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ABSTRACT

Neural networks have significantly benefitted real-world tasks. The universality of
a neural network enables the approximation of any type of continuous functions.
However, a neural network is regarded as a non-interpretable black box model,
and this is fatal to reverse engineering as the main goal of reverse engineering is
to reveal the structure or design of a target function instead of approximating it.
Therefore, we propose a new type of a function constructing network, called the
white box network. This network arranges function blocks to construct a target
function to reveal its design. The network uses discretized layers, thus rendering
the model interpretable without disordering the function blocks. Additionally, we
introduce an end-to-end PathNet structure through this discretization by consider-
ing the function blocks as neural networks

1 INTRODUCTION

Reverse engineering can be defined as the deconstruction of an object to reveal its design or ar-
chitecture, or to extract knowledge from the object [Eldad, 2005]. Typically, in machine learning,
obtaining the internal functions of a device only with its input and output values is a regression
problem. Before machine learning was developed, devices were disassembled to analyze them.
However, advances in deep learning have allowed us to approximate various functions in regression
tasks; therefore, we can now solve this regression problem without actually looking inside the ob-
ject.
While this development in deep learning (Bengio, 2009; Bengio et al., 2013) has benefitted reverse
engineering significantly, some limitations still exist. First, deep learning is a black box model;
therefore, the results may not be interpreted. In this case, information regarding the object such
as what it does and how it works may not be extracted. This causes field engineers to not entirely
trust the results of deep learning even if the correct values were reflected. Next, deep learning ap-
proximates the target function and does not reveal the actual design and architecture of the device.
An artificial neural network is a mathematical simulation of a neural network composed of human
neurons and synapses that simulate the manner in which the human brain recognizes patterns. How-
ever, a device typically comprises an electronic circuit and block functions; therefore, it may not fit
perfectly with the neural network structure, which can cause large errors when certain data are used.
We herein propose a white box network (WBN) with a selection layer, specially designed for reverse
engineering. This network continuously composites function blocks to create a target function. We
assume that all types of function blocks that can constitute the target function are provided in ad-
vance. This differs from the normal neural network because the WBN reveals the exact functions
with the correct inputs and their ordering to construct the target function, instead of merely ap-
proximating them. Our WBN is different from normal neural networks as the model architecture
is discretized using a discretized matrix called the selection layer. Because discretization is inter-
pretable (Chen et al., 2016), our WBN can reconstruct the target function.
The WBN is motivated by the questions, Can we benefit from knowing the functions that are used
in certain fields?. For example, in a programmable logic controller (PLC), a target function can be
obtained through a ladder logic diagram comprising well-known function blocks. Therefore, we can
obtain a target function by ordering those function blocks with the correct inputs. As such, in this
study, we create a WBN that can automate reverse engineering. For the experiment, we imitated the
PLC data and verified whether our model could obtain their ladder logic diagram.
Additionally, we conducted other experiments to validate the selection layer. We assumed that we
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may not know the functions used in a certain field. Therefore, we regarded the given function blocks
as neural networks. Subsequently, the network was ordered and connected to the appropriate neural
networks to obtain the target function that resembles PathNet (Fernando et al., 2017). Using this
concept, we create an end-to-end PathNet structure and perform experiments to verify whether it
functions like PathNet.

2 RELATED WORKS

In machine learning, regression is a task of obtaining a real-valued function y = f(x) from the
hypothesis set (X,Y ). However, typically, actual data may contain noise or exhibit data loss owing
to measurement limitations or other causes. Therefore, regression is often considered as a black box
process and an exact function may not be obtained. For example, in Gaussian process regression
[Williams and Ras-mussen, 2006] and support vector regression (SVR) (Smola & Schölkopf, 2004),
we reproduced a kernel and obtained an approximated value instead of obtaining a function. An-
other typical regression method is using a multilayered neural network (Bengio, 2009; Bengio et al.,
2013), which approximates a function by using the human neuron model.
The aim of reverse engineering is to obtain the exact structure of a function rather than merely ap-
proximating it. In some fields, we may know the type of function forms that typically appear; hence,
we can use that information to construct a function. An equation learner (EQL) (Martius & Lampert,
2017; Sahoo et al., 2018) is designed for regression task that can be described by analytical expres-
sions of mechanical systems such as a pendulum or a robotic arm. An EQL has been shown more
effective at solving dynamics than conventional neural nets; additionally, it reduces extrapolation
errors. Furthermore, PDE-net (Long et al., 2018b;a) accurately predicts the dynamics of complex
systems and uncovers the underlying hidden partial differential equation models using a convolution
kernel filter. This type of model renders regression more effective if certain types of function blocks
or processes that appear in a specific field are known.
A discrete variable can be used variously, e.g., learning probabilistic latent representations (Kingma
et al., 2014), image region (Xu et al., 2015), and memory access (Graves et al., 2014; 2016). Espe-
cially for the memory access, it resembles an attention mechanism that can help interpret the focus
of the model. The end-to-end memory network (Kingma et al., 2014) uses softmax to access the
memory in questions and answering task. This allows us to determine the sentence that the network
refers to when it answers a specific question. The neural Turing machine (NTM) (Graves et al.,
2014) and differentiable neural computer (Graves et al., 2016) use a sharpening method instead of
merely using softmax. As such, those models select information from the memory without disor-
dering information, thus rendering them more interpretable. Therefore, we can determine how the
model functions. For example, we can reconstruct the Copy processes of the NTM and create a
pseudocode by referring to the headers in the model. Therefore, discretization can be used such that
the model is more interpretable (Chen et al., 2016), and it is sometimes more efficient for comput-
ing (Rae et al., 2016).
PathNet (Fernando et al., 2017) is a modular deep neural network with pathways. It uses a genetic
algorithm to obtain the best pathway for learning. The pathways are represented as integer-valued
matrices; therefore, the modules can be selected by accessing those matrices. PathNet reuses the
pathways for a different task as a transfer learning paradigm and shows the potential in selecting the
appropriate modules to obtain the target results.

3 METHODS

3.1 WHITE BOX NETWORK ARCHITECTURE

The WBN is a multilayered feed forward network. For each hidden layer, it consists of a selection
layer followed by function block mappings. In this study, we assumed that all function blocks
constituting the target function were known before we built the model. However, the exact order of
the function blocks with the correct inputs must be obtained. Each function block can be multivalued
with multiple inputs; however, for simplicity, we assume that the function blocks are unitary and
binary operations.
Suppose that the model is L-layered, and we have m(l) unitary functions and n(l) binary functions
in the lth layer. In the selection layer, we select inputs to enter into each function block. The
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Figure 1: Architecture of white box network for two layers (L = 2) with each layer containing two
unitary operations {f1, f2} and two binary operations {g1, g2} as its function blocks.

selection layer can be written as
z(l) = Ŵ (l)y(l−1)

Here, y(l−1) is the output of the previous layer and Ŵ (l) is the selection matrix. If each row of
Ŵ (l) has only one 1 and the remaining 0s, then, it selects one element of the y(l−1) as an element
of z(l). To make Ŵ (l) differentiable, we approximate Ŵ (l) by

Ŵ (l) = softmax(W (l)/τ, axis=-1)

Here, τ > 0 is a temperature parameter that renders Ŵ sharper as τ → 0. τ can be chosen as both a
constant and a learnable parameter.
After multiplying the selection matrix, z(l) goes through the function block mappings. Let
f
(l)
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(l)
m(l) and g(l)1 , . . . , g

(l)
n(l) be the given unitary and binary function blocks on the lth layer.
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)
As such, when we select the function blocks of each layer, the dimensions of the variables are fixed.
For example, y(l) represents (m(l)+n(l))-dimensional vectors and z(l) represents (m(l)+2n(l))-
dimensional vectors.
Finally, we convert the last layer’s output to fit the target output dimension. Therefore, we use the
selection layer again to match with the output dimension.

o = Ŵ (L+1)y(L)

Here, the final output is a composition of function blocks from each layer with selective inputs.

3.2 END-TO-END PATHNET ARCHITECTURE

Suppose we do not have any information regarding the target function. In that case, we can select
our function blocks as a single-layered neural network followed by nonlinear activation. Then, our
model becomes modular neural network that selects the right modules to find the best pathway to
obtain the target value. This concept is the same as that of a previous study, i.e., PathNet (Fernando
et al., 2017).
To apply one key component of our WBN to existing PathNet architecture, we need to switch the or-
der of the selection layer and the function block mapping for each hidden layer. Therefore, function
block mapping is proceeded by the selection layer. In function block mapping, the function blocks
are one-layered neural networks with learnable parameters. Each of them is assigned a single input
and yields a single output, which is typically multidimensional.
Now, suppose that our model is a modular deep neural network with L layers with each layer con-
taining M neural network modules. Let N be the number of maximum distinct modules per layer
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Figure 2: Architecture of end-to-end PathNet comprising a two-layer (L = 2) network with six
modules (M = 6) in each layer. The number of maximum distinct modules per layer that are
permitted in the pathway is three (N = 3), and the final layer comprises a fully connected linear
layer. The activated path and modules are colored in red.

that can be selected in a pathway.
Let φ(l)1 , , φ

(l)
M be neural network modules in the lth layer and let k(l) be the dimension(number of

channels) of hidden output variables. Then, the function mapping layer is written as

Z(l) = (φ
(l)
1 (y(l−1)), φ

(l)
2 (y(l−1)), . . . , φ

(l)
M (y(l−1)))

Here, Z(l) is M by k(l) matrix. Then, selection layer selects the neural network outputs

Ŷ (l) = Ŵ (l)Z(l)

The selection matrix Ŵ (l) is N ×M with each row of Ŵ (l) ) containing only one almost 1 and the
remaining almost 0s; Ŵ (l) can be approximated in the manner described previously. Now, we add
all rows of Ŷ (l) such that the hidden output y(l) follows the existing PathNet.

y(l) = reduce sum(Ŷ (l), axis=0)

Finally,there is a linear layer that can be used to convert the last hidden layer to the output value.

o = Wy(L) + b

This architecture is inspired by the PathNet in which a selection matrix instead of a genetic algorithm
is used to select a pathway. It is differentiable, and hence we can easily train the network by gradient
descent.

3.3 TRAINING DETAILS

We used the stochastic gradient descent algorithm with mini-batches and Adam (Kingma & Ba,
2015) to update the parameters. The free parameter of the WBN is θ = {W (1), . . . ,W (L)} or
possibly θ = {W (1), . . . ,W (L), τ (1), . . . , τ (L)}. Furthermore, we used the mean square error as a
loss function for the regression task and an L1 regularization term for W (l)’s

Loss(D) =
1

|D|

|D|∑
i=1

||φ(xi)− yi||2 + α

L∑
i=1

|W (l)|1

which is a Lasso-like (Tibshirani, 1996). For the WBN, L1 regularization is highly important in
optimization. Without the regularization term, the absolute value of elements of W (l) can become
extremely large. This causes Ŵ (l) to be extremely sparse and sharp, and it can be an obstacle for
shifting the function blocks from one ordering to another. As expected, the model typically fails to
obtain the exact ordering of function blocks when we set α = 0. Hence, the regularization parameter
α should be set to more than 0. Typically, we set α ∈ (0, 5] at the beginning of training to prevent
the problem.
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Figure 3: Three ladder logic diagrams (LLDs) for the experiment.

However, another problem occurs with the scale of α. We typically set α to be more than 0 at the
beginning; however, after the model has discovered the exact ordering, Ŵ (l) cannot be sharpened
enough because of the large regularization restriction. Therefore, we change the regularization pa-
rameter α during training time; we set α = 0 after enough learning time. Two methods exist for
selecting when to set α = 0: one is by a threshold and the other is by an iteration number. For
the former, if the MSE is smaller than a certain threshold (typically 0.001), we set α = 0. For the
latter, if the iteration reaches a certain number (typically t = T/2, where T is the total number of
iterations), we set α = 0.
Occasionally, we used the temperature learning strategy such that the temperature of each layer can
be learned during the optimization. We used τ(> 0) because we wished to sharpen our selection
matrix Ŵ (l); however if τ is extremely small at the early stage of training, the model may be pre-
vented from selecting the exact order of function blocks. Because we want our τ to approach zero
as learning progresses, we use

τ̂ (l) =
1

τ0 + softplus(τ (l))
or τ̂ (l) =

1

exp(τ0 + softplus(τ (l)))

Ŵ (l) = softmax(W (l)/τ̂ (l), axis=-1)
where τ0 is a constant determining upper bound of τ̂ .

4 EXPRIMENTS

4.1 LADDER LOGIC DIAGRAM

The ladder logic diagram (LLD) is a programming language that represents a program by a
graphical diagram based on the circuit diagrams of a relay logic hardware. It is especially used
in developing software for PLCs. Typically, a PLC device is black boxed before it is released as
that is the core part of the technology. In fact, an attempt to model a PLC using recurrent neural
networks has been reported (Abdelhameed & Darabi, 2005). However, the tracking and analysis of
the learning process were inadequate; therefore, the internal structure of the controller could not be
determined. Our white box model is designed to reveal this internal structure, and our goal in this
experiment is to restore the logic diagram through reverse engineering using the input and output
signals of a PLC device.

Three LLDs were used in our experiment, as shown in Figure 3. These LLDs range from simple
to complex. The first one is a single output problem and the last two are multiple output problems.
Furthermore, in the last two diagrams, the output signals become input signals that create other
outputs; therefore, the outputs are highly related to each other. The maximum number of inputs
required was six, but we set the input signals as eight dimensional to validate whether the network
could find the LLDs even if nonmeaningful input values existed.
The inputs and outputs are Boolean numbers, which are either 0 or 1. Therefore, the function
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Table 1: Mean squared errors for ladder logic diagrams

LLD1 LLD2 LLD3
WBN (7.404± 0.166)× 10−7 (2.425± 0.160)× 10−6 (3.312± 0.108)× 10−6

ANN (2.729± 0.287)× 10−6 (7.422± 0.280)× 10−5 (9.619± 0.216)× 10−5

SVR 1.181× 10−2 1.861× 10−2 7.123× 10−1

Figure 4: Sample structures for three LLDs suggested by WBN. (a) LLD1 sample #1 constructed
by WBN (b) LLD1 sample #2 constructed by WBN (c) LLD2 sample #1 constructed by WBN

blocks used in LLDs are nondifferentiable Boolean discrete functions. To solve this problem, we
continuously extended the function blocks such that gradient descent could be applied. The four
function blocks used in this experiment are as follows.

IDENTITY(x) = x

NOT(x) = 1− x
AND(x, y) = x× y

OR(x, y) = x+ y − x× y

The first two are unitary operations and the last two are binary. Therefore, the number of unitary
functions m = 2 and the number of binary functions n = 2. We used these functions multiple
times by duplicating them. Hence, the number of functions was set to m + n ∈ {12, 16, 20} and
the number of layers L ∈ {3, 4, 5, 6} was selected in our experiment. The initial L1 regularization
parameter α was set to α ∈ {0.1, 0.5, 1, 5}.
We prepared a multilayered artificial neural network (ANN) and support vector regression (SVR)
to compare with our model. For the ANN, the number of layers were set as that of our model and
the number of hidden units k ∈ {5, 10, 20} per layer. For SVR, we used a radial basis function
kernel of width γ ∈ {0.05, 0.1, 0.5, 1.0} and set two hyperparameters C ∈ {0.01, 0.1, 1, 10, 100}
and ε ∈ {0.01, 0.1, 1}. Although comparing losses is not meaningful as our model not only reduces
the error, but also obtains the actual structure of the target function, it clearly shows how our model
effectively reduces the loss after obtaining the structure of the target function.

Three samples of LLDs suggested by our model are shown in Figure 4. (a) is a sample from LLD1,
which is equivalent to LLD1. Two equivalent LLDs imply that, for every possible input signal, the
corresponding output signals from two LLDs are the same. Therefore, we verified that the WBN may
not suggest the exact diagram but an equivalent diagram (it sometimes produces the exact LLD). (b)
is another sample of LLD1 that is also equivalent to LLD1. We discovered that if we set the number
of layers larger than the required number, the WBN will likely generate an inefficient LLD. (b) is a
sample of LLD2; it is equivalent to LLD2. Both y1 and y2 cannot be obtained efficiently using this
diagram. However, it is clear that y3 is of a simpler form than the original LLD2; additionally, it is
equivalent to real y3 in LLD2 because NOT(y2) and x1 cannot occur simultaneously. We included
more samples of LLDs including samples from LLD3 in the Appendix. See Figure 7
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(a) (b)

Figure 5: Binary MNIST classification results. (a) transfer result for 1vs3→ 7vs8. Total speed-up
radio is 1.18. (b) transfer result for 4vs7. → 2vs5. Total speed-up radio is 1.13

4.2 BINARY MNIST CLASSIFICATION

We performed experiments to verify the end-to-end PathNet structure. We used the selection matrix
instead of the genetic algorithm, which is different from the original PathNet. Experiments were
conducted to determine whether the selection matrix could select the appropriate path. We per-
formed the experiments using the transfer learning paradigm suggested in the original PathNet and
observed a positive transfer by using our network.
A binary MNIST classification is a task distinguishing two classes of MNIST digits from each
other. In our experiment, we conducted two tasks for the transfer learning paradigm. First, we
trained binary classification task A until we obtained a 0.998 training accuracy. After we achieved
the accuracy, we set the best-fit pathway, that is, the parameters within the pathway were no longer
allowed to change. Subsequently, we initialized the remaining parameters including the last linear
layer and trained another binary classification task B until we obtained a 0.998 training accuracy.
In this experiment, we adopted the original PathNet structure to construct our model. The end-to-
end PathNet structure comprises L = 3 layers; each layer contains M = 10 linear units with 20
neurons each followed by rectified linear units. We set N = 3 as the maximum number of distinct
modules permissible in a pathway for each layer.
We created two different datasets for transfer learning. One is for transferring from classifying 1
and 3 to classifying 7 and 8 (1vs3 to 7vs8). The other is for transferring from classifying 4 and 7 to
classifying 2 and 5 (4vs7 to 2vs5). We created these datasets because, in our opinion, transferring
1vs3 to 7vs8 is more reasonable than transferring 4vs7 to 2vs5 because 1, 4, 7 are numbers with
only straight lines, whereas 2, 5 , 8 are numbers with curved lines. We expect that the model that is
learned to classify 1 and 3 can classify 7 and 8 easily after a transfer. The experiment was performed
500 times for each dataset to analyze the statistics.

Figure 5 shows the results of a positive transfer. For classifying 7 and 8, the number of generations
to obtain a 0.998 training accuracy was 49.728 and 42.112 on average before and after transfer,
respectively. The speed-up ratio was 1.18 for this dataset. For classifying 2 and 5, the number of
generations to obtain a 0.998 training accuracy was 55.324 and 48.808 on average before and after
transfer, respectively. The speed-up ratio was 1.13 for this dataset. We discovered that the learning
speed of the task enhanced for both datasets. Furthermore, it is clear that the transfer from 1vs3 to
7vs8 is better than that of the other by comparing the speed-up ratios. This implies that the selection
matrix successfully discovered the best way pathway to transfer. The loss decreases quickly at the
early stage of the training for the post-transferred task compared with the nontransferred task. See
Figure 9 in appendix.

4.3 CIFAR CLASSIFICATION

The CIFAR10 dataset contains images from 10 different classes. We performed an experiment using
this dataset to determine whether our network could be used for classification problems. In the
original PathNet study, a similar experiment was performed, in which information was transferred
between CIFAR and SVHN datasets. One is for the classification of 10 different objects and the other
that of 10 different digits. In our opinion, using two dataset are not suitable for transfer learning as
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they need to focus on different items when classifying them. Therefore, we divided the CIFAR
dataset into two classes: class 1, which comprises data from airplanes, automobiles, birds, cats, and
deer; and class 2, which comprises data from dogs, frogs, horses, ships, and trucks.
In our experiment, we used a transfer paradigm similar to that of the previous experiment. However,
we trained the task according to a fixed iteration number instead of obtaining a certain accuracy. We
trained one class 5000 times and then fixed the best-fit pathway. Subsequently, we initialized the
remaining parameters and trained the other class 5000 times to verify the accuracy with their test
sets.
The end-to-end PathNet structure we used comprises L = 3 layers; each layer contains M = 16
linear units with 20 neurons each followed by rectified linear units. We set N = 4 as the maximum
number of distinct modules permissible in a pathway for each layer.

(a) (b)

Figure 6: CIFAR classification results. (a) Transfer results for class l. On average, test accuracy
increased from 51.28% to 52.42% after transfer. (b) Transfer results for class 2. On average, test
accuracy increased from 58.50% to 59.73% after transfer.

Figure 6 shows the results of a positive transfer in the experiment. We conducted the experiment 500
times for each task and obtained the test accuracy. The test accuracy enhanced after a transfer was
performed for both classes. For the first class, the total accuracy increased from 51.28% to 52.42%
on average; for the second class, the total accuracy increased from 58.50% to 59.73% on average.
Furthermore, we verified that the task was learned quickly at the early stage of the training for the
post-transferred task compared with the nontransferred task. See Figure 10-(a), (b) in appendix.

5 CONCLUSION

We presented a new model called the WBN, which obtains the exact order and correct inputs of
function blocks to compose them for constructing target functions. It is especially suitable for re-
verse engineering, e.g., for revealing PLC devices. It is different from other neural networks as it
not only approximates a target function, but also constructs and reveals its structure. The WBN is
differentiable with a discretized variable-named selection matrix; therefore, gradient descent can be
used for its training. We used the L1 regularization with a variable parameter in temperature learn-
ing during training to optimize our network.
Using this network, we discovered that it could reveal LLDs in devices, e.g., logic devices such as
PLCs. This network provides the target logic, which may be helpful in auto-reverse engineering
for reconstructing PLC-like devices. A WBN provides an equivalent logic rather than an exact one.
Furthermore, we discovered that if the layer was set too large, then a WBN may yield an inefficient
logic. This will be investigated in future studies.
Additionally, we created another structure to verify the efficacy of the selection layer. Assuming that
the function blocks were not known, we created an end-to-end PathNet structure using the selection
layers. We performed a few experiments using this network and the transfer learning paradigm;
consequently, positive transfer results were shown. This demonstrated that the selection layer could
successfully select networks or functions during training.
However, the hyperparameters and their scales must be investigated. The efficient initial regulariza-
tion parameter and temperature based on the data scale remain unclear. This will be investigated in
future studies as it is an important topic.
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2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, pp. 4439–4447, 2018.

9

http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1701.08734
http://arxiv.org/abs/1812.04426
http://arxiv.org/abs/1812.04426


Under review as a conference paper at ICLR 2020

Alexander J. Smola and Bernhard Schölkopf. A tutorial on support vector regression. Statistics and
Computing, 14(3):199–222, 2004.

R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society (Series B), 58:267–288, 1996.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron C. Courville, Ruslan Salakhutdinov,
Richard S. Zemel, and Yoshua Bengio. Show, attend and tell: Neural image caption generation
with visual attention. In Proceedings of the 32nd International Conference on Machine Learning,
ICML 2015, Lille, France, 6-11 July 2015, pp. 2048–2057, 2015.

10



Under review as a conference paper at ICLR 2020

A APPENDIX

Figure 7: Additional sample structures for three LLDs suggested by WBN. (a), (b) are from LLD1,
(c) is from LLD2 and (d), (e) are from LLD3.

(a)

(b)

(c)

Figure 8: Sample target functions for three LLDs suggested by WBN. (a) sample equation for LLD1
target function. (b) sample equation for LLD2 target function. (c) sample equation for LLD3 target
function
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Figure 9: Learning curve for binary MNSIT classification (1vs3→ 7vs8). We conduct experiments
10 times to get the learning curves.

(a)

(b)

Figure 10: Learning curve for CIFAR classification. (a) learning curve for class 2. (b) learning curve
for class 1. We conduct experiments 10 times to get the learning curves.
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