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The ability of generative adversarial networks to render nearly photorealistic images leads us to ask:
What does a GAN know? For example, when a GAN generates a door on a building but not in a
tree, we wish to understand whether such structure emerges as pure pixel patterns without explicit
representation, or if the GAN contains internal variables that correspond to human-perceived objects
such as doors, buildings, and trees. And when a GAN generates an unrealistic image, we want to
know if the mistake is caused by specific variables in the network.

We first identify a group of interpretable units that are related to semantic classes (Figure 1a,b).
These units’ featuremaps closely match the semantic segmentation of a particular object class (e.g.,
trees). Then, we intervene in units in the network to cause a type of object to disappear or appear
(Figure 1c,d). Finally, we study contextual relationships by observing where we can insert the object
concepts in new images and how this intervention interacts with other objects in the image (Figure 4).
This framework allows us to compare representations across different layers, GAN variants, and
datasets; to debug and improve GANs by locating artifact-causing units (Figure 1e-g); to understand
contextual relationships between objects in natural scenes (Figure 4, Figure 5); and to manipulate
images with interactive object-level control (video).

(a) Generate images of churches

(b) Identify GAN units that match trees

(c) Ablating units removes trees

(d) Activating units adds trees (g) Ablating “artifact” units improves results

(e) Identify GAN units that cause artifacts

(f) Bedroom images with artifacts

Figure 1: Overview: (a-d) We analyze internal representations by relating (a) output of a GAN to
(b) units that correlate with object concepts (e.g., trees) and intervening to (c) remove and (d) add
objects. We can (e) identify units that (f) cause artifacts and (g) reduce artifacts when ablated.
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  interpretable units   SWD   Best "bed" unit   Best "window" unit   Unit class distribution
base prog GAN 
512 units total

74 object units 
84 part units 
9 material units 

     

iou=0.18bed layer4 #253 iou=0.19window layer4 #142

 
+batch stddev 
512 units total

55 object units 
128 part units 
6 material units 

     

iou=0.11bed layer4 #88 iou=0.25window layer4 #422

 
+pixelwise norm 
512 units total

82 object units 
128 part units 
16 material units 

     

iou=0.29bed layer4 #129 iou=0.26window layer4 #494

 

167 units 7.60
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Figure 2: Comparing layer4 representations learned by different training variations. Lower SWD
indicates a higher-quality model: as the quality of the model improves, the number of interpretable
units also rises. Progressive GANs apply several innovations including making the discriminator
aware of minibatch statistics, and pixelwise normalization at each layer. We can see batch awareness
increases the number of object classes matched by units, and pixel norm (applied in addition to batch
stddev) increases the number of units matching objects.

1 METHOD

We analyze the internal GAN representations by decomposing the featuremap r at a layer into
positions P ⊂ P and unit channels u ∈ U. To identify a unit u with semantic behavior, we upsample
and threshold the unit, and measure how well it matches an object class c in the image x as identified
by a supervised semantic segmentation network sc(x) (Xiao et al., 2018)

IoUu,c ≡
Ez

∣∣∣(r↑u,P > tu,c) ∧ sc(x)
∣∣∣

Ez

∣∣∣(r↑u,P > tu,c) ∨ sc(x)
∣∣∣ , where tu,c = argmax

t

I(r↑u,P > t; sc(x))

H(r↑u,P > t, sc(x))
(1)

This approach is inspired by the observation that many units in classification networks locate emergent
object classes when upsampled and thresholded (Bau et al., 2017). Here, the threshold tu,c is chosen
to maximize the information quality ratio, that is, the portion of the joint entropy H which is mutual
information I (Wijaya et al., 2017).

To identify a sets of units U ⊂ U that cause semantic effects, we intervene in the network G(z) =
f(h(z)) = f(r) by decomposing the featuremap r into two parts (rU,P, rU,P), and forcing the
components rU,P on and off. Given an original image x = G(z) ≡ f(r) ≡ f(rU,P, rU,P), we can
intervene in the network and generate an image with units U ablated at pixels P:

xa = f(0, rU,P) (2)
Or an image with units U activated to a high level c at pixels P:

xi = f(c, rU,P) (3)
We measure the average causal effect (ACE) (Holland, 1988) of units U on class c as:

δU→c ≡ Ez,P[sc(xi)]− Ez,P[sc(xa)], (4)

2 RESULTS AND DISCUSSION

Analysis of the semantics and causal behavior of the internal units of a GAN reveals several new
findings.

Units matching diverse objeccts emerge on more diverse models. Internal units for more object
classes emerge as the architecture becomes more diverse. Figure 2 compares three models (Karras
et al., 2018) that introduce two innovations on baseline Progressive GANs. The number of types
of objects, parts, and materials matching units increases by more than 40% as minibatch-stdev is
introduced; and pixelwise normalization increase units that match semantic classes by 19%.
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  Units in layer   Unit class distribution
layer1 
512 units total

0 object units 
2 part units 
0 material units 

 

iou=0.10ceilingt layer1 #457 iou=0.07ceilingt layer1 #194

 
layer4 
512 units total

86 object units 
149 part units 
10 material units 

 

iou=0.28sofa layer4 #37 iou=0.15fireplace layer4 #23

 
layer7 
256 units total

59 object units 
48 part units 
9 material units 

 

iou=0.23painting layer7 #15 iou=0.07coffee tablet #247

 
layer10 
128 units total

19 object units 
8 part units 
11 material units 

 

iou=0.14carpet layer10 #53 iou=0.21glass layer10 #126
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Figure 3: Comparing layers of a progressive GAN trained to generate 256× 256 LSUN living room
images. The output of the first convolutional layer has almost no units that match semantic objects,
but many objects emerge at layers 4-7. Later layers are dominated by low-level materials and shapes.

(a) (b)

(d)(c) (e)

Figure 4: Inserting door units by setting 20 causal units to a fixed high value at one pixel in the
representation. Whether the door units can cause the generation of doors is dependent on local context:
every location that creates doors is shown, including two separate locations in (b) (we intervene at
left). The same units are inserted in every case, but the door that appears has a size, alignment, and
color appropriate to the location. The top chart summarizes the causal effect of inserting door units at
one pixel with different context.

Interpretable units emerge in the middle layers, not at the initial layers. In classifier networks,
units matching high-level concepts appear in layers furthest from the pixels (Zeiler & Fergus, 2014).
In contrast, in a GAN, it is mid-level layers 4 to 7 that have the largest number of units that match
semantic objects and object parts. A selection of layers is shown in Figure 3.

Diagnosing and Improving GANs Our framework can also analyze the causes of failures and
repair some GAN artifacts. Figure 1e shows several annotated units that are responsible for typical
artifacts consistently appearing across different images. We can fix these errors by ablating 20
artifact-causing units. Figure 1g shows that artifacts are successfully removed and the artifact-free
pixels stay the same, improving the generated results. Table 1 summarizes quality improvements: we
compute the Fréchet Inception Distance (Heusel et al., 2017) between the generated images and real
images using 50 000 real images and 10 000 generated images with high activations on these units.
We also collect 20 000 annotations of realism on Amazon MTurk, with 1 000 images per method.
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Figure 5: Tracing the effect of inserting door units on downstream layers. An identical ”door”
intervention at layer4 of each pixel in the featuremap has a different effect on final convolutional
feature layer, depending on the location of the intervention. In the heatmap, brighter colors indicate
a stronger effect on the layer14 feature. A request for a door has a larger effect in locations of a
building, and a smaller effect near trees and sky. At right, the magnitude of feature effects at every
layer is shown, measured by mean normalized feature changes. In the line plot, feature changes for
interventions that result in human-visible changes are separated from interventions that do not result
in noticeable changes in the output.

Table 1: We compare generated images before and after ablating 20 “artifacts” units. We also report
a simple baseline that ablates 20 randomly chosen units.

Fréchet Inception Distance (FID)

original images 52.87
“artifacts” units ablated (ours) 32.11

random units ablated 52.27

Human preference score original images

“artifacts” units ablated (ours) 79.0%
random units ablated 50.8%

Characterizing contextual relationships using insertion We can also learn about the operation
of a GAN by forcing units on and inserting these features into specific locations in scenes. Figure 4
shows the effect of inserting 20 layer4 causal door units in church scenes. We insert units by
setting their activation to the mean activation level at locations at which doors are present. Although
this intervention is the same in each case, the effects vary widely depending on the context. The
doors added to the five buildings in Figure 4 appear with a diversity of visual attributes, each with an
orientation, size, material, and style that matches the building. We also observe that doors cannot be
added in most locations. The locations where a door can be added are highlighted by a yellow box.
The bar chart in Figure 4 shows average causal effects of insertions of door units, conditioned on the
object class at the location of the intervention. Doors can be created in buildings, but not in trees or
in the sky. A particularly good location for inserting a door is one where there is already a window.

Tracing the causal effects of an intervention To investigate the mechanism for suppressing the
visible effects of some interventions, we perform an insertion of 20 door-causal units on a sample of
locations and measure the changes in later layer featuremaps caused by interventions at layer 4. To
quantify effects on downstream features, and the effect on each each feature channel is normalized
by its mean L1 magnitude, and we examine the mean change in these normalized featuremaps
at each layer. In Figure 5, these effects that propagate to layer14 are visualized as a heatmap:
brighter colors indicate a stronger effect on the final feature layer when the door intervention is in the
neighborhood of a building instead of trees or sky. Furthermore, we graph the average effect on every
layer at right in Figure 5, separating interventions that have a visible effect from those that do not. A
small identical intervention at layer4 is amplified to larger changes up to a peak at layer12.

Interventions provide insight on how a GAN enforces relationships between objects. We find that
even if we try to add a door in layer4, that choice can be vetoed by later layers if the object is not
appropriate for the context.
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