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ABSTRACT

We introduce a parameter sharing scheme, in which different layers of a con-
volutional neural network (CNN) are defined by a learned linear combination of
parameter tensors from a global bank of templates. Restricting the number of tem-
plates yields a flexible hybridization of traditional CNNs and recurrent networks.
Compared to traditional CNNs, we demonstrate substantial parameter savings on
standard image classification tasks, while maintaining accuracy.

Our simple parameter sharing scheme, though defined via soft weights, in prac-
tice often yields trained networks with near strict recurrent structure; with negli-
gible side effects, they convert into networks with actual loops. Training these
networks thus implicitly involves discovery of suitable recurrent architectures.
Though considering only the design aspect of recurrent links, our trained net-
works achieve accuracy competitive with those built using state-of-the-art neural
architecture search (NAS) procedures.

Our hybridization of recurrent and convolutional networks may also represent a
beneficial architectural bias. Specifically, on synthetic tasks which are algorith-
mic in nature, our hybrid networks both train faster and extrapolate better to test
examples outside the span of the training set.

1 INTRODUCTION

The architectural details of convolutional neural networks (CNNs) have undergone rapid exploration
and improvement via both human hand-design (Simonyan & Zisserman, 2015; Szegedy et al., 2015;
He et al., 2016; Huang et al., 2017; Zhu et al., 2018) and automated search methods (Zoph & Le,
2017; Liu et al., 2018). Yet, this vast array of work limits itself to a circuit-like view of neural
networks. Here, a CNN is regarded as a fixed-depth feed-forward circuit, with a distinct parameter
governing each internal connection. These circuits are often trained to perform tasks which, in a
prior era, might have been (less accurately) accomplished by running a traditional computer program
coded by humans. Programs, and even traditional hardware circuits, have a more reusable internal
structure, including subroutines or modules, loops, and associated control flow mechanisms.

We bring one aspect of such modularity into CNNs, by making it possible to learn a set of parameters
that is reused across multiple layers at different depths. As the pattern of reuse is itself learned,
our scheme effectively permits learning the length (iteration count) and content of multiple loops
defining the resulting CNN. We view this approach as a first step towards learning neural networks
with internal organization reminiscent of computer programs. Though we focus solely on loop-like
structures, leaving subroutines and dynamic control flow to future work, this simple change suffices
to yield substantial quantitative and qualitative benefits over the standard baseline CNN models.

While recurrent neural networks (RNNs) possess a loop-like structure by definition, their loop struc-
ture is fixed a priori, rather than learned as part of training. This can actually be a disadvantage in
the event that the length of the loop is mismatched to the target task. Our parameter sharing scheme
for CNNs permits a mix of loops and feed-forward layers to emerge. For example, trained with our
scheme, a 50-layer CNN might learn a 2-layer loop that executes 5 times between layers 10 and 20,
a 3-layer loop that runs 4 times from layers 30 to 42, while leaving the remaining layers to assume
independent parameter sets. Our approach generalizes both CNNs and RNNs, creating a hybrid.
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Figure 1: Parameter sharing scheme. Left: A CNN (possibly a variant such as a residual network), with each
convolutional layer i containing an individual parameter set W(i). Middle: Parameter sharing among layers,
where parameter templates T(1),T(2) are shared among each layer i, which now only contains a 2-dimensional
parameter α(i). Weights W(i) (no longer parameters, illustrated with dotted boxes) used by layer i are generated
from α(i) and templates T(1),T(2). Right: If weights W(i) are outputs of a linear function (as in our method),
learning parameter templates can be viewed as learning layer templates, offering a new (although equivalent)
perspective for the middle diagram. Non-linearities are omitted for simplicity.

Figure 1 diagrams the parameter sharing scheme facilitating this hybridization. Inspired by dictio-
nary learning, different network layers share, via weighted combination, global parameter templates.
This re-parameterization is fully differentiable, allowing learning of sharing weights and template
parameters. Section 3 elaborates, and also introduces tools for analyzing learned loop structures.

Section 4 demonstrates advantages of our hybrid CNNs across multiple experimental settings. Tak-
ing a modern CNN design as a baseline, and re-parameterizing it according to our scheme improves:

• Parameter efficiency. Here, we experiment with the standard task of image classifica-
tion using modern residual networks (He et al., 2016; Zagoruyko & Komodakis, 2016).
This task is a good proxy for general usefulness in computer vision, as high-performance
classification architectures often serve as a backbone for many other vision tasks, such as
semantic segmentation (Chen et al., 2016; Zhao et al., 2017).
Our parameter sharing scheme drastically reduces the number of unique parameters re-
quired to achieve a given accuracy on CIFAR (Krizhevsky, 2009) or ImageNet (Rus-
sakovsky et al., 2015) classification tasks. Re-parameterizing a standard residual network
with our scheme cuts parameters, without triggering any drop in accuracy. This suggests
that standard CNNs may be overparameterized in part because, by design (and unlike
RNNs), they lack capacity to learn reusable internal operations.

• Extrapolation and generalization. Here, we explore whether our hybrid networks expand
the class of tasks that one can expect to train neural networks to accomplish. This line
of inquiry, focusing on synthetic tasks, shares motivations with work on Neural Turing
Machines (Graves et al., 2014). Specifically, we would like neural networks to be capable
of learning to perform tasks for which there are concise traditional solution algorithms.
Graves et al. (2014) uses sorting as an example task. As we examine an extension of
CNNs, our tasks take the form of queries about planar graphs encoded as image input.
On these tasks, we observe improvements to both generalization ability and learning speed
for our hybrid CNNs, in comparison to standard CNNs or RNNs. Our parameter sharing
scheme, by virtue of providing an architectural bias towards networks with loops, appears
to assist in learning to emulate traditional algorithms.

An additional side effect, seen in practice in many of our experiments, is that two different learned
layers often snap to the same parameter values. That is, layers i and j, learn coefficient vectors α(i)

and α(j) (see Figure 1) that converge to be the same (up to scaling). This is a form of architec-
ture discovery, as it permits representation of the CNN as a loopy wiring diagram between repeated
layers. Section 4.3 presents example results. We also draw comparisons to existing neural architec-
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ture search (NAS) techniques. By simply learning recurrent structure as byproduct of training with
standard stochastic gradient descent, we achieve accuracy competitive with current NAS procedures.

Before delving into the details of our method, Section 2 provides additional context in terms of prior
work on recurrent models, parameter reduction techniques, and program emulation. Sections 3 and 4
describe our hybrid shared-parameter CNN, experimental setup, and results. Section 5 concludes
with commentary on our results and possible future research pathways.1

2 RELATED WORK

Recurrent variants of CNNs are used extensively for visual tasks. Recently, Zamir et al. (2017)
propose utilizing a convolutional LSTM (Shi et al., 2015) as a generic feedback architecture. RNN
and CNN combinations have been used for scene labeling (Pinheiro & Collobert, 2014), image
captioning with attention (Xu et al., 2015), and understanding video (Donahue et al., 2015), among
others. These works combine CNNs and RNNs at a coarse scale, and in a fixed hand-crafted manner.
In contrast, we learn the recurrence structure itself, blending it into the inner workings of a CNN.

Analysis of residual networks (He et al., 2016) reveals possible connections to recurrent networks
stemming from their design (Liao & Poggio, 2016). Greff et al. (2017) provide evidence that residual
networks learn to iteratively refine feature representations, making an analogy between a very deep
residual network and an unrolled loop. Jastrzebski et al. (2018) further explore this connection, and
experiment with training residual networks in which some layers are forced to share identical param-
eters. This hard parameter sharing scheme again builds a predetermined recurrence structure into
the network. It yields successfully trained networks, but does not exhibit the type of performance
gains that Section 4 demonstrates for our soft parameter sharing scheme.

Closely related to our approach is the idea of hypernetworks (Ha et al., 2016), in which one part
of a neural network is parameterized by another neural network. Our shared template-based re-
parameterization could be viewed as one simple choice of hypernetwork implementation. Perhaps
surprisingly, this class of ideas has not been well explored for the purpose of reducing the size of
neural networks. Rather, prior work has achieved parameter reduction through explicit representa-
tion bottlenecks (Iandola et al., 2016), sparsifying connection structure (Prabhu et al., 2018; Huang
et al., 2018; Zhu et al., 2018), and pruning trained networks (Han et al., 2016).

Orthogonal to the question of efficiency, there is substantial interest in extending neural networks to
tackle new kinds of tasks, including emulation of computer programs. Some approach this problem
using additional supervision in the form of execution traces (Reed & de Freitas, 2016; Cai et al.,
2017), while other focus on development of network architectures that can learn from input-output
pairs alone (Graves et al., 2014; 2016; Zaremba et al., 2016; Trask et al., 2018). Our experiments
on synthetic tasks fall into the latter camp. At the level of architectural strategy, Trask et al. (2018)
benefit from changing the form of activation function to bias the network towards correctly extrap-
olating common mathematical formulae. We build in a different implicit bias, towards learning
iterative procedures within a CNN, and obtain a boost on correctly emulating programs.

3 SOFT PARAMETER SHARING

In convolutional neural networks (CNNs) and variants such as residual CNNs (ResNets) (He et al.,
2016) and DenseNets (Huang et al., 2017), each convolutional layer i contains a set of parameters
W(i), with no explicit relation between parameter sets of different layers. Conversely, a strict struc-
ture is imposed to layers of recurrent neural networks (RNNs), where, in standard models (Hochre-
iter & Schmidhuber, 1997), a single parameter set W is shared among all time steps. This leads to a
program-like computational flow, where RNNs can be seen as loops with fixed length and content.
While some RNN variants (Graves et al., 2013; Koutnı́k et al., 2014; Yang et al., 2018) are less strict
on the length or content of loops, these are still typically fixed beforehand.

As an alternative to learning hard parameter sharing schemes – which correspond to the strict struc-
ture present in RNNs – our method consists of learning soft sharing schemes through a relaxation of

1Our code is available at https://github.com/lolemacs/soft-sharing
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Figure 2: Connection between the LSM matrix S
(

where Si,j = |〈α(i),α(j)〉|
‖α(i)‖‖α(j)‖

)
and the structure of the net-

work. White and black entries correspond to maximum and minimum similarities (Si,j = 1 and Si,j = 0,
respectively). Left: Empirically, CNNs present no similarity between parameters of different layers. Middle:
Trained with our method, the layer similarity matrix (LSM) captures similarities between different layers, in-
cluding pairs with close to maximum similarity. Such pairs (depicted by same-colored coefficients and weights,
and by white entries in the LSM) perform similar operations on their inputs. Right: We can tie together pa-
rameters of similar layers, creating a hard parameter sharing scheme. The network can then be folded, creating
self-loops and revealing an explicit recurrent computation structure.

this structure. We accomplish this by expressing each layer’s parameters W(i) as a linear combina-
tion of parameter templates T(1), . . . ,T(k), each with the same dimensionality as W(i):

W(i) :=

k∑
j=1

α
(i)
j T(j) (1)

where k is the number of parameter templates (chosen freely as a hyperparameter) and α(i), a k-
dimensional vector, is the coefficients of layer i. Figure 1 (left and middle) illustrates the difference
between networks trained with and without our method. This relaxation allows for coefficients
and parameter templates to be (jointly) optimized with gradient-based methods, yielding negligible
extra computational cost, with a single constraint that only layers with same parameter sizes can
share templates. Note that constraining coefficients α(i) to be one-hot vectors leads to hard sharing
schemes, at the cost of non-differentiability.

Having k as a free parameter decouples the number of parameters in network from its depth. Typ-
ically, L convolutional layers with constant channel and kernel sizes C,K have O(LC2K2) total
parameters. Our soft sharing scheme changes the total number of parameters to O(kL+kC2K2) =
O(kC2K2). Sections 4.1 and 4.2 show that we can decrease the parameter count of standard models
without significantly impacting accuracy, or simply attain higher accuracy with k = L.

In the next two subsections, we discuss two consequences of the linearity of Equation (1). First, it
enables alternative interpretations of our method. Second, and a major advantage, as is the case in
many linear relaxations of integer problems, we are able to extract hard sharing schemes in practice,
and consequently detect implicit self-loops in a CNN trained with our method.

3.1 INTERPRETATION

For layers i that are linear in W(i) (e.g. matrix multiplication, convolution), we can view our method
as learning template layers which are shared among a network. More specifically, for a convolutional
layer U(i)(X) = W(i) ∗ X, and considering Equation (1):

U(i)(X) = W(i) ∗ X =

k∑
j=1

α
(i)
j T(j) ∗ X (2)

where T(j) ∗ X, the result of a convolution with filter sets T(j), can be seen as the output of a
template layer with individual parameters T(j). Such layers can be seen as global feature extractors,
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and coefficients α(i) determine which features are relevant for the i’th computation of a network.
This is illustrated in Figure 1 (right diagram).

This view gives a clear connection between coefficients α and the network’s structure. Having
α(i) = α(i+2) yields W(i) =

∑k
j=1 α

(i)
j T(j) =

∑k
j=1 α

(i+2)
j T(j) = W(i+2), and hence layers i and

i + 2 are functionally equivalent. Such a network can be folded to generate an equivalent model
with two layers and a self-loop, an explicitly recurrent network. While this is also possible for
networks without parameter sharing, a learned alignment of C2K2 parameters is required (unlikely
in practice), instead of aligning only k ≤ L parameters.

3.2 IMPLICIT RECURRENCES

To identify which layers in a network perform approximately the same operation, we can simply
check whether their coefficients are similar. We can condense this information for all pairs of layers
i, j in a similarity matrix S, where Si,j = s(α(i),α(j)) for some similarity measure s.

For networks with normalization layers, the network’s output is invariant to weight rescaling. In this
setting, a natural measure is s(α(i),α(j)) = |〈α(i),α(j)〉|

‖α(i)‖‖α(j)‖ (absolute value of cosine similarity), since
it possess this same property.2 We call S the layer similarity matrix (LSM). Figure 2 illustrates and
Section 4.3 shows experimentally how it can be used to extract recurrent loops from trained CNNs.

While structure might emerge naturally, having a bias towards more structured (recurrent) models
might be desirable. In this case, we can add a recurrence regularizer to the training objective,
pushing parameters to values which result in more structure. For example, we can add the negative
of sum of elements of the LSM: LR = L − λR

∑
i,j Si,j , where L is the original objective. The

larger λR is, the closer the elements of S will be to 1. At an extreme case, this regularizer will push
all elements in S to 1, resulting in a network with a single layer and a self-loop.

4 EXPERIMENTS

We begin by training variants of standard models with soft parameter sharing, observing that it can
offer parameter savings with little impact on performance, or increase performance at the same pa-
rameter count. Section 4.3 demonstrates conversion of a trained model into explicitly recurrent form.
We then examine synthetic tasks (Section 4.4), where parameter sharing improves generalization.
Appendix B contains details on the initialization for the coefficients α.

4.1 CLASSIFICATION ON CIFAR

The CIFAR-10 and CIFAR-100 datasets (Krizhevsky, 2009) are composed of 60, 000 colored 32×32
images, labeled among 10 and 100 classes respectively, and split into 50, 000 and 10, 000 examples
for training and testing. We pre-process the training set with channel-wise normalization, and use
horizontal flips and random crops for data augmentation, following He et al. (2016).

Using Wide ResNets (WRN) (Zagoruyko & Komodakis, 2016) as a base model, we train networks
with the proposed soft parameter sharing method. Since convolution layers have different number of
channels and kernel sizes throughout the network, we create 3 layer groups and only share templates
among layers in the same group. More specifically, WRNs for CIFAR consist of 3 stages whose
inputs and outputs mostly have a constant number of channels (C, 2C and 4C, for some C). Each
stage contains L−4

3 layers for a network with depth L, hence we group layers in the same stage
together, except for the first two, a residual block whose input has a different number of channels.

Thus, all layers except for the first 2 in each stage perform parameter sharing (illustrated in left
diagram of Figure 4). Having k templates per group means that L−4

3 − 2 convolution layers share
k parameter templates. We denote by SWRN-L-w-k a WRN with L layers, widen factor w and k
parameter templates per group (trained with our method). Setting k = L−4

3 − 2 means we have

2We take the absolute value for simplicity: while negating a layer’s weights can indeed impact the network’s
output, this is circumvented by adding a −1 multiplier to, for example, the input of layer i in case 〈α(i),α(j)〉
is negative, along with α(i) ← −α(i).
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Table 1: Test error (%) on CIFAR-10 and CIFAR-
100. SWRN 28-10, the result of training a WRN 28-
10 with our method and one template per layer, sig-
nificantly outperforms the base model, suggesting that
our method aids optimization (both models have the
same capacity). SWRN 28-10-1, with a single tem-
plate per sharing group, performs close to WRN 28-10
while having significantly less parameters and capac-
ity. * indicates models trained with dropout p = 0.3
(Srivastava et al., 2014). Results are average of 5 runs.

CIFAR Params C-10+ C-100+
WRN 28-10 36M 4.0 19.25
WRN 28-10* 36M 3.89 18.85
SWRN 28-10 36M 3.74 18.78
SWRN 28-10* 36M 3.88 18.43
SWRN 28-10-1 12M 4.01 19.73

Table 2: Performance of wider SWRNs. Parameter re-
duction (k = 2) leads to lower errors for CIFAR-10,
with models being competitive against newer model
families that have bottleneck layers, group convolu-
tions, or many layers. Best SWRN results are in bold,
and best overall results are underlined.

CIFAR Params C-10+ C-100+
ResNeXt-29 16x64 68M 3.58 17.31
DenseNet 100-24 27M 3.74 19.25
DenseNet 190-40 26M 3.46 17.18
SWRN 28-10* 36M 3.88 18.43
SWRN 28-10-2* 17M 3.75 18.66
SWRN 28-14* 71M 3.67 18.25
SWRN 28-14-2* 33M 3.69 18.37
SWRN 28-18* 118M 3.48 17.43
SWRN 28-18-2* 55M 3.43 17.75
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Figure 3: Parameter efficiency for different models. On both CIFAR-10 and CIFAR-100, SWRNs are signifi-
cantly more efficient than WRNs. DN and RNX denotes DenseNet and ResNeXt, respectively, and are plotted
for illustration: both models employ orthogonal efficiency techniques, such as bottleneck layers. Best viewed
in color.

one parameter template per layer, and hence no parameter reduction. We denote SWRN-L-w (thus
omitting k) as a model in this setting.

Following Zagoruyko & Komodakis (2016), we train each model for 200 epochs with SGD and
Nesterov momentum of 0.9 and a batch size of 128. The learning rate is initially set to 0.1 and
decays by a factor of 5 at epochs 60, 120 and 160. We also apply weight decay of 5 × 10−4 on all
parameters except for the coefficients α.

Tables 1 and 2 present results. Networks trained with our method yield superior performance in the
setting with no parameter reduction: SWRN 28-10 presents 6.5% and 2.5% lower relative test errors
on C-10 and C-100, compared to the base WRN 28-10 model. With fewer templates than layers,
SWRN 28-10-1 (all 6 layers of each group perform the same operation), performs virtually the
same as the base WRN 28-10 network, while having 1

3 of its parameters. On CIFAR-10, parameter
reduction (k = 2) is beneficial to test performance: the best performance is achieved by SWRN
28-18-2 (3.43% test error), outperforming the ResNeXt-29 16x64 model (Xie et al., 2017), while
having fewer parameters (55M against 68M) and no bottleneck layers.

Figure 3 shows that our parameter sharing scheme uniformly improves accuracy-parameter effi-
ciency; compare the WRN model family (solid red) to our SWRN models (dotted red).

Table 4 presents a comparison between our method and neural architecture search (NAS) tech-
niques (Zoph & Le, 2017; Xie et al., 2019; Liu et al., 2019; Pham et al., 2018; Real et al., 2018)
on CIFAR-10 – results differ from Table 2 solely due to cutout (DeVries & Taylor, 2017), which is
commonly used in NAS literature; NAS results are quoted from their respective papers. Our method
outperforms architectures discovered by recent NAS algorithms, such as DARTS (Liu et al., 2019),
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Table 3: (below) ImageNet classification re-
sults: training WRN 50-2 with soft parameter
sharing leads to better performance by itself,
without any tuning on the number of templates
k. Top-1 and Top-5 errors (%) are computed
using a single crop.

ImageNet Params Top-1 Top-5
WRN 50-2 69M 22.0 6.05
DenseNet-264 33M 22.15 6.12
ResNet-200 65M 21.66 5.79
SWRN 50-2 69M 21.74 5.95

Table 4: (right) Test error (%) on CIFAR-10
of SWRNs and models found via neural archi-
tecture search (NAS) (all trained with cutout).
Networks trained with soft parameter sharing
provide competitive performance against NAS
methods while having low computational cost.

CIFAR-10 Params
(M)

Training Time
(GPU days)

Test Error
(%)

NASNet-A 3.3 1800 2.65
NASNet-A 27.6 1800 2.4
AmoebaNet-B 2.8 3150 2.55
AmoebaNet-B 13.7 3150 2.31
AmoebaNet-B 26.7 3150 2.21
AmoebaNet-B 34.9 3150 2.13
DARTS 3.4 4 2.83
SNAS 2.8 1.5 2.85
ENAS 4.6 0.45 2.89
WRN 28-10 36.4 0.4 3.08(baseline with cutout)
SWRN 28-4-2 2.7 0.12 3.45
SWRN 28-6-2 6.1 0.25 3.0
SWRN 28-10 36.4 0.4 2.7
SWRN 28-10-2 17.1 0.4 2.69
SWRN 28-14 71.4 0.7 2.55
SWRN 28-14-2 33.5 0.7 2.53

SNAS (Xie et al., 2019) and ENAS (Pham et al., 2018), while having similarly low training cost. We
achieve 2.69% test error after training less than 10 hours on a single NVIDIA GTX 1080 Ti. This
accuracy is only bested by NAS techniques which are several orders of magnitude more expensive
to train. Being based on Wide ResNets, our models do, admittedly, have more parameters.

Comparison to recent NAS algorithms, such as DARTS and SNAS, is particularly interesting as
our method, though motivated differently, bears some notable similarities. Specifically, all three
methods are gradient-based and use an extra set of parameters (architecture parameters in DARTS
and SNAS) to perform some kind of soft selection (over operations/paths in DARTS/SNAS; over
templates in our method). As Section 4.3 will show, our learned template coefficients α can often
be used to transform our networks into an explicitly recurrent form - a discovered CNN-RNN hybrid.

To the extent that our method can be interpreted as a form of architecture search, it might be com-
plementary to standard NAS methods. While NAS methods typically search over operations (e.g.
activation functions; 3× 3 or 5× 5 convolutions; non-separable, separable, or grouped filters; dila-
tion; pooling), our soft parameter sharing can be seen as a search over recurrent patterns (which layer
processes the output at each step). These seem like orthogonal aspects of neural architectures, both
of which may be worth examining in an expanded search space. When using SGD to drive architec-
ture search, these aspects take on distinct forms at the implementation level: soft parameter sharing
across layers (our method) vs hard parameter sharing across networks (recent NAS methods).

4.2 CLASSIFICATION ON IMAGENET

We use the ILSVRC 2012 dataset (Russakovsky et al., 2015) as a stronger test of our method. It
is composed of 1.2M training and 50, 000 validation images, drawn from 1000 classes. We fol-
low Gross & Wilber (2016), as in Zagoruyko & Komodakis (2016); Huang et al. (2017); Xie et al.
(2017), and report Top-1 and Top-5 errors on the validation set using single 224 × 224 crops. For
this experiment, we use WRN 50-2 as a base model, and train it with soft sharing and no parameter
reduction. Having bottleneck blocks, this model presents less uniform number of channels of layer
inputs and outputs. To apply our method, we group convolutions in 12 groups: for each of the 4
stages in a WRN 50-2, we create 3 groups, one for each type of layer in a bottleneck unit (C → B,
B → B and B → C channel mappings, for bottleneck B). Without any change in hyperparameters,
the network trained with our method outperforms the base model and also deeper models such as
DenseNets (though using more parameters), and performs close to ResNet-200, a model with four
times the number of layers and a similar parameter count. See Table 3.
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Figure 4: Extracting implicit recurrences from a SWRN 28-10-4. Left: Illustration of the stages of a SWRN-
28-10-4 (residual connections omitted for clarity). The first two layers contain individual parameter sets, while
the other six share four templates. All 3 stages of the network follow this structure. Middle: LSM for each
stage after training on CIFAR-10, with many elements close to 1. Hard sharing schemes can be created for
pairs with large similarity by tying their coefficients (or, equivalently, their effective weights). Right: Folding
stages 2 and 3 leads to self-loops and a CNN with recurrent connections – LSM for stage 2 is a repetition of 2
rows/columns, and folding decreases the number of parameters.

4.3 LEARNING IMPLICIT RECURRENCES

Results on CIFAR suggest that training networks with few parameter templates k in our soft shar-
ing scheme results in performance comparable to the base models, which have significantly more
parameters. The lower k is, the larger we should expect the layer similarities to be: in the extreme
case where k = 1, all layers in a sharing scheme have similarity 1, and can be folded into a single
layer with a self-loop.

For the case k > 1, there is no trivial way to fold the network, as layer similarities depend on the
learned coefficients. We can inspect the model’s layer similarity matrix (LSM) and see if it presents
implicit recurrences: a form of recurrence in the rows/columns of the LSM. Surprisingly, we observe
that rich structures emerge naturally in networks trained with soft parameter sharing, even without
the recurrence regularizer. Figure 4 shows the per-stage LSM for CIFAR-trained SWRN 28-10-4.
Here, the six layers of its stage-2 block can be folded into a loop of two layers, leading to an error
increase of only 0.02%. Appendix A contains an additional example of network folding, diversity
of LSM patterns across different runs, and an epoch-wise evolution of the LSM, showing that many
patterns are observable after as few as 5 epochs of training.

4.4 EVALUATION ON NATURALLY RECURRENT TASKS

While the propensity of our parameter sharing scheme to encourage learning of recurrent networks
is a useful parameter reduction tool, we would also like to leverage it for qualitative advantages over
standard CNNs. On tasks for which a natural recurrent algorithm exists, does training CNNs with
soft parameter sharing lead to better extrapolation?

To answer this, we set up a synthetic algorithmic task: computing shortest paths. Examples are
32 × 32 grids containing two query points and randomly (with probability 0.1) placed obstacles.
The objective is to indicate which grid points belong to a shortest path between the query points.

We use curriculum learning for training, allowing us to observe how well each model adapts to more
difficult examples as training phases progress. Moreover, for this task curriculum learning causes
faster learning and superior performance for all trained models.
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(a) Generated example for the synthetic shortest
paths task. Blue pixels indicate the query points;
red pixels represent obstacles, and white pixels are
points in a shortest path (in terms of Manhattan
distance) between query pixels. The task consists
of predicting the white pixels (shortest paths) from
the blue and red ones (queries and obstacles).
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(b) Training curves for the shortest paths task,
where difficulty of examples increases every 50
epochs. A SCNN adapts faster than a CNN to
new phases and performs better, suggesting bet-
ter extrapolation capacity. With a recurrence reg-
ularizer λR = 0.01 (SCNN-R), the model makes
faster progress on the first phase, but fails to adapt
to harder examples.

Figure 5: Shortest paths task. Best viewed in color.

Training consists of 5 curriculum phases, each one containing 5000 examples. The maximum al-
lowed distance between the two query points increases at each phase, thus increasing difficulty. In
the first phase, each query point is within a 5× 5 grid around the other query point, and the grid size
increases by 2 on each side at each phase, yielding a final grid size of 21× 21 at phase 5.

We train a CNN, a CNN with soft parameter sharing and one template per layer (SCNN), and an
SCNN with recurrence regularizer λR = 0.01. Each model trains for 50 epochs per phase with
Adam (Kingma & Ba, 2015) and a fixed learning rate of 0.01. As classes are heavily unbalanced
and the balance itself changes during phases, we compare F1 scores instead of classification error.

Each model starts with a 1 × 1 convolution, mapping the 2 input channels to 32 output channels.
Next, there are 20 channel-preserving 3× 3 convolutions, followed by a final 1× 1 convolution that
maps 32 channels to 1. Each of the 20 3× 3 convolutions is followed by batch normalization (Ioffe
& Szegedy, 2015), a ReLU non-linearity (Nair & Hinton, 2010), and has a 1-skip connection.

Figure 5 shows one example from our generated dataset and the training curves for the 3 trained
models: the SCNN not only outperforms the CNN, but adapts better to harder examples at new
curriculum phases. The SCNN is also advantaged over a more RNN-like model: with the recurrence
regularizer λR = 0.01, all entries in the LSM quickly converge 1, as in a RNN. This leads to faster
learning during the first phase, but presents issues in adapting to difficulty changes in latter phases.

5 CONCLUSION

In this work, we take a step toward more modular and compact CNNs by extracting recurrences
from feed-forward models where parameters are shared among layers. Experimentally, parameter
sharing yields models with lower error on CIFAR and ImageNet, and can be used for parameter
reduction by training in a regime with fewer parameter templates than layers. Moreover, we observe
that parameter sharing often leads to different layers being functionally equivalent after training,
enabling us to collapse them into recurrent blocks. Results on an algorithmic task suggest that
our shared parameter structure beneficially biases extrapolation. We gain a more flexible form of
behavior typically attributed to RNNs, as our networks adapt better to out-of-domain examples. Our
form of architecture discovery is also competitive with neural architecture search (NAS) algorithms,
while having a smaller training cost than state-of-the-art gradient-based NAS.

As the only requirement for our method is for a network to have groups of layers with matching
parameter sizes, it can be applied to a plethora of CNN model families, making it a general technique
with negligible computational cost. We hope to raise questions regarding the rigid definitions of
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CNNs and RNNs, and increase interest in models that fall between these definitions. Adapting our
method for models with non-uniform layer parameter sizes (Huang et al., 2017; Zhu et al., 2018)
might be of particular future interest.
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Appendix
A ADDITIONAL RESULTS FOR IMPLICIT RECURRENCES

Section 4.3 presents an example of implicit recurrences and folding of a SWRN 28-10-4 trained on
CIFAR-10, where, for example, the last 6 layers in the second stage of the network fold into 2 layers
with a self-loop.

Figure 6 presents an additional example, where non-trivial recurrences (unlike the one in Figure 4)
emerge naturally, resulting in a model that is rich in structure.

Stage 1 LSM Stage 2 LSM Stage 3 LSM
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Conv
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Figure 6: SWRN 40-8-8 (8 parameter templates shared among groups of 40−4
3
− 2 = 10 layers) trained with

soft parameter sharing on CIFAR-10. Each stage (originally with 12 layers – the first two do not participate
in parameter sharing) can be folded to yield blocks with complex recurrences. For clarity, we use colors to
indicate the computational flow: red takes precedence over green, which in turn has precedence over blue.
Colored paths are only taken once per stage. Although not trivial to see, recurrences in each stage’s folded
form are determined by row/column repetitions in the respective Layer Similarity Matrix. For example, for
stage 2 we have S5,3 ≈ S6,4 ≈ 1, meaning that layers 3, 4, 5 and 6 can be folded into layers 3 and 4 with a
loop (captured by the red edge). The same holds for S7,1, S8,2, S9,3 and S10,4, hence after the loop with layers
3 and 4, the flow returns to layer 1 and goes all the way to layer 4, which generates the stage’s output. Even
though there is an approximation when folding the network (in this example, we are tying layers with similarity
close to 0.8), the impact on the test error is less than 0.3%. Also note that the folded model has a total of 24
layers (20 in the stage diagrams, plus 4 which are not shown, corresponding to the first layer of the network
and three 1× 1 convolutions in skip-connections), instead of the original 40.
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Stage 1

Stage 2

Stage 3

Run 1 Run 2 Run 3 Run 4 Run 5

Figure 7: LSMs of a SWRN 40-8-8 (composed of 3 stages, each with 10 layers sharing 8 templates) trained on
CIFAR-10 for 5 runs with different random seeds. Although the LSMs differ across different runs, hard param-
eter sharing can be observed in all cases (off-diagonal elements close to 1, depicted by white), characterizing
implicit recurrences which would enable network folding. Moreover, the underlying structure is similar across
runs, with hard sharing typically happening among layers i and i+ 2, leading to a “chessboard” pattern.

Stage 1

Stage 2

Stage 3

Epoch 1 Epoch 5 Epoch 25 Epoch 50 Epoch 200

Figure 8: LSMs of a SWRN 40-8-8 (composed of 3 stages, each with 10 layers sharing 8 templates) at different
epochs during training on CIFAR-10. The transition from an identity matrix to the final LSM happens mostly
in the beginning of training: at epoch 50, the LSM is almost indistinguishable from the final LSM at epoch 200,
and most of the final patterns are observable already at epoch 25.
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B INITIALIZATION OF COEFFICIENTS

During our initial experiments, we explored different initializations for the coefficients α of each
layer, and observed that using an orthogonal initialization (Saxe et al., 2013) resulted in superior
performance compared to uniform or normal initialization schemes.

Denote A as the L × k matrix (L is the number of layers sharing parameters and k the number of
templates) with each i’th row containing the coefficient of the i’th layer α(i). We initialize it such
that ATA = I , leading to ∀i, 〈α(i),α(i)〉 = 1 and ∀i 6=j , 〈α(i),α(j)〉 = 0. While our choice for
this is mostly empirical, we believe that there is likely a connection with the motivation for using
orthogonal initialization for RNNs.

Moreover, we discovered that other initialization options for A work similarly to the orthogonal
one. More specifically, either initializing A with the identity matrix when L = k (which naturally
leads to ATA = I) or enforcing some sparsity (initialize A with a uniform or normal distribution
and randomly setting half of its entries to zero) performs similarly to the orthogonal initialization in
a consistent manner. We believe the sparse initialization to be the simplest one, as each coefficient
α can be initialized independently.

Finally, note that having ATA = I results in the Layer Similarity Matrix also being the identity at
initialization (check that Si,j = |〈α(i),α(j)〉|

‖α(i)‖‖α(j)‖ =
|(ATA)i,j |
‖α(i)‖‖α(j)‖ , so if (ATA)i,j = 1, then Si,j = 1,

and the same holds for 0. Surprisingly, even though the orthogonal initialization leads to a LSM that
has no structure in the beginning of training, the rich patterns that we observe still emerge naturally
after optimization.
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