QUANTIZATION FUNCTIONS

A quantization function maps an input signal x to a smaller set of discrete values x̃. If certain
properties apply, the quantization function can be expressed using basic operations like scaling,
rounding, and clipping. Since different layer types deal with different value ranges, we use three
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types of quantization functions:

x̃ =


Qsym(x;N,∆) = clip

(⌊ x
∆

⌉
, −2N−1 + 1, 2N−1 − 1

)
∆ symmetric uniform,

Quni(x;N,∆) = clip
(⌊ x

∆

⌉
, 0, 2N − 1

)
∆ unsigned uniform,

Qlog(x) = sign(x) 2blog2(|x|)e logarithmic.

(2)

In this notation, b·e rounds to the closest integer and clip(x, min, max) truncates all values to
the domain [min, max]. The uniform quantization functions are parameterized by their uniform
step-sizes ∆ and the number of available bits N . Obviously, the fixed-point representation is
fulfilled if and only if the step-size is a power of two, hence ∆ = 2−f , f ∈ Z. In this case, the
scaling operation is replaced by a bit shift. Therefore, we use an additional logarithmic quantizer
that rounds all input values to the closest power of two. That way, we are able to formulate
appropriate fixed-point constraints for all important layers.

3.2 CONVOLUTION AND FULLY-CONNECTED LAYERS

Convolution and fully-connected layers are summarized as Linear components in Figure 1 since
both perform weighted sums3. With xl−1 being the input of basic block l, the computation can
be written as al = xl−1 ∗ wl + bl, whereas ∗ is either a convolution operator or a matrix-vector
multiplication, and {wl, bl} is the set of parameters with wl being either a weight-tensor or -matrix.
Since additions play a subordinate role for complexity, we focus on weight multiplications. For
this purpose, Enderich et al. (2019) recommend individual Gaussian priors to change the weight
distribution from an unimodal distribution to a symmetric and multimodal distribution. The priors
are induced by the L2-norm and include the symmetric quantization function:

Rw =

L∑
l=1

Ml∑
i=1

1

Ml
‖wl,i −Qsym (wl,i;N,∆l)‖22 , (3)

where L is the number of layers, Ml the number of weights in layer l, and ∆l the step-size in
layer l. As recommended in Enderich et al. (2019), we use the layer-wise mean to give wide layers
with many parameters a greater flexibility to compensate the quantization loss. Furthermore, we
determine the layer-wise step-size on pre-trained weights by minimizing Rw under the constraint of
∆l = 2−f , f ∈ Z. In the next chapter, however, we see that the actual step-sizes are learned within
the batch normalization component.
Effectively, Rw gives individual Gaussian priors to each network weight with respect to the closest
fixed-point mode. The priors are updated with every forward pass, enabling the weights to continu-
ously switch between neighboring modes. The gradient with respect to a single weight is

∂Rw
∂wl,i

=
2

Ml
(wl,i −Qint (wl,i;N))

(
1− ∂Qint (wl,i;N)

∂wl,i

)
=

2

Ml
(wl,i − w̃l,i) . (4)

Due to real-valued weights and a unique rounding function, the partial derivative ∂Qint/∂wl,i can
be assumed to be zero. The final gradient is a scaled version of the corresponding quantization error.
After training, the weights are quantized as follows

w̃l,i ← Qsym (wl,i;N,∆l) . (5)

3.3 BATCH NORMALIZATION

BN layers are located between convolution or fully-connected layers on one side and non-linear
activation functions on the other. After the training, BN layers can be folded into the preceding layers
to increase efficiency. Therefore, we first derive the BN fixed-point constraint before combining both
layers to one coherent fixed-point module.

3Indeed, each convolution layer can be converted into a fully-connected layer by using the Toeplitz Matrix
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3.3.1 FIXED-POINT CONSTRAINT

BN is performed channel-wise, with each channel being normalized and transformed linearly. The
number of BN channels is equal to the number of output channels of the preceding convolution or
fully-connected layer. If a denotes the BN input variable, the calculation is

âc =


ac − E[ac]√
Var[ac] + ε

γc + βc while training,

ac − µc√
σ2
c + ε

γc + βc while evaluating,
(6)

with c being the channel index, âc being the output variable, and {γc, βc} being the learnable affine
transformation. During training, each channel is normalized using mean and variance of the current
mini batch. At test time, normalization is done by the layer statistics {µc, σc}, which have been
continuously updated during training. Thus, each channel is first shifted and then multiplied with
γc/
√
σ2
c + ε, which can be turned into a bit-shift operation if the multiplier is a power of two. Since

γc is the only learnable parameter in this expression, we propose the following regularization term:

Rγ =

L∑
l=1

Cl∑
c=1

∥∥∥∥∥∥ γl,c√
σ2
l,c + ε

−Qlog

 γl,c√
σ2
l,c + ε

∥∥∥∥∥∥
2

2

, (7)

where l is the layer index, L the number of layers, c the channel index, and Cl the number of
channels in layer l. Thus, we utilize the L2-norm to give individual fixed-point priors while taking
into account that γl,c is divided by the standard deviation after training. The corresponding gradient
is

∂Rγ
∂γl,c

=
2√

σ2
l,c + ε

 γl,c√
σ2
l,c + ε

−Qlog

 γl,c√
σ2
l,c + ε

 . (8)

Travelling in the direction of the negative gradient optimizes γl,c in the sense that, divided by the
standard deviation, the closest power of two is approximated. In doing so, both the normalization
statistics {µ, σ2} and the affine transformation {γ, β} can be adapted simultaneously such that the
learning task and the fixed-point constraint are fulfilled. After training, BN parameters are quantized
as follows:

γ̃l,c ← Qlog

 γl,c√
σ2
l,c + ε

 , σ̃l,c ← 1 , ε̃← 0 . (9)

3.3.2 FOLDING

Folding BN layers into the preceding Linear component reduces both computation time and memory
capacity. After quantizing with Equation 9, the BN calculation simplifies to

âl,c = (al,c − µl,c) γ̃l,c + βlc . (10)

Replacing the input variable by its calculation using the preceding Linear layer gives

âl,c = (xl−1 ∗ w̃l,c + bl,c − µl,c) γ̃l,c + βlc = xl−1 ∗ w̃l,cγ̃l,c + (bl,c − µl,c) γ̃l,c + βl,c (11)

where {w̃l,cγ̃l,c , (bl,c − µl,c) γ̃l,c + βl,c} is the parameter set of the folded layer. Let us see if the
fixed-point constraint is still fulfilled. After training and quantization, w̃l consists of signed integers
and a layer-wise step-size. By folding, the step-size is channel-wise multiplied with γ̃l,c. This turns
the layer-dependent step-size into a channel-dependent step-size. Since both multipliers are powers
of two, the newly created step-size is a power of two as well. Consequently, the BN fixed-point
constraint enables to learn individual step-sizes that fulfill the fixed-point constraint.

3.4 RELU

ReLU is the state-of-the-art non-linear activation function in DNNs. In order to approximate the
non-negative ReLU output, we use the uniform but unsigned quantization function Quni to quantize
the network activations during each forward pass. During the backward pass, we utilize the STE to
define the partial derivative of the rounding function as follows: ∂ bxe /∂x = 1. That way, the local
gradients with respect to the input and the step-size are as follows:5
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∂Quni

∂∆l
=


0 if x < 0

2N − 1 if x >
(
2N − 1

)
∆l ,

(xq − x) /∆l else

∂Quni

∂x
=


0 if x ≤ 0

0 if x >
(
2N − 1

)
∆l .

1 else

The gradient with respect to the input is passed on if x does not fall into the saturation bounds,
otherwise it is set to zero. The gradient with respect to the step-size is non-zero if x is positive.
Furthermore, it varies inside the range [−0.5, 0.5] if x is within the range of the quantization steps.
Otherwise, the gradient is equal to the highest N -bit integer.
In order to fulfill the fixed-point constraint ofQuni, the step size has to be a power of two. Therefore,
we use the logarithmic quantization function and propose the following regularization term

Rx =

L∑
l=1

‖∆l −Qlog (∆l)‖22 with the step-size gradient
∂Rx
∆l

= 2
(

∆l − ∆̃l

)
, (12)

where l is the layer index, L is the amount of layers, and ∆l the step size in layer l. The gradient is a
scaled version of the quantization error and approximates the fixed-point constraint during training.

3.5 REGULARIZATION PARAMETER

Ctotal = C + λw Rw + λγ Rγ + λxRx , (13)

is the training objective according to Equation 1, with C representing the learning task, Ri, i ∈
{w, γ, x}, being the particular fixed-point constraint, and λi being the corresponding regularization
parameter which controls the weighting between learning task and quantization. In fact, regulariza-
tion parameters add additional cost since their values must be determined empirically on a validation
set. Then again, they allow an easy control of the model capacity, which is a fundamental problem
in deep learning. On one hand, too much capacity often leads to overfitting. On the other hand, there
must be sufficient capacity to enable optimal convergence, especially at the beginning of the training
(Li et al. (2016)). Indeed, a training-time dependent regularization parameter can be used to control
the model capacity immediately at training time. In this context, Enderich et al. (2019) recommend
a linearly increasing regularization parameter that shifts the weighting towards the quantization con-
straint. However, we have found that exponential growth is better suited to change capacity. The
calculation is

λ(e) = λ(0)·exp(αEe) , (14)

where λ(0) is the initial value, e denotes the current training epoch, and αE is the growth factor
which depends on the total number of training epochs E. In our experiments, we used the same
configuration for each model on each data set: αE = 10/E, λw(0) = 10, λγ(0) = λx(0) = 10−4.
The values were determined on a CIFAR-10 validation set. Notice that the gradient ∂Rw/∂w from
Equation 4 is divided by the number of layer weights. Therefore, the corresponding start value
λw(0) is accordingly higher.

3.6 PARAMETER CLIPPING

Weight clipping: Soft quantization approaches train in high precision, but aim for posterior distri-
butions that are well qualified for post quantization. These posterior distributions are promoted by
suitable quantization constraints. In case of the Linear component, the fixed-point constraint limits
the potential parameter space to the discrete values ±∆l

(
2N−1 − 1

)
. This can be utilized as prior

knowledge since weights should not exceed this interval during training. For example, a weight
quantization using N = 2 bits and ∆ = 1 leads to the possible quantization values {−1, 0, 1}. If
a single weight already has the value −1, it is useless to optimize in the negative direction. There-
fore we clip all Linear weights within

[
−∆l

(
2N−1 − 1

)
, ∆l

(
2N−1 − 1

)]
after each update step to

promote reasonable weight adaptation.

Step-size clipping: The physical limitation of quantization steps is to be strictly positive. Further-
more, very small step-sizes could cause numerical problems in the denominator. Therefore, we limit
all quantization step-sizes to be ≥ 2−8 and clip the values after each update step, respectively.
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Gradient clipping: Before the update step is done, the quantizing gradients from Equations 4, 8,
and 12 are scaled by the corresponding regularization parameter. For numerical stability, we clip the
scaled gradients to the absolute value of 0.1. This also prevents the regularization parameter from
being too high.

4 EXPERIMENTS

In this section, we evaluate our fixed-point model on three common benchmark datasets: MNIST,
CIFAR-10, and CIFAR-100. All experiments are done using stochastic gradient descent with a
nesterov momentum of 0.9 and a linearly decreasing learning rate from 0.01 to 0.001. The batch
size is 64. We compare our fixed-point model with all approaches from Table 1. Results are shown
in Table 2. In order to provide a detailed comparison, we use two different bit-size configurations:

1. Fix-Net: A pure fixed-point model with 4-bit weights, 4-bit activations and bit-shift batch
normalization. The performance is comparable to the floating-point baseline with all mul-
tiplications performed in fixed-point arithmetic.

2. Add-Net: A model with symmetric 2-bit weights (ternary-valued), 4-bit activations and
bit-shift batch normalization. The evaluation during test time can be done without any
multiplications. A simplified example of the computational graph is given in the appendix
A.1. For the MNIST data set, we use 2-bit activations.

4.1 MNIST

MNIST is a handwritten-digits classification task. The dataset consists of 28×28 gray scale images
and is divided into 60,000 training and 10,000 test samples (LeCun & Cortes (2010)). We use
LeNet5 from Lecun et al. (1998) and preprocess the images by subtracting the mean and dividing
by the standard-deviation over the training set.
Our Add-Net configuration achieves 0.65% test error after 40 epochs of training with 2-bit weights
and activations. The result is similar to SGM and TWN, although both only quantize convolution
and fully-connected layers. Our Fix-Net further decreases test error down to 0.59%. Both networks
outperform the floating-point baseline of 0.71%.

4.2 CIFAR-10

CIFAR-10 is an image classification task with 10 different classes. The data consists of 32×32
RGB images and is divided into 50,000 training and 10,000 test samples (LeCun & Cortes (2010)).
We preprocess the images as recommended in Huang et al. (2017). For detailed testing, we use
three different model architectures: VGG7 from Simonyan & Zisserman (2015), DenseNet (L=76,
k=12) from Huang et al. (2017) and ResNet20 from He et al. (2015). VGG7 is a conventional CNN
architecture with 7 layers, BN and many parameters. In contrast, both DenseNet and ResNet20
show an efficient architecture with comparatively less parameters. Due to their lower number of
redundancies, DenseNet and ResNet20 are considered as difficult to quantize.

VGG7: With an error rate of 6.22%, our Add-Net performs best among all models with binary- or
ternary-valued weights. The performance is comparable to SGM which uses full-precision activa-
tions and batch normalization. With an error rate of 4.98%, our Fix-Net performs best in accuracy
and even outperforms the floating-point baseline of 5.42% which proves its regularization charac-
teristic. The bit-size configuration of Fix-Net is mostly comparable to Miyashita et al. (2016) and
Lin et al. (2016) with error rates of 6.21% and 8.30%, respectively.

DenseNet: With the DenseNet architecture, Add-Net achieves 6.54% test error and outperforms
the Bayesian approach of VNQ by more than 2%. SMG is slightly better with an error rate of
6.19% but quantizes only the Linear layers. The Fix-Net configuration achieves 5.63% test error
and consequently beats the floating-point baseline of 5.72%.

ResNet: It is the smallest architecture in comparison, with only 0.28M parameters. Our Add-Net
achieves an error rate of 10.13% which is 2% higher than the floating-point baseline. However,
with only approximately 70kB memory costs and no multiplications, Add-Net achieves a significant
reduction in complexity, even for small models. DQ performs slightly better, with an error rate
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of 9.62% and floating-point BN layers. Our Fix-Net decreases test error down to 8.68% but still
misses the floating-point baseline of 8.07%. Since ResNet20 already has a limited capacity, its
regularization capability is also limited.

4.3 CIFAR-100

CIFAR-100 uses the same RGB images as CIFAR-10, but provides 10 additional sub-classes for each
class in CIFAR-10. Thus, only 500 training samples are available for each of the 100 classes, which
makes CIFAR-100 a challenging classification task. We use VGG11 from Simonyan & Zisserman
(2015) and preprocess the images according to Huang et al. (2017).
Our Add-Net achieves 33.16% test error with at the same time lowest complexity. A visualization
of the Add-Net weight distribution at different training times is given in Figure 3 in the appendix
A.2. With an error rate of 30.25%, the Fix-Net configuration performs best in comparison and even
outperforms the floating-point baseline of 31.42% by more than 1%.

5 CONCLUSION AND FURTHER WORK

Soft quantization aims to reduce the complexity of DNNs at test time rather than at training time.
Therefore, training remains in floating-point precision, but maintains consideration of dedicated
quantization constraints. In this paper, we propose a novel soft quantization approach to learn pure
fixed-point representations of state of the art DNN architectures. With exponentially increasing
fixed-point priors and weight clipping, our approach provides self-reliant weight adaptation. In de-
tailed experiments, we achieve new state of the art quantization results. Especially the combination
of 4-bit weights, 4-bit activations and fixed-point batch normalization layers seems quite promising

Data set Method Model Params Bit-size (w/x) Error [%]

MNIST BNN, Hubara et al. (2016) - - 1/1 0.96
VNQ, Achterhold et al. (2018) LeNet5 60k 2/32 0.73
TWN, Li & Liu (2016) LeNet5 60k 2/32 0.65
Add-Net LeNet5 60k 2/2 0.65
SGM, Enderich et al. (2019) LeNet5 60k 2/32 0.63
Fix-Net LeNet5 60k 4/4 0.59
Baseline LeNet5 60k 32/32 0.71

CIFAR-10 FxpNet, Chen et al. (2017) VGG7 9.3M 1/1 10.30
Lin et al. (2016) VGG7 3.4M 4/4 8.30
TWN, Li & Liu (2016) VGG7 12M 2/32 7.44
SGM, Enderich et al. (2019) VGG7 12M 2/32 6.27
Miyashita et al. (2016) VGG8 14M 4/5 6.21
Add-Net VGG7 12M 2/4 6.22
Fix-Net VGG7 12M 4/4 4.98
Baseline VGG7 12M 32/32 5.42

VNQ, Achterhold et al. (2018) DenseNet 0.49M 2/32 8.83
Add-Net DenseNet 0.49M 2/4 6.54
SGM, Enderich et al. (2019) DenseNet 0.49M 2/32 6.19
Fix-Net DenseNet 0.49M 4/4 5.63
Baseline DenseNet 0.49M 32/32 5.72

Add-Net ResNet20 0.28M 2/4 10.13
DQ, Uhlich et al. (2019) ResNet20 0.28M 2/4 9.62
Fix-Net ResNet20 0.28M 4/4 8.68
Baseline ResNet20 0.28M 32/32 8.07

CIFAR-100 TWN, Li & Liu (2016) VGG11 32M 2/32 36.18
BR, Yin et al. (2018) VGG11 32M 2/32 34.13
Add-Net VGG11 32M 2/4 33.16
Fix-Net VGG11 32M 4/4 30.25
Baseline VGG11 32M 32/32 31.42

Table 2: Summary of the quantized performance on MNIST, CIFAR-10 and CIFAR-100.
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A APPENDIX

A.1 SPECIAL CASE: THE ADD-NET COMPUTATION PATH.

The combination of symmetric 2-bit weights and bit-shift BN layers allows us to evaluate the Add-
Net configuration without any multiplications. In Figure 2, a simplified example is given to demon-
strate the computational path. As in the experimental chapter, we consider 4-bit quantized activa-
tions. The upper part in Figure 2 shows intermediate results in decimal notation whereas the lower
part provides the corresponding binary code.
According to section 3.2 and 3.3, network weights split into a signed-integer part and channel-wise
step-sizes after training. We simulate a weight matrix with three channels (or columns, respec-
tively). In case of 2-bit weights, the signed integer part is filled with ternary values {−1, 0, 1}.
Thus, multiply-accumulate operations - as they result from multiplication with the input x̃l−1 - can
be performed using additions and subtractions, depending on whether the corresponding weight
value is negative or positive. In Figure 2, the block is marked as Fixed ADD. Subsequently, each
output channel is processed by its corresponding step-size. Since step-sizes are powers of two, fl
directly specifies the decimal shift. As you can see, only the decimal point is moved, respectively.
For simplification, the bias is assumed to be zero. For optimization purposes, we apply the ReLU
computation in front of the quantization function and set values with an active signed-bit to be
zero. Next comes the 4-bit activation quantization Quni. As mentioned already, we use a bit-size
of N = 4. The step-size for the activations is assumed to be 2−2. Therefore, the decimal point is
initially shifted two positions to the right. In case there is an active bit to the right of the decimal
point, round it up, if not, round it down. Now, the clipping module considers theN -bits to the left of
the decimal point. If there is another active bit to the left, the value is clipped by activating all 4-bits
in the blue section. In Figure 2, this is the case for the topmost example. Since all negative values
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have been clipped by the ReLU operator, the decimal point is now shifted back and the quantization
is finished.
Notice: This is only a semantic representation to demonstrate the bit shift mechanism in fixed-point
arithmetic. Both the dimensions and the exemplary input values are arbitrarily selected.
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Figure 2: Clipping and saturation using bit-shifting and comparison.

A.2 WEIGHT DISTRIBUTION OF THE VGG11 ADD-NET

This section gives an insight in the training process of the VGG11 Add-Net on Cifar-100. Therefore,
Figure 3 shows the weight distribution of Layer-1, Layer-4 and Layer-7 after several epochs of train-
ing. Since weight decay is used for pretraining, the initial weights resemble a unimodal distribution
with a single peak at zero (epoch 0). At the start of training, two additional peaks arise at ±∆ since
layer weights are clipped to the particular quantization domain. Following this, the weights start to
rearrange themselves taking into account both the fixed-point constraint and the learning task.

11



Under review as a conference paper at ICLR 2020

Epoch 0 Epoch 20 Epoch 80 Epoch 100

−∆ 0 ∆ −∆ 0 ∆ −∆ 0 ∆ −∆ 0 ∆

Figure 3: Weight distribution of Layer-1, Layer-4 and Layer-7 (from top to bottom) of VGG11 after
several epochs. Since weight decay is used for pre-training, the weight distribution is unimodal at
the beginning with a peak at zero. Then, our approach continuously rearranges the weights into a
ternary-valued distribution, clearly visible at epoch 80. The variance of each mode is continuously
decreased by the exponentially increasing regularization parameter. After 100 epochs, the weights
are that close to the fixed-point centers that post quantization does not produce a remarkable error.
Note: y-axis scaled individually for convenience, the x-axis for epoch 0 is wider to catch the whole
distribution.
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