
Hindsight Credit Assignment

Anna Harutyunyan, Will Dabney, Thomas Mesnard, Nicolas Heess, Mohammad G. Azar,
Bilal Piot, Hado van Hasselt, Satinder Singh, Greg Wayne, Doina Precup, Rémi Munos

DeepMind
{harutyunyan, wdabney, munos}@google.com

Abstract

We consider the problem of efficient credit assignment in reinforcement learning.
In order to efficiently and meaningfully utilize new data, we propose to explicitly
assign credit to past decisions based on the likelihood of them having led to the
observed outcome. This approach uses new information in hindsight, rather than
employing foresight. Somewhat surprisingly, we show that value functions can
be rewritten through this lens, yielding a new family of algorithms. We study the
properties of these algorithms, and empirically show that they successfully address
important credit assignment challenges, through a set of illustrative tasks.

1 Introduction

A reinforcement learning (RL) agent is tasked with two fundamental, interdependent problems:
exploration (how to discover useful data), and credit assignment (how to incorporate it). In this work,
we take a careful look at the problem of credit assignment. The instrumental learning object in RL –
the value function – quantifies the following question: “how does choosing an action a in a state x
affect future return?”. This is a challenging question for several reasons.

Issue 1: Variance. The simplest way of estimating the value function is by averaging returns
(future discounted sums of rewards) starting from taking a in x. This Monte Carlo style of estimation
is inefficient, since there can be a lot of randomness in trajectories.

Issue 2: Partial observability. To amortize the search and reduce variance, temporal difference
(TD) methods, like Sarsa and Q-learning, use a learned approximation of the value function and
bootstrap. This introduces bias due to the approximation, as well as a reliance on the Markov
assumption, which is especially problematic when the agent operates outside of a Markov Decision
Process (MDP), for example if the state is partially observed, or if there is function approximation.
Bootstrapping may then cause the value function to not converge at all, or to remain permanently
biased [18].

Issue 3: Time as a proxy. TD(λ) methods control this bias-variance trade-off, but they rely on
time as the sole metric for relevance: the more recent the action, the more credit or blame it receives
from a future reward [19, 20]. Although time is a reasonable proxy for cause-and-effect (especially
in MDPs), in general it is a heuristic, and can hence be improved by learning.

Issue 4: No counterfactuals. The only data used for estimating an action’s value are trajectories
that contain that action, while ideally we would like to be able to use the same trajectory to update all
relevant actions, not just the ones that happened to (serendipitously) occur.

Figure 1 illustrates these issues concretely. At the high-level, we wish to achieve credit assignment
mechanisms that are both sample-efficient (issues 1 and 4), and expressive (issues 2 and 3). To this
end, we propose to reverse the key learning question, and learn estimators that measure: “given
the future outcome (reward or state), how relevant was the choice of a in x to achieve it?”, which
is essentially the credit assignment question itself. Although eligibility traces consider the same

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

Figure 1: Left. Consider the trajectory shown by solid arrows to be the sampled trajectory, τ . An RL
algorithm will typically assign credit for the reward obtained in state y to the actions along τ . This is
unsatisfying for two reasons: (1) action a was not essential in reaching state z, any other a′ would
have been just as effective; hence, overemphasizing a is a source of variance; (2) from z, action c was
sampled, leading to a multi-step trajectory into y, but action b transitions to y from z directly; so, it
should get more of the credit for y. Note that c could have been an exploratory action, but also could
have been more likely according to the policy in z, but given that y was reached, b was more likely
Right. The choice between actions a or b at state x causes a transition to either ya or yb, but they are
perceptually aliased. On the next decision, the same action c transitions the agent to different states,
depending on the true underlying y. The state y can be a single state, or could itself be a trajectory.
This scenario can happen e.g. when the features are being learned. A TD algorithm that bootstraps in
y will not be able to learn the correct values of a and b, since it will average over the rewards of za
and zb. When y is a potentially long trajectory with a noisy reward, a Monte Carlo algorithm will
incorporate the noise along y into the values of both a and b, despite it being irrelevant to the choice
between them. We would like to be able to directly determine the relevance of a to being in za.

question, they do so in a way that is (purposefully) equivalent to the forward view [19], and so they
have to rely mainly on “vanilla" features, like time, to decide credit assignment. Reasoning in the
backward view explicitly opens up a new family of algorithms. Specifically, we propose to use a form
of hindsight conditioning to determine the relevance of a past action to a particular outcome. We
show that the usual value functions can be rewritten in hindsight, yielding a new family of estimators,
and derive policy gradient algorithms that use these estimators. We demonstrate empirically the
ability of these algorithms to address the highlighted issues through a set of diagnostic tasks, which
are not handled well by other means.

2 Background and Notation

A Markov decision process (MDP) [13] is a tuple (X ,A, p, r, γ), with X being the state space, A -
the action space, p : X ×A×X → [0, 1] – the state-transition distribution (with p(y|x, a) denoting
the probability of transitioning to state y from x by choosing action a), r : X ×A → R – the reward
function, and γ ∈ [0, 1) – the scalar discount factor. A stochastic policy π maps each state to a
distribution over actions: π(a|x) denotes the probability of choosing action a in state x. Let T (x, π)
and T (x, a, π) be the distributions over trajectories τ = (Xk, Ak, Rk)k∈N+ generated by a policy π,
given X0 = x and (X0, A0) = (x, a), respectively. Let Z(τ) def

=
∑
k≥0 γ

kRk be the return obtained
along the trajectory τ . The value (or V-) function V π and the action-value (or Q-) function Qπ denote
the expected return under the policy π given X0 = x and (X0, A0) = (x, a), respectively:

V π(x)
def
= Eτ∼T (x,π)

[
Z(τ)

]
, Qπ(x, a)

def
= Eτ∼T (x,a,π)

[
Z(τ)

]
. (1)

The benefit of choosing a given action a over the usual policy π is measured by the advantage function
Aπ(x, a)

def
= Qπ(x, a)− V π(x). Policy gradient algorithms improve the policy by changing π in the

direction of the gradient of the value function [21]. This gradient at some initial state x0 is

∇V π(x0) =
∑
x,a

dπ(x|x0)Qπ(x, a)∇π(a|x) = Eτ∼T (x0,π)

[∑
a

∑
k≥0

γkAπ(Xk, a)∇π(a|Xk)
]
,

where dπ(x|x0)
def
=
∑
k γ

kPτ∼T (x0,π)(Xk = x) is the (unnormalized) discounted state-visitation
distribution. Practical algorithms such as REINFORCE [24] approximate Qπ or Aπ with an n-step
truncated return, possibly combined with a bootstrapped approximate value function V , which is also
often used as baseline (see [21, 11]) along a trajectory τ = (Xk, Ak, Rk)k ∼ T (x, a, π):

Aπ(x, a) ≈
n−1∑
k=0

γkRk + γnV (Xn)− V (x).

2

3 Conditioning on the Future

The classical value function attempts to answer the question: "how does the current action affect
future outcomes?" By relying on predictions about these future outcomes, existing approaches often
exacerbate problems around variance (issue 1) and partial observability (issue 2). Furthermore, these
methods tend to use temporal distance as a proxy for relevance (issue 3) and are unable to assign
credit counter-factually (issue 4). We propose to learn estimators that explicitly consider the credit
assignment question: "given an outcome, how relevant were past decisions?", and try to answer it
explicitly.

This approach can in fact be linked to some classical methods in statistical estimation. In particular,
Monte Carlo simulation is known to be inaccurate when there are rare events that are of interest:
the averaging requires an infeasible number of samples to obtain an accurate estimate [15]. One
solution is to change measures, that is, to use another distribution for which the events are less rare,
and correct with importance sampling. The Girsanov theorem is a well-known example of this in
processes with Brownian dynamics [3], known to produce lower variance estimates.

This scenario of rare random events is particularly relevant to efficient credit assignment in RL.
When a new significant outcome is experienced, the agent ought to quickly update its estimates
and policy accordingly. Let τ ∼ T (x, π) be a sampled trajectory, and F some function of it. By
changing measures from the policy π with which it was sampled to a future-conditional, or hindsight
distribution h(·|x, π, F (τ)), we hope to improve the efficiency of credit assignment. The importance
sampling ratio h(a|x,π,F (τ))

π(a|x) then precisely denotes the relevance of an action a to the specific future
F (τ). If the distribution h(a|x, π, F (τ)) is accurate, this allows us to quickly assign credit to all
actions relevant to achieving F (τ). In this work, we consider F to be a future state, or a future return.
To highlight the use of the future-conditional distribution, we refer to the resulting family of methods
as Hindsight Credit Assignment (HCA).

The remainder of this section formalizes the insight outlined above, and derives the usual value
functions in terms of the hindsight distributions, while the subsequent section presents novel policy
gradient algorithms based on these estimators.

3.1 Conditioning on Future States

The agent composes its estimates of the return from an action a by summing over the rewards obtained
from future states Xk. One option of hindsight conditioning is to consider, at each step, the likelihood
of an action a given that the future state Xk was reached.
Definition 1 (State-conditional hindsight distributions). For any action a and any state y, define
hk(a|x, π, y) to be the conditional probability over trajectories τ ∼ T (x, π) of the first action A0 of
trajectory τ being equal to a, given that the state y has occurred at step k along trajectory τ :

hk(a|x, π, y)
def
= Pτ∼T (x,π)(A0 = a|Xk = y). (2)

Intuitively, hk(a|x, π, y) quantifies the relevance of action a to the future state Xk. If a is not relevant
to reachingXk, this probability is simply the policy π(a|x) (there is no relevant information inXk). If
a is instrumental to reaching Xk, hk(a|x, π, y) > π(a|x), and vice versa, if a detracts from reaching
Xk, hk(a|x, π, y) < π(a|x). In general, hk is a lower-entropy distribution than π. The relationship
of hk to more familiar quantities can be understood through the following identity obtained by an
application of Bayes’ rule:

hk(a|x, π, y)
π(a|x)

=
P(Xk = y|X0 = x,A0 = a, π)

P(Xk = y|X0 = x, π)
=

Pτ∼T (x,a,π)(Xk = y)

Pτ∼T (x,π)(Xk = y)
.

Using this identity and importance sampling, we can rewrite the usual Q-function in terms of hk.
Since throughout there is only one policy π involved, we will drop the explicit conditioning, but it is
implied.
Theorem 1. Consider an action a and a state x for which π(a|x) > 0 . Then the following holds

Qπ(x, a) = r(x, a) + Eτ∼T (x,π)

[∑
k≥1

γk
hk(a|x,Xk)

π(a|x)
Rk

]
.

3

So, each of the rewardsRk along the way is weighted by the ratio hk(a|x,Xk)
π(a|x) , which exactly quantifies

how relevant a was in achieving the corresponding state Xk. Following the discussion above, this
ratio is 1 if a is irrelevant, and larger or smaller than 1 in the other cases. The expression for the
Q-function is similar to that in Eq. (1), but the new expectation is no longer conditioned on the
initial action a – the policy π is followed from the start (A0 ∼ π(·|x) instead of A0 = a). This is an
important point, as it will allow us to use returns generated by any action A0 to update the values
of all actions, to the extent that they are relevant according to hk(a|x,Xk)

π(a|x) . Theorem 1 implies the
following expression for the advantage:

Aπ(x, a) = r(x, a)− rπ(x) + Eτ∼T (x,π)

[∑
k≥1

(hk(a|x,Xk)

π(a|x)
− 1
)
γkRk

]
, (3)

where rπ(x) =
∑
a∈A π(a|x)r(x, a). This form of the advantage is particularly appealing, since it

directly removes irrelevant rewards from consideration. Indeed, whenever hk(a|x,Xk)π(a|x) = 1, the reward
Rk does not participate in the advantage for the value of action a. When there is inconsequential
noise that is outside of the agent’s control, this may greatly reduce the variance of the estimates.

Removing time dependence. For clarity of exposition, here we have considered the hindsight
distribution to be additionally conditioned on time. Indeed, hk depends not only on reaching the
state, but also on the number of timesteps k that it takes to do so. In general, this can be limiting,
as it introduces a stronger dependence on the particular trajectory, and a harder estimation problem
of the hindsight distribution. It turns out we can generalize all of the results presented here to a
time-independent distribution hβ(a|x, y), which gives the probability of a conditioned on reaching y
at some point in the future. The scalar β ∈ [0, 1) is the "probability of survival" at each step. This can
either be the discount γ, or a termination probability if the problem is undiscounted. In the discounted
reward case Eq. (3) can be re-expressed in terms of hβ as follows:

Aπ(x, a) = r(x, a)− rπ(x) + Eτ∼T (x,π)

[∑
k≥1

(hβ(a|x,Xk)

π(a|x)
− 1
)
γkRk

]
, (4)

with the choice of β = γ. The interested reader may find the relevant proofs in the appendix.

Finally, it is possible to obtain a hindsight V-function, analogously to the Q-function from Theorem 1.
The next section does this for return-conditional HCA. We include other variations in appendix.

3.2 Conditioning on Future Returns

The previous section derived Q-functions that explicitly reweigh the rewards at each step, based on
the corresponding states’ connection to the action whose value we wish to estimate. Since ultimately
we are interested in the return, we could alternatively use it for future conditioning itself.

Definition 2 (Return-conditional hindsight distributions). For any action a and any possible return
z, define hz(a|x, π, z) to be the conditional probability over trajectories τ ∼ T (x, π) of the first
action A0 being a, given that z has been observed along τ :

hz(a|x, π, z)
def
= Pτ∼T (x,π)

(
A0 = a|Z(τ) = z

)
.

The distribution hz(a|x, π, z) is intuitively similar to hk, but instead of future states, it directly
quantifies the relevance of a to obtaining the entire return z. This is appealing, since in the end
we care about returns. Further, this could be simpler to learn, since instead of the possibly high-
dimensional state, we now need to worry only about a scalar outcome. On the other hand, it is no
longer "jumpy" in time, so may benefit less from structure in the dynamics. As with hk, we will drop
the explicit conditioning on π, but it is implied. We have the following result.

Theorem 2. Consider an action a, and assume that for any possible random return z = Z(τ) for
some trajectory τ ∼ T (x, π) we have hz(a|x, z) > 0. Then we have:

V π(x) = Eτ∼T (x,a,π)

[
Z(τ)

π(a|x)
hz(a|x, Z(τ))

]
. (5)

4

The V- (rather than Q-) function form here has interesting properties that we will discuss in the
next section. Mathematically, the two forms are analogous to derive, but the ratio is now flipped.
Equations (5) and (1) imply the following expression for the advantage:

Aπ(x, a) = Eτ∼T (x,a,π)

[(
1− π(a|x)

hz(a|x, Z(τ))

)
Z(τ)

]
. (6)

The factor c(a|x, Z) = 1− π(a|x)
hz(a|x,Z) expresses how much a single action a contributed to obtaining

a return Z. If other actions (drawn from π(·|x)) would have yielded the same return, c(a|x, Z) = 0,
and the advantage is 0. If an action a has made achieving Z more likely, then c(a|x, Z) > 0, and
conversly, if other actions would have contributed to achieving Z more than a, then c(a|x, Z) < 0.
Hence, c(a|x, Z) expresses the impact an action has on the environment, in terms of the return, if
everything else (future decisions as well as randomness of the environment) is unchanged.

Both hβ and hz can be learned online from sampled trajectories (see Sec. 4 for algorithms, and a
discussion in Sec. 4.1). Finally, while we chose to focus on state and return conditioning, one could
consider other options. For example, conditioning on the reward (instead of the state) at a future time
k, or an embedding of (or part of) the future trajectory, could have interesting properties.

3.3 Policy Gradients

We now give a policy gradient theorem based on the new expressions of the value function.
Theorem 3. Let πθ be the policy parameterized by θ, and β = γ. Then, the gradient of the value at
some state x0 is:

∇θV πθ (x0) = Eτ∼T (x0,πθ)

[∑
k≥0

γk
∑
a

∇πθ(a|Xk)Q
x(Xk, a)

]
(7)

= Eτ∼T (x0,πθ)

[∑
k≥0

γk∇ log πθ(Ak|Xk)A
z(Xk, Ak)

]
, (8)

Qx(Xk, a)
def
= r(Xk, a) +

∑
t≥k+1

γt−k
hβ(a|Xk, Xt)

πθ(a|Xk)
Rt,

Az(x, a)
def
=
(
1− πθ(a|x)

hz(a|x, Z(τk:∞))

)
Z(τk:∞).

Note that the expression for state HCA in Eq. (7) is written for all actions, rather than only the
sampled one. Interestingly, this form does not require (or benefit from) a baseline. Contrary to
the usual all-actions algorithm which uses the critic, the HCA reweighting allows us to use returns
sampled from a particular starting action to obtain value estimates for all actions.

4 Algorithms

Using the new policy gradient theorem, we will now give novel algorithms based on sampling the
expectations (7) and (8). Then, we will discuss the training of the relevant hindsight distributions.

State-Conditional HCA Consider a parametric representation of the policy π(·|x) and the future-
state-conditional distribution hβ(a|x, y), as well as the baseline V and an estimate of the immediate
reward r̂. Generate T -step trajectories τT = (Xs, As, Rs)0≤s≤T . We can compose an estimate of
the return for all actions a (see Theorem 7 in appendix):

Qx(Xs, a) ≈ r̂(Xs, a) +

T−1∑
t=s+1

γt−s
hβ(a|Xs, Xt)

π(a|Xs)
Rt + γT−s

hβ(a|Xs, XT)

π(a|Xs)
V (XT).

The algorithm proceeds by training V (Xs) to predict the usual return Zs =
∑T−1
t=s γ

t−sRt +
γT−sV (XT) and r̂(Xs, As) to predict Rs (square loss), the hindsight distribution hβ(a|Xs, Xt) to
predict As (cross entropy loss), and finally by updating the policy logits with

∑
aQ

x(Xs, a)∇π(a |
Xs). See Algorithm 1 in appendix for the detailed pseudocode.

5

Return-Conditional HCA Consider a parametric representation of the policy π(·|x) and the return-
conditioned distribution hz(a|x, z). Generate full trajectories τ = (Xs, As, Rs)s∈N+ and compute
the sampled advantage at each step:

Az(Xs, As) =
(
1− π(As|Xs)

hz(As|Xs, Zs)

)
Zs,

where Zs =
∑
t≥s γ

t−sRt. The algorithm proceeds by training the hindsight distribution
hz(a|Xs, Zs) to predict As (cross entropy loss), and updating the policy gradient with∇ log π(As |
Xs)A

z(Xs, As). See Algorithm 2 in appendix for the detailed pseudocode.

RL without value functions. The return-conditional version lends itself to a particularly simple
algoriTheorem In particular, we no longer need to learn the value function V – if hz(a|Xs, Zs) is
estimated well, using complete rollouts is feasible without variance issues. This takes our idea of
reversing the direction of the learning question to the extreme, it is now entirely in hindsight.

The result is an actor-critic algorithm, where the usual baseline V (Xs) is replaced by bs
def
=

π(As|Xs)
hz(As|Xs,Zs)Zs. This baseline is strongly correlated to the return Zs (it is proportional to it), which is
desirable since we would like to remove as much of the variance (due to the dynamics of the world, or
the agent’s own policy) as possible. The following proposition verifies that despite being correlated,
this baseline does not introduce bias into the policy gradient.

Proposition 1. The baseline bs =
π(As|Xs)

hz(As|Xs,Zs)Zs does not introduce any bias in the policy gradient:

Eτ∼T (x0,π)

[∑
s

γs∇ log π(As|Xs)
(
Zs(τ)− bs

)]
= ∇V (x0).

4.1 Learning Hindsight Distributions

We have given equivalent rewritings of the usual value functions in terms of the proposed hindsight
distributions, and have motivated their properties, when they are accurate. Now, the question is if
it is feasible to learn good estimates of those distributions from experience, and whether shifting
the learning problem in this way is beneficial. The remainder of this section discusses this question,
while the next one provides empirical evidence for the affirmative.

There are several conventional objects that could be learned to help with credit assignment: a value
function, a forward model, or an inverse model over states. An accurate forward model allows one
to compute value functions directly with no variance, and an accurate inverse model – to perform
precise credit assignment. However, learning such generative models accurately is difficult and has
been a long-standing challenge in RL, especially in high-dimensional state spaces. Interestingly, the
hindsight distribution is a discriminative, rather than generative model, and is hence not required to
model the full distribution over states. Additionally, the action space is usually much smaller than the
state space, and so shifting the focus to actions potentially makes the problem much easier. When
certain structure in the dynamics is present, learning hindsight distributions may be significantly
easier still – e.g. if the transition model is stochastic or the policy is changing, a particular (x, a)
can lead to many possible future states, but a particular future state can be explained by a small
number of past actions. In general, learning hz and hβ are supervised learning problems, so the new
algorithms delegate some of the learning difficulty in RL to a supervised setting, for which many
efficient approaches exist (e.g. [6, 22]).

5 Experiments

To empirically validate our proposal in a controlled way, we devised a set of diagnostic tasks that
highlight issues 1-4, while also being representative of what occurs in practice (Fig. 2). We then
systematically verify the intuitions developed throughout the paper. In all cases, we learn the hindsight
distributions in tandem with the control policy. For each problem we compare HCA with state and
return conditioning to standard baseline policy gradient, that is: n-step advantage actor critic (with
n = ∞ for Monte Carlo). All the results are an average of 100 independent runs, with the plots
depicting means and standard deviations. For simplicity we take γ = 1 in all of the tasks.

6

Figure 2: Left: Shortcut. Each state has two actions, one transitions directly to the goal, the other
to the next state of the chain. Center: Delayed effect. Start state presents a choice of two actions,
followed by an aliased chain, with the consequence of the initial choice apparent only in the final
state. Right: Ambiguous bandit. Each action transitions to a particular state with high probability,
but to the other action’s state with low probability. When the two states have noisy rewards, credit
assignment to each action becomes challenging.

Figure 3: Shortcut. Left: learning curves for n = 5 with the policy between long and short paths
initialized uniformly. Explicitly considering the likelihood of reaching the final state allows state-
conditioned HCA to more quickly adjust its policy. Right: the advantage of the shortcut action
estimated by performing 1000 rollouts from a fixed policy. The x-axis depicts the policy probabilities
of the actions on the long path. The oracle is computed analytically without sampling. When the
shortcut action is unlikely and rarely encountered, it is difficult to obtain an accurate estimate of the
advantage. HCA is consistently able to maintain larger (and more accurate) advantages.

Figure 4: Delayed effect. Left: Bootstrapping. The learning curves for n = 5, σ = 0, and a 3-step
return, which causes the agent to bootstrap in the partially observed region. As expected, naive
bootstrapping is unable to learn a good estimate. Middle: Using full Monte Carlo returns (for n = 3)
overcomes partial observability, but is prone to noise. The plot depicts learning curves for the setting
with added white noise of σ = 2. Right. The average performance w.r.t. different noise levels –
predictably, state HCA is the most robust.

0 20 40 60 80 100

Episodes

1.4

1.5

1.6

1.7

1.8

1.9

2.0

V
a
lu

e

0 20 40 60 80 100

Episodes

1.4

1.5

1.6

1.7

1.8

1.9

2.0

V
a
lu

e

0.0 0.1 0.2 0.3 0.4

Epsilon

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

A
v
e
ra

g
e
 V

a
lu

e

HCA | State

HCA | Return

Policy Gradient

Optimal Value

Figure 5: Ambiguous bandit with Gaussian rewards of means 1, 2, and standard deviation 1.5. Left:
The state identity is observed. Both HCA methods improve on PG. Middle: The state identity is
hidden, handicapping state HCA, but return HCA continues to improve on PG. Right: Average
performance w.r.t. different ε-s with Gaussian rewards of means 1, 2, and standard deviation 0.5.
Note that the optimal value itself decays in this case.

7

Shortcut. We begin with an example capturing the intuition from Fig. 1 (left). Fig. 2 (left) depicts
a chain of length n with a rewarding final state. At each step, one action takes a shortcut and directly
transitions to the final state, while the other continues on the longer path, which may be more likely
according to the policy. There is a per-step penalty (of −1), and a final reward of 1. There is also a
chance (of 0.1) that the agent transitions to the absorbing state directly.

This problem highlights two issues: (1) the importance of counter-factual credit assignment (issue 4);
when the long path is taken more frequently than the shortcut path, counter-factual updates become
increasingly effective (see Fig. 3, right) (2) the use of time as a proxy for relevance (issue 3) is shown
to be only a heuristic, even in a fully-observable MDP. The relevance for the states along the chain is
not accurately reflected in the long temporal distance between them and the goal state. In Fig. 3 we
show that HCA is more effective at quickly adjusting the policy towards the shortcut action.

Delayed Effect. The next task instantiates the example from Fig. 1 (right). Fig. 2 (middle) depicts
a POMDP, in which after the first decision, there is aliasing until the final state. This is a common
case of partial observability, and is especially pertinent if the features are being learned. We show
that (1) Bootstrapping naively is inadequate in this case (issue 2), but HCA is able to carry the
appropriate information;1 and (2) While Monte Carlo is able to overcome the partial observability, its
performance deteriorates when intermediate reward noise is present (issue 1). HCA on the other hand
is able to reduce the variance due to the irrelevant noise in the rewards.

Additionally, in this example the first decision is the most relevant choice, despite being the most
temporally remote, once again highlighting that using temporal proximity for credit assignment is
a heuristic (issue 3). One of the final states is rewarding (with r = 1), the other penalizing (with
r = −1), and the middle states contain white noise of standard deviation σ. Fig. 4 depicts our results.
In this task, the return-conditional HCA has a more difficult learning problem, as it needs to correctly
model the noise distribution to condition on, which is as difficult as learning the values naively, and
hence performs similarly to the baseline.

Ambiguous Bandit. Finally, to emphasize that credit assignment can be challenging, even when it
is not long-term, we consider a problem without a temporal component. Fig. 2 (right) depicts a bandit
with two actions, leading to two different states, whose reward functions are similar (here: drawn
from overlapping Gaussian distributions), with some probability ε of crossover. The challenge here is
due to variance (issue 1) and a lack of counter-factual updates (issue 4). It is difficult to tell whether
an action was genuinely better, or just happened to be on the tail end of the distribution. This is a
common scenario when bootstrapping with similar values. Due to the explicit aim at modeling the
distributions, the hindsight algorithms are more efficient (Fig. 5 (left)).

To highlight the differences between the two types of hindsight conditioning, we introduce partial
observability (issue 2), see Fig. 5 (right). The return-conditional policy is still able to improve over
policy gradient, but state-conditioning now fails to provide informative conditioning (by construction).

6 Related Work

Hindsight experience replay (HER) [1] introduces the idea of off-policy learning about many goals
from the same trajectory. The intuition is that regardless of what goal the trajectory was pursuing
originally, in hindsight it, e.g., successfully found the one corresponding to its final state, and there is
something to be learned. Rauber et al. [14] extend the same intuition to policy gradient algorithms,
with goal-conditioned policies. Goyal et al. [4] also use goal conditioning and learn a backtracking
model, which predicts the state-action pairs occurring on trajectories that end up in goal states. These
works share our intuition of in hindsight using the same data to learn about many things, but in the
context of goal-conditioned policies, while we essentially contrast conditional and unconditional
policies, where the conditioning is on the extra outcome (state or return). Note that we never act w.r.t.
the conditional policy, and it is used solely for credit assignment. Prioritized sweeping can be viewed
as changing the sampling distribution with hindsight knowledge of the TD errors [12].

Another line of work that aims to propagate credit efficiently backward in time is the temporal value
transport algorithm [10], in which an attention mechanism over memory is used to jump over parts of
a trajectory that are irrelevant for the rewards obtained. While demonstrated on challenging problems,

1See the discussion in Appendix F

8

that method is biased; a promising direction for future research would be to apply our unbiased
hindsight mechanism with past states chosen by such an attention mechanism.

A large number of variance reduction techniques have been applied in RL, e.g. using learned
value functions as critics, and other control variates [e.g. 23]. When a model of the environment is
available, it can be used to reduce variance. Rollouts from the same state fill the same role in policy
gradients [17]. Differentiable system dynamics allow low-variance estimates of the Q-value gradient
by using the pathwise derivative estimator, effectively backpropagating the gradient of the objective
along trajectories [e.g. 16, 8, 9]. In stochastic systems this requires knowledge of the environment
noise. To bypass this, Heess et al. [8] infer the noise given an observed trajectory. Buesing et al. [2]
apply this idea to POMDPs, where it can be viewed as reasoning about events in hindsight. They use
a structural causal model of the dynamics and infer the posterior over latent causes from empirical
trajectories. Using an empirical rather than a learned distribution over latent causes can reduce bias
and, together with the (deterministic) model of the system dynamics, allows exploring the effect of
alternative action choices for an observed trajectory.

Inverse models similar to the ones we use appear, for instance, in variational intrinsic control [5] (see
also e.g. [7]). However, in our work, the inverse model serves as a way of determining the influence
of an action on a future outcome, whereas the work in [5, 7] aims to use the inverse model to derive
an intrinsic reward for training policies in which actions influence the future observations.

7 Closing

We proposed a new family of algorithms that explicitly consider the question of credit assignment
as a part of, or instead of, estimating the traditional value function. The proposed estimators come
with new properties, and as we validate empirically, are able to address some of the key issues in
credit assignment. Investigating the scalability of these algorithms in the deep reinforcement learning
setting is an exciting problem for future research.

Acknowledgements

The authors thank Joseph Modayil for reviews of earlier manuscripts, Theo Weber for several
insightful suggestions, and the anonymous reviewers for their useful feedback.

References
[1] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong, Peter Welinder,

Bob McGrew, Josh Tobin, Pieter Abbeel, and Wojciech Zaremba. Hindsight experience replay.
In Advances in Neural Information Processing Systems, pages 5048–5058, 2017.

[2] Lars Buesing, Theophane Weber, Yori Zwols, Sébastien Racanière, Arthur Guez, Jean-Baptiste
Lespiau, and Nicolas Heess. Woulda, coulda, shoulda: Counterfactually-guided policy search.
CoRR, abs/1811.06272, 2018.

[3] Igor Vladimirovich Girsanov. On transforming a certain class of stochastic processes by
absolutely continuous substitution of measures. Theory of Probability & Its Applications,
5(3):285–301, 1960.

[4] Anirudh Goyal, Philemon Brakel, William Fedus, Soumye Singhal, Timothy Lillicrap, Sergey
Levine, Hugo Larochelle, and Yoshua Bengio. Recall traces: Backtracking models for efficient
reinforcement learning. In International Conference on Learning Representations(ICLR), 2019.

[5] Karol Gregor, Danilo Jimenez Rezende, and Daan Wierstra. Variational intrinsic control. arXiv
preprint arXiv:1611.07507, 2016.

[6] Michael Gutmann and Aapo Hyvärinen. Noise-contrastive estimation: A new estimation
principle for unnormalized statistical models. In Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, pages 297–304, 2010.

[7] Karol Hausman, Jost Tobias Springenberg, Ziyu Wang, Nicolas Heess, and Martin Riedmiller.
Learning an embedding space for transferable robot skills. In International Conference on
Learning Representations (ICLR), 2018.

9

[8] Nicolas Heess, Gregory Wayne, David Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa.
Learning continuous control policies by stochastic value gradients. In C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems 28, pages 2944–2952. Curran Associates, Inc., 2015.

[9] Mikael Henaff, William F Whitney, and Yann LeCun. Model-based planning with discrete and
continuous actions. arXiv preprint arXiv:1705.07177, 2017.

[10] Chia-Chun Hung, Timothy Lillicrap, Josh Abramson, Yan Wu, Mehdi Mirza, Federico
Carnevale, Arun Ahuja, and Greg Wayne. Optimizing agent behavior over long time scales by
transporting value. arXiv preprint arXiv:1810.06721, 2018.

[11] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lillicrap,
Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep reinforce-
ment learning. In Maria Florina Balcan and Kilian Q. Weinberger, editors, Proceedings of The
33rd International Conference on Machine Learning, volume 48 of Proceedings of Machine
Learning Research, pages 1928–1937, New York, New York, USA, 20–22 Jun 2016. PMLR.

[12] Andrew W Moore and Christopher G Atkeson. Prioritized sweeping: Reinforcement learning
with less data and less time. Machine learning, 13(1):103–130, 1993.

[13] Martin Puterman. Markov decision processes: discrete stochastic dynamic programming. John
Wiley & Sons, 1994.

[14] Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, and Jürgen Schmidhuber. Hindsight policy
gradients. In International Conference on Learning Representations (ICLR), 2019.

[15] Gerardo Rubino, Bruno Tuffin, et al. Rare event simulation using Monte Carlo methods,
volume 73. Wiley Online Library, 2009.

[16] John Schulman, Nicolas Heess, Theophane Weber, and Pieter Abbeel. Gradient estimation
using stochastic computation graphs. CoRR, abs/1506.05254, 2015.

[17] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pages 1889–1897,
2015.

[18] Satinder Singh, Tommi Jaakkola, and Michael I. Jordan. Learning without state estimation in
partially observable environments. In International Conference on Machine Learning (ICML),
1994.

[19] Richard S Sutton. Learning to predict by the methods of temporal differences. Machine learning,
3(1):9–44, 1988.

[20] Richard S Sutton and Andrew G Barto. Reinforcement Learning: An Introduction. MIT Press,
Cambridge, MA, USA, 2nd edition, 2018.

[21] Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient
methods for reinforcement learning with function approximation. In Advances in neural
information processing systems, pages 1057–1063, 2000.

[22] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive
predictive coding. arXiv preprint arXiv:1807.03748, 2018.

[23] Théophane Weber, Nicolas Heess, Lars Buesing, and David Silver. Credit assignment techniques
in stochastic computation graphs. CoRR, abs/1901.01761, 2019.

[24] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256, 1992.

10

