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ABSTRACT

Generative models that can model and predict sequences of future events can,
in principle, learn to capture complex real-world phenomena, such as physical
interactions. However, a central challenge in video prediction is that the future
is highly uncertain: a sequence of past observations of events can imply many
possible futures. Although a number of recent works have studied probabilistic
models that can represent uncertain futures, such models are either extremely
expensive computationally as in the case of pixel-level autoregressive models, or
do not directly optimize the likelihood of the data. To our knowledge, our work is
the first to propose multi-frame video prediction with normalizing flows, which
allows for direct optimization of the data likelihood, and produces high-quality
stochastic predictions. We describe an approach for modeling the latent space
dynamics, and demonstrate that flow-based generative models offer a viable and
competitive approach to generative modeling of video.

1 INTRODUCTION

Exponential progress in the capabilities of computational hardware, paired with a relentless effort
towards greater insights and better methods, has pushed the field of machine learning from relative
obscurity into the mainstream. Progress in the field has translated to improvements in various
capabilities, such as classification of images (Krizhevsky et al., 2012), machine translation (Vaswani
et al., 2017) and super-human game-playing agents (Mnih et al., 2013; Silver et al., 2017), among
others. However, the application of machine learning technology has been largely constrained
to situations where large amounts of supervision is available, such as in image classification or
machine translation, or where highly accurate simulations of the environment are available to the
learning agent, such as in game-playing agents. An appealing alternative to supervised learning
is to utilize large unlabeled datasets, combined with predictive generative models. In order for a
complex generative model to be able to effectively predict future events, it must build up an internal
representation of the world. For example, a predictive generative model that can predict future frames
in a video would need to model complex real-world phenomena, such as physical interactions. This
provides an appealing mechanism for building models that have a rich understanding of the physical
world, without any labeled examples. Videos of real-world interactions are plentiful and readily
available, and a large generative model can be trained on large unlabeled datasets containing many
video sequences, thereby learning about a wide range of real-world phenoma. Such a model could be
useful for learning representations for further downstream tasks (Mathieu et al., 2016), or could even
be used directly in applications where predicting the future enables effective decision making and
control, such as robotics (Finn et al., 2016). A central challenge in video prediction is that the future
is highly uncertain: a short sequence of observations of the present can imply many possible futures.
Although a number of recent works have studied probabilistic models that can represent uncertain
futures, such models are either extremely expensive computationally (as in the case of pixel-level
autoregressive models), or do not directly optimize the likelihood of the data.

In this paper, we study the problem of stochastic prediction, focusing specifically on the case of
conditional video prediction: synthesizing raw RGB video frames conditioned on a short context
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of past observations (Ranzato et al., 2014; Srivastava et al., 2015; Vondrick et al., 2015; Xingjian
et al., 2015; Boots et al., 2014). Speci cally, we propose a new class of video prediction models
that can provide exact likelihoods, generate diverse stochastic futures, and accurately synthesize
realistic and high-quality video frames. The main idea behind our approach is to extend ow-based
generative models (Dinh et al., 2014; 2016) into the setting of conditional video prediction. To our
knowledge, ow-based models have been applied only to generation of non-temporal data, such as
images (Kingma & Dhariwal, 2018), and to audio sequences (Prenger et al., 2018). Conditional
generation of videos presents its own unigue challenges: the high dimensionality of video sequences
makes them dif cult to model as individual datapoints. Instead, we learn a latent dynamical system
model that predicts future values of the ow model's latent state. This induces Markovian dynamics
on the latent state of the system, replacing the standard unconditional prior distribution. We further
describe a practically applicable architecture for ow-based video prediction models, inspired by the
Glow model for image generation (Kingma & Dhariwal, 2018), which we call VideoFlow.

Our empirical results show that VideoFlow achieves results that are competitive with the state-of-
the-art in stochastic video prediction on the action-free BAIR dataset, with quantitative results that
rival the best VAE-based models. VideoFlow also produces excellent qualitative results, and avoids
many of the common artifacts of models that use pixel-level mean-squared-error for training (e.g.,
blurry predictions), without the challenges associated with training adversarial models. Compared
to models based on pixel-level autoregressive prediction, VideoFlow achieves substantially faster
test-time image synthests making it much more practical for applications that require real-time
prediction, such as robotic control (Finn & Levine, 2017). Finally, since VideoFlow directly optimizes
the likelihood of training videos, without relying on a variational lower bound, we can evaluate its
performance directly in terms of likelihood values.

2 RELATED WORK

Early work on prediction of future video frames focused on deterministic predictive models (Ranzato
et al., 2014; Srivastava et al., 2015; Vondrick et al., 2015; Xingjian et al., 2015; Boots et al., 2014).
Much of this research on deterministic models focused on architectural changes, such as predicting
high-level structure (Villegas et al., 2017b), energy-based models (Xie et al., 2017), generative cooper-
ative nets (Xie et al., 2020), ABPTT (Xie et al., 2019), incorporating pixel transformations (Finn et al.,
2016; De Brabandere et al., 2016; Liu et al., 2017) and predictive coding architectures (Lotter et al.,
2017), as well as different generation objectives (Mathieu et al., 2016; Vondrick & Torralba, 2017;
Walker et al., 2015) and disentangling representations (Villegas et al., 2017a; Denton & Birodkar,
2017). With models that can successfully model many deterministic environments, the next key
challenge is to address stochastic environments by building models that can effectively reason over
uncertain futures. Real-world videos are always somewhat stochastic, either due to events that are
inherently random, or events that are caused by unobserved or partially observable factors, such as
off-screen events, humans and animals with unknown intentions, and objects with unknown physical
properties. In such cases, since deterministic models can only generate one future, these models
either disregard potential futures or produce blurry predictions that are the superposition or averages
of possible futures.

A variety of methods have sought to overcome this challenge by incorporating stochasticity, via three
types of approaches: models based on variational auto-encoders (VAES) (Kingma & Welling, 2013;
Rezende et al., 2014), generative adversarial networks (Goodfellow et al., 2014), and autoregressive
models (Hochreiter & Schmidhuber, 1997; Graves, 2013; van den Oord et al., 2016b;c; Van Den Oord
et al., 2016).

Among these models, techniques based on variational autoencoders which optimize an evidence
lower bound on the log-likelihood have been explored most widely (Babaeizadeh et al., 2017; Denton
& Fergus, 2018; Lee et al., 2018; Xue et al., 2016; Li et al., 2018). To our knowledge, the only
prior class of video prediction models that directly maximize the log-likelihood of the data are auto-
regressive models (Hochreiter & Schmidhuber, 1997; Graves, 2013; van den Oord et al., 2016b;c;
Van Den Oord et al., 2016), that generate the video one pixel at a time (Kalchbrenner et al., 2017).
However, synthesis with such models is typically inherently sequential, making synthesis substantially

We generate 64x64 videos of 20 frames in less than 3.5 seconds on a NVIDIA P100 GPU as compared to
the fastest autoregressive model for video (Reed et al., 2017) that generates a frame every 3 seconds



Published as a conference paper at ICLR 2020

Figure 1: Left: Multi-scale prior The ow model uses a multi-scale architecture using several levels of
stochastic variableRRight: Autoregressive latent-dynamic prior The input at each timesteq is encoded
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inef cient on modern parallel hardware. Prior work has aimed to speed up training and synthesis with
such auto-regressive models (Reed et al., 2017; Ramachandran et al., 2017). However, (Babaeizadeh
et al., 2017) show that the predictions from these models are sharp but noisy and that the proposed
VAE model produces substantially better predictions, especially for longer horizons. In contrast to
autoregressive models, we nd that our proposed method exhibits faster sampling, while still directly
optimizing the log-likelihood and producing high-quality long-term predictions.

3 PRELIMINARIES: FLOW-BASED GENERATIVE MODELS

Flow-based generative mod€Binh et al., 2014; 2016) have a unique set of advantages: exact latent-
variable inference, exact log-likelihood evaluation, and parallel samplingwbased generative
models(Dinh et al., 2014; 2016), we infer the latent variableorresponding to a datapoixf by
transformingx through a composition of invertible functiofis= f; f, fk . We assume

a tractable priop (z) over latent variable, for eg. a Logistic or a Gaussian distribution. By
constraining the transformations to be invertible, we can compute the log-likelihooéxadctly
using thechange of variablesule. Formally,

X
logp (x) =log p (2)+ logj det(dh;=dh; 1)j 1)
i=1

wherehg = x, hj = fj(h; 1), hx = zandjdet(dh;=dh; 1j isthe Jacobian determinant whien ;
is transformed td; by f;. We learn the parametersfaf::: fx by maximizing the log-likelihood,
i.e Equation(1), over a training set. Giveg = f 1, we can now generate a samglérom the data
distribution, by sampling p (z) and computing® = g(z).

4 PrROPOSEDARCHITECTURE

We propose a generative ow for video, using the standard multi-scale ow architecture in (Dinh
et al., 2016; Kingma & Dhariwal, 2018) as a building block. In our model, we break up the latent
spacez into separate latent variables per timestep: f z,g\-; . The latent variable; at timestep

t is an invertible transformation of a corresponding frame of vidgo= g (z;). Furthermore,

like in (Dinh et al., 2016; Kingma & Dhariwal, 2018), we use a multi-scale architecturg f@ )

(Fig. 1): the latent variable, is composed of a stack of multiple levels: where each leealcodes

information about frama; at a particular scalez; = sz')glel , one componerﬁﬁ') per level.
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4.1 INVERTIBLE MULTI-SCALE ARCHITECTURE

We rst brie y describe the invertible transformations used in the multi-scale architecture to infer
1‘z§')g|L=1 = f (x¢) and refer to (Dinh et al., 2016; Kingma & Dhariwal, 2018) for more details. For
convenience, we omit the subscriph this subsection. We choose invertible transformations whose
Jacobian determinant in Equation 1 is simple to compute, that is a triangular matrix, diagonal matrix
or a permutation matrix as explored in prior work (Rezende & Mohamed, 2015; Deco & Brauer,
1995). For permutation matrices, the Jacobian determinant is one and for triangular and diagonal
Jacobian matrices, the determinant is simply the product of diagonal terms.

Actnorm: We apply a learnable per-channel scale and shift with data-dependent initialization.

Coupling: We split the inpuy equally across channels to obtginandy,. We compute
z, = f(y1) y2+ 9(y1) wheref andg are deep networks. We congatandz, across
channels.

SoftPermute: We apply a 1x1 convolution that preserves the number of channels.

Squeeze: We reshape the input freim W CtoH=2 W=2 4C which allows the
ow to operate on a larger receptive eld.

We infer the latent variable(") at levell using:

Flow(y) = Coupling SoftPermutéActnorm(y)))) N (2)
Flow(y) = Split(Flow(Squeez€y))) 3)
(h®;2')  Flow(h®' ) (4)

whereN is the number of steps of ow. In EquatidB), via Split, we split the output of Flow equally
across channels into™' ), the input to Floy1)(.) andz("), the latent variable at levél We, thus

enable the ows at higher levels to operate on a lower number of dimensions and larger scales. When
| =1,h®" D s just the input frame and forl = L we omit the Split operation. Finally, our
multi-scale architecturg (x;) is a composition of the ows at multiple levels frolm= 1 ::: L from

which we obtain our latent variables i‘.eﬁ')glel .

4.2 AUTOREGRESSIVE LATENT DYNAMICS MODEL

We use the multi-scale architecture described above to infer the set of corresponding latent variables
for each individual frame of the videcl')zg')g}-:1 = f (X¢); see Figure 1 for an illustration. As in
Equation(1), we need to choose a form of latent proi(z). We use the following autoregressive

factorization for the latent prior:

Y
p(2)= P (2tjz<t ) )

t=1

wherez.; denotes the latent variables of frames prior tottile timestepf z;; :::; z; 19. We specify
the conditional priop (z:jz« ) as having the following factorization:

Y_
. D). (3l
p (ziza)=  p (2i2:2™) (6)
I=1
Wherezi't) is the set of latent variables at previous timesteps and at the samé etk z§>' )is
the set of latent variables at the same timestep and at higher levels. See Figure 1 for a graphical
illustration of the dependencies.

We let eaclp (zﬁ"jzgt) ; zf>' )) be a conditionally factorized Gaussian density:
p @iz 27" )= NE; ) (7)
where( ;log )= NN (z9:z%") (8)
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Model Fooling rate

SAVP-VAE 16.4 %
VideoFlow 31.8%
SV2P 17.5%
Table 1: We compare the realism of the generated trajec-
tories using a real-vs-fake 2AFC Amazon Mechanical
Turk with SAVP-VAE and SV2P. Figure 2: We condition the VideoFlow model with
the frame att = 1 and display generated trajectories
att =2 andt = 3 for three different shapes.

whereNN (:) is a deep 3-D residual network (He et al., 2015) augmented with dilations and gated
activation units and modi ed to predict the mean and log-scale. We describe the architecture and our
ablations of the architecture in Section D and E of the appendix.

In summary, the Iog-lilfglhood objective of Equatif) has two parts. The invertible multi-scale
architecture contributes iK:1 logj det(dh;=dh; 1)j viathe sum of the log Jacobian determinants
of the invertible transformations mapping the videqg/; tofz g/, ; the latent dynamics model
contributedogp (2), i.e Equation5). We jointly learn the parameters of the multi-scale architecture
and latent dynamics model by maximizing this objective.

Note that in our architecture we have chosen to let the pri¢z), as described in ed5), model
temporal dependencies in the data, while constraining thegowo act on separate frames of video.

We have experimented with using 3-D convolutional ows, but found this to be computationally
overly expensive compared to an autoregressive prior; in terms of both number of operations and
number of parameters. Further, due to memory limits, we found it only feasible to perform SGD
with a small number of sequential frames per gradient step. In case of 3-D convolutions, this would
make the temporal dimension considerably smaller during training than during synthesis; this would
change the model's input distribution between training and synthesis, which often leads to various
temporal artifacts. Using 2-D convolutions in our dw with autoregressive priors, allows us to
synthesize arbitrarily long sequences without introducing such artifacts.

5 EXPERIMENTS

All our generated videos and qualitative results can be viewed at this website. In the generated videos,
a border of blue represents the conditioning frame, while a border of red represents the generated
frames.

5.1 VIDEO MODELLING WITH THE STOCHASTIC MOVEMENT DATASET

We use VideoFlow to model the Stochastic Movement Dataset used in (Babaeizadeh et al., 2017).
The rst frame of every video consists of a shape placed near the center of a 64x64x3 resolution gray
background with its type, size and color randomly sampled. The shape then randomly moves in one
of eight directions with constant speed. (Babaeizadeh et al., 2017) show that conditioned on the rst
frame, a deterministic model averages out all eight possible directions in pixel space. Since the shape
moves with a uniform speed, we should be able to model the position of the shapétat 1h&' step

using only the position of the shape at tffe step. Using this insight, we extract random temporal
patches of 2 frames from each video of 3 frames. We then use VideoFlow to maximize the log-
likelihood of the second frame given the rst, i.e the model looks back at just one frame. We observe
that the bits-per-pixel on the holdout set reduces to a veryol®4 bits-per-pixel for this model. On
generating videos conditioned on the rst frame, we observe that the model consistently predicts the
future trajectory of the shape to be one of the eight random directions. We compare our model with
two state-of-the-art stochastic video generation models SV2P and SAVP-VAE (Babaeizadeh et al.,
2017; Lee et al., 2018) using their Tensor2Tensor implementation (Vaswani et al., 2018). We assess
the quality of the generated videos using a real vs fake Amazon Mechanical Turk test. In the test, we
inform the rater that a "real" trajectory is one in which the shape is consistent in color and congruent
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Model Bits-per-pixel

VideoFlow 1.87
SAVP-VAE 6.73
SV2P 6.78

Table 2: Left: We report the average bits-per-pixel

across 10 target frames with 3 conditioning frames forFigure 3: We measure realism using a 2AFC test

the BAIR action-free dataset. and diversity using mean pairwise cosine distance
between generated samples in VGG perceptual
space.

throughout the video. We show that VideoFlow outperforms the baselines in terms of fooling rate in
Table 1 consistently generating plausible "real” trajectories at a greater rate.

5.2 VIDEO MODELING WITH THE BAIR DATASET

We use the action-free version of the BAIR robot pushing dataset (Ebert et al., 2017) that contain
videos of a Sawyer robotic arm with resolution 64x64. In the absence of actions, the task of
video generation is completely unsupervised with multiple plausible trajectories due to the partial
observability of the environment and stochasticity of the robot actions. We train the baseline models,
SAVP-VAE, SV2P and SVG-LP to generate 10 target frames, conditioned on 3 input frames. We
extract random temporal patches of 4 frames, and train VideoFlow to maximize the log-likelihood of
the 4th frame given a context of 3 past frames. We, thus ensure that all models have seen a total of 13
frames during training.

Bits-per-pixel: We estimated the variational bound of the bits-per-pixel on the test set, via importance
sampling, from the posteriors for the SAVP-VAE and SV2P models. We nd that VideoFlow
outperforms these models on bits-per-pixel and report these values in Table 2. We attribute the high
values of bits-per-pixel of the baselines to their optimization objective. They do not optimize the
variational bound on the log-likelihood directly due to the presence o6dl term in their objective

and scheduled sampling (Bengio et al., 2015).

Figure 4: For a given set of conditioning frames on the BAIR action-free we sample 100 videos from each of
the stochastic video generation models. We choose the video closest to the ground-truth on the basis of PSNR,
SSIM and VGG perceptual metrics and report the best possible value for each of these metrics. All the models
were trained using ten target frames but are tested to generate 27 frames. For all the reportedigbgids,

better.

Accuracy of the best sample The BAIR robot-pushing dataset is highly stochastic and the number

of plausible futures are high. Each generated video can be super realistic, can represent a plausible
future in theory but can be far from the single ground truth video perceptually. To partially overcome
this, we follow the metrics proposed in prior work (Babaeizadeh et al., 2017; Lee et al., 2018; Denton

& Fergus, 2018) to evaluate our model. For a given set of conditioning frames in the BAIR action-free
test-set, we generate 100 videos from each of the stochastic models. We then compute the closest of
these generated videos to the ground truth according to three different metrics, PSNR (Peak Signal to
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Noise Ratio), SSIM (Structural Similarity) (Wang et al., 2004) and cosine similarity using features
obtained from a pretrained VGG network (Dosovitskiy & Brox, 2016; Johnson et al., 2016) and
report our ndings in Figure 4. This metric helps us understand if the true future lies in the set of all
plausible futures according to the video model.

In prior work, (Lee et al., 2018; Babaeizadeh et al., 2017; Denton & Fergus, 2018) effectively tune
the pixel-level variance as a hyperparameter and sample from a deterministic decoder. They obtain
training stabiltiy and improve sample quality by removing pixel-level noise using this procedure.
We can remove pixel-level noise in our VideoFlow model resulting in higher quality videos at the
cost of diversity by sampling videos at a lower temperature, analogous to the procedure in (Kingma
& Dhariwal, 2018). For a network trained with additive coupling layers, we can sampk'the
framex; from P (XjX<; ) with a temperatur@ simply by scaling the standard deviation of the latent
gaussian distributioR (z;jz<; ) by a factor ofT. We report results with both a temperature of 1.0
and the optimal temperature tuned on the validation set using VGG similarity metrics in Figure 4.
Additionally, we also applied low-temperature sampling to the latent gaussian priors of SV2P and
SAVP-VAE and empirically found it to hurt performance. We report these results in Figure 12

For SAVP-VAE, we notice that the hyperparameters that perform the best on these metrics are the
ones that have disappearing arms. For completeness, we report these numbers as well as the numbers
for the best performing SAVP models that do not have disappearing arms. Our model with optimal
temperature performs better or as well as the SAVP-VAE and SVG-LP models on the VGG-based
similarity metrics, which correlate well with human perception (Zhang et al., 2018) and SSIM. Our
model with temperaturé = 1:0is also competent with state-of-the-art video generation models on
these metrics. PSNR is explicitly a pixel-level metric, which the VAE models incorporate as part of

its optimization objective. VideoFlow on the other-hand models the conditional probability of the
joint distribution of frames, hence as expected it underperforms on PSNR.

Figure 5: We display three different futures for two sets of conditioning frames (left and right)=a0 :6
showcasing diversity in outcomes

Diversity and quality in generated samples:For each set of conditioning frames in the test set, we
generate 10 videos and compute the mean distance in VGG perceptual space across these 45 different
pairs. We average this across the test-setffer1:0andT = 0:6 and report these numbers in Figure

3. We also assess the quality of the generated videbs=at :0 andT = 0:6, using a real vs fake
Amazon Mechanical Turk test and report fooling rates. We observe that VideoFlow outperforms
diversity values reported in prior work (Lee et al., 2018) while being competitive in the realism axis.
We also nd that VideoFlow afr = 0:6 has the highest fooling rate while being competent with
state-of-the-art VAE models in diversity.

On inspection of the generated videos, we nd that at lower temperatures, the arm exhibits less
random behaviour with the background objects remaining static and clear achieving higher realism
scores. At higher temperatures, the motion of arm is much more stochastic, achieving high diversity
scores with the background objects becoming much noisier leading to a drop in realism.

Fréchet Video Distance (FVD):We evaluate VideoFlow using the recently proposed Fréchet Video
Distance (FVD) metric (Unterthiner et al., 2018), an adaptation of the Fréchet Inception Distance
(FID) metric (Heusel et al., 2017) for video generation. (Unterthiner et al., 2018) report results with
models trained on a total of 16 frames with 2 conditioning frames; while we train our VideoFlow
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# Frames Seen: Training

Conditioning 3 3 3 2
Total 13 13 13 16
# Frames: Evaluation
Ground truth 3 3 2 2
Total 13 16 16 16
Model \ FVD

VideoFlow (T=0.8) 954 127 3 131 5 -
VideoFlow (T=1.0) 1496 2218 2517 -
SAVP - - - 116
SV2P - - - 263
Table 3: Fréchet Video Distance: We report the mean and standard deviation across 5 runs for 3 different

frame settings. Results are not directly comparable across models due to the differences between the total
number of frames seen during training and the number of conditioning frames.

model on a total of 13 frames with 3 conditioning frames, making our results not directly comparable
to theirs. We evaluate FVD for both shorter and longer rollouts in Table 3. We show that, even in the
settings that are disadvantageous to VideoFlow, where we compute the FVD on a total of 16 frames,
when trained on just 13 frames, VideoFlow performs comparable to SAVP.

5.3 LATENT SPACE INTERPOLATION

BAIR robot pushing dataset We encode the rst input frame and the last target frame into the
latent space using our trained VideoFlow encoder and perform interpolations. We nd that the motion
of the arm is interpolated in a temporally cohesive fashion between the initial and nal position.
Further, we use the multi-level latent representation to interpolate representations at a particular level
while keeping the representations at other levels xed. We nd that the bottom level interpolates the
motion of background objects which are at a smaller scale while the top level interpolates the arm
motion.

Figure 6: Left: We display interpolations between a) a small blue rectangle and a large yellow rectangle b) a
small blue circle and a large yellow circlRight: We display interpolations between the rst input frame and
the last target frame of two test videos in the BAIR robot pushing dataset.

Stochastic Movement DatasetWe encode two different shapes with their type xed but a different

size and color into the latent space. We observe that the size of the shape gets smoothly interpolated.
During training, we sample the colors of the shapes from a uniform discrete distribution which is

re ected in our experiments. We observe that all the colors in the interpolated space lie in the set of
colors in the training set.

5.4 LONGER PREDICTIONS

We generate 100 frames into the future using our model trained on 13 frames with a temperature of
0.5 and display our results in Figure 7. On the top, even 100 frames into the future, the generated
frames remain in the image manifold maintaining temporal consistency. In the presence of occlusions,
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Figure 7: Left: We generate 100 frames into the future with a temperature of 0.5. The top and bottom row
correspond to generated videos in the absence and presence of occlusions resgRigtivelWe use VideoFlow
to detect the plausibility of a temporally inconsistent frame to occur in the immediate future.

the arm remains super-sharp but the background objects become noisier and blurrier. Our VideoFlow
model has a bijection between theandx; meaning that the latent state cannot store information

other than that present in the framg This, in combination with the Markovian assumption in our
latent dynamics means that the model can forget objects if they have been occluded for a few frames.
In future work, we would address this by incorporating longer memory in our VideoFlow model; for
example by parameterizifngN () as a recurrent neural network in our autoregressive prior (eq. 8)

or using more memory-ef cient backpropagation algorithms for invertible neural networks (Gomez
etal., 2017).

5.5 QOUT-OF-SEQUENCE DETECTION

We use our trained VideoFlow model, conditioned on 3 frames as explained in Section 5.2, to detect
the plausibility of a temporally inconsistent frame to occur in the immediate future. We condition
the model on the rst three frames of a test-set vidkeo, to obtain a distributiodP (X 4jX < 4) over

its 4th frameX 4. We then compute the likelihood of th# frame X of the same video to occur

as the 4th time-step using this distribution. P€X 4 = XjX<4) fort =4 :::13 We average the
corresponding bits-per-pixel values across the test set and report our ndings in Figure 7. We nd
that our model assigns a monotonically decreasing log-likelihood to frames that are more far out in
the future and hence less likely to occur in the 4th time-step.

6 OPEN SOURCE CODE AND CHECKPOINTS

We open-source the implementation of our code in the Tensor2Tensor codebase. We additionally
open-source various components of our trained VideoFlow model, to evaluate log-likelihood, to
generate frames and compute latent codes as reusable TFHub modules

7 CONCLUSION AND DISCUSSION

We describe a practically applicable architecture for ow-based video prediction models, inspired
by the Glow model for image generation Kingma & Dhariwal (2018), which we call VideoFlow.
We introduce a latent dynamical system model that predicts future values of the ow model's
latent state replacing the standard unconditional prior distribution. Our empirical results show that
VideoFlow achieves results that are competitive with the state-of-the-art VAE models in stochastic
video prediction. Finally, our model optimizes log-likelihood directly making it easy to evaluate
while achieving faster synthesis compared to pixel-level autoregressive video models, making our
model suitable for practical purposes. In future work, we plan to incorporate memory in VideoFlow
to model arbitrary long-range dependencies and apply the model to challenging downstream tasks.
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A  MOVING MNIST - QUALITATIVE EXPERIMENTS

Figure 8: We display ten frame rollouts conditioned on a single frame on the Moving MNIST dataset.

Similar to the Stochastic Movement Dataset as described in Section 5.1, we extract random temporal
patches of 2 frames on the Moving MNIST dataset (Srivastava et al., 2015). We train our VideoFlow
model to maximize the log-likelihood of the second frame, given the rst. Our rollouts over 10 frames
capture realistic digit movement.

B HUMAN3.6M - QUALITATIVE EXPERIMENTS

We model the Human3.6M dataset (lonescu et al., 2014), by maximizing the log-likelihood of the
4th frame given the rst three frames, in a random temporal patch of 4 frames. We observe that on
this dataset, our model fails to capture reasonable human motion. We hope that by increasing model
capacity and using more expressive priors, we can acheive better performance on this dataset in the
future.

C DISCRETIZATION AND UNIFORM QUANTIZATION

LetD = fx(Wg\, be our dataset of i.i.d. observations of a random varigblth an unknown

true distributionp (x). Our data consist of 8-bit videos, with each dimension rescaled to the domain
[0; 255=256] We add a small amount of uniform noise to the datalJ (0; 1=256), matching its
discretization level (Dinh et al., 2016; Kingma & Dhariwal, 2018). get) be the resulting empirical
distribution corresponding to this scaling and addition of noise. Note that additive noise is required
to preventq(x) from having in nite densities at the datapoints, which can result in ill-behaved
optimization of the log-likelihood; it also allows us to recast maximization of the log-likelihood as
minimization of a KL divergence.
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Figure 9: We display ten frame rollouts conditioned on 3 frames on the Human3.6M dataset.

D RESIDUAL NETWORK ARCHITECTURE

Here we’ll describe the architecture for the residual network NN () that maps Z(<I)t;2§>|)

to ( Pilog P) (Left: Figure 10). As shown in the left of Figure 10, let h{™" be the
tensor representing Z§>I) after the split operation between levels in the multi-scale architec-
ture. We apply a 1 1 convolution over h§>l) and concatenate this across channels to
each latent from the previous time-step and the same-level independently. In this way, we
obtain ((Wh§>|);291);(Wh§>|);2§22 :::(Wh£>l);z§9n)). We transform these values into

9); log 9)) via a stack of residual blocks. We obtain a reduction in parameter count by sharing

parameters across every 2 time-steps via 3-D convolutions in our residual blocks.

As shown in the right of Figure 10, each 3-D residual block consists of three layers. The first layer
has a filter size of 2x3x3 with 512 output channels followed by a ReLU activation. The second layer
hastwol 1 1 convolutions via the Gated Activation Unit Van Den Oord et al. (2016); van den
Oord et al. (2016a). The third layer has a filter size of 2 3 3 with the number of output channels
determined by the level. This block is replicated three times in parallel, with dilation rates 1, 2 and 4,
after which the results of each block, in addition to the input of the residual block, are summed.

The first two layers are initialized using a Gaussian distribution and the last layer is initialized
to zeroes. In that way, the residual network behaves as an identity network during initialization
allowing stable optimization. After applying a sequence of residual blocks, we use the last temporal
activation that should capture all context. We apply a final 1 1 convolution to this activation to
obtain ( 29); log t(')). We then add z§') to 291 to a temporal skip connection to output §'). This
way, the network learns to predict the change in latent variables for a given level. We have provided
visualizations of the network architecture in this website

E ABLATION STUDIES

Through an ablation study, we experimentally evaluate the importance of the following components
of our VideoFlow model: (1) the use of temporal skip connections, (2) the use Gated Activation Unit
(GATU) instead of ReLUs in the residual network and (3) the use of dilations in NN () in Section D

We start with a VideoFlow model with 256 channels in the coupling layer, 16 steps of flow and
remove the components mentioned above to create our baseline. We use four different combinations
of our components (described in Fig. 11) and keep the rest of the hyperparameters fixed across those
combinations. For each combination we plot the mean bits-per-pixel on the holdout BAIR-action
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