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Abstract. We consider predictor functions fpw;xq in abs-linear form,
a generalization of neural nets with hinge activation. To train them with
respect to a given data set of feature-label pairs px, yq one has to minimize
the average loss, which is a multi-piecewise linear or quadratic function of
the weights, i.e. coefficients of the abs-linear form. We suggest to attack
this nonsmooth global optimization problem via successive piecewise lin-
earization, which allows the application of coordinate search, gradient
based methods or mixed binary linear optimization. These alternative
methods solve the sequence of abs-linear model problems with a proxi-
mal term as demonstrated in [5]. More general predictor functions fpw;xq

that are given in abs-normal form can be successively abs-linearized with
respect to the weights w, which can then be optimized in a nested itera-
tion. In the talk we will present numerical validations and comparisons
with standard methods like ADAM [11], e.g. on the MNIST problem.

Introduction and Notation

Neural nets with hinge activation have been proven theoretically [13], [2], and
experimentally [14] to produce prediction functions fpw;xq that are able to rep-
resent a wide variety of relations in machine learning. These predictor models
are piecewise linear [12] with respect to the feature vector x and multi-piecewise-
linearwith respect to the weight vector w, which consists of various transforma-
tion matrices and inhomogeneous shifts. It is well known that every piecewise
linear function from x P Rn to y P Rm can be expressed in an abs-linear form

y “ fpw;xq ” Nz s.t. z “ c` Zx`Mz ` L|z| (1)

where z P Rs is a vector of switching variables and M,L are strictly lower
triangular. The coefficient vectors and matrices can be combined to the vector

w ” pc, Z,M,L,Nq P Rps,sˆn,sˆs,sˆs,mˆsq » Rs̄

where s̄ “ sps`m` s´ 1q, taking the strict lower triangularity into account. In
the case of multi-layer neural networks z represents nodal values and the matrices
M and L are block diagonal, with M “ L in the case of hinge activation. More
generally the matrices in w can be restricted statically or adaptively during the
learning process to achieve a certain sparsity pattern in order to reduce the
spatial and temporal complexity.
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By induction on the s components zi of z one can easily see that they are
piecewise linear functions zipxq of x, which then also holds for the resulting
vector y “ fpw;xq “ Nzpxq P Rm. Our working hypothesis is that the abs-linear
representation of piecewise linear functions is computationally more appropriate
than the frequently used alternatives, in particular linear expansions in terms
of hat functions. These are very spiky and do not provide a natural connection
between the values of the prediction function at distinct sample points.

A typical empirical risk function may then look like

ϕpwq ” 1
2d

d
ÿ

k“1

}fpw, xkq ´ yk}
2
2 with fpw;xq “ Nzpw;xq (2)

where the (feature, label) pairs pxk, ykq P Rnˆm for k “ 1, 2, . . . d form a suitable
training set. It is important to note that except in the single layer neural network
case, the dependance of the predictor fpw;xq on the coefficients w is only multi-
piecewise linear, i.e. piecewise linear with respect to each component of w when
the others are kept constant. In other words for each Cartesian basis vector
ej P Rs̄ and fixed x the univariate function fpw ` tej ;xq is piecewise linear.
Therefore one can rather efficiently perform (global) coordinate searches (see
Wright [10]), even when the loss function on y is not piecewise linear but for
example quadratic.

Successive abs-linearization w.r.t. the weights

Notice that the general abs-linear form can approximate any continuous function
with arbitrary accuracy, so it has no convexity properties whatsoever. However,
it does allow one to deal with nonsmoothness explicitly. Also, via their refor-
mulation in terms of Mixed Integer Linear Optimization problems (MILOP)
[9], piecewise linear objectives can be globally minimized using modern branch
and bound solvers like Gurobi. For training this approach can only be applied
to local piecewise linearizations ϕ̃pẘ;∆wq at a sequence of reference points
ẘ “ p̊c, Z̊, M̊ , L̊, N̊q. It was shown in [4] that the piecewise linearization of the
righthand side of (1) is given by the triangular system

z̃ “ pc` Zx`∆Mz̊ `∆L|̊z|q ` M̊ z̃ ` L̊|z̃| . (3)

where naturally ∆M “M ´M̊ and ∆L “ L´ L̊. More specifically it was shown
that when this approximating z̃ “ z̃pẘ;∆wq is used to replace z in (2) we obtain
an approximate average loss ϕ̃pẘ;∆wq such that for some constant q

|ϕpwq ´ ϕ̃pẘ;∆wq| ď q
2}∆M,∆L}2F ď

q
2}∆w}

2
2

with }¨}F denoting the Frobenius norm of matrices. The changes ∆c,∆Z and ∆Z
to the coefficients c̊, Z̊ and N̊ that enter linearly into (1) do not occur explicitly
in the proximal term on the right hand side. In [4] we gave an explicit bound
for the values of q, which tends to be rather large and thus too conservative for
practical calculations.



The outer loop of the training problem now consists of generating iterates
wk by the recursion

wk`1 “ argmin
∆w

tϕ̃pwk;∆wq ` q
2}∆w}

2
2u . (4)

For solving the inner loop problem on the right hand side we have considered
besides coordinate search, the MILOP reformulation and a dynamic trajectory
search method called TOAST of the class considered recently in [1]. For compar-
ison purposes we also consider steepest descent and its moment variants as well
as stochastic gradient. See also the contributions [3] and [8], where neural net
models are considered as discretized ODEs or PDEs and optimized on training
sets based on their continuous adjoints.

Backpropagation w.r.t. weights

To minimize ϕpwq or its approximation ϕ̃pẘ;w ´ ẘq by the classical gradient
based methods or our proposal TOAST one needs the derivatives with respect
to all component vectors and matrices of w. By differentiation of the smooth
`2-loss (2) with respect to the shift c P Rs one gets the adjoint vector

c̄ ” ∇cϕ ”
1

d

d
ÿ

k“1

c̄k with c̄k “ NJpfpw, xkq ´ ykq P Rs . (5)

Then one has to compute z̄k as solution of the unit upper triangular linear system

pI ´MJ´ΣkL
Jqz̄k “ c̄k P Rs where Σkzk ě 0 and detpΣkq “ ˘1 .

This task proceeds naturally by backward substitution using exactly the same
number of operations as computing zk from a given xk. It can be shown that the
adjoint values w̄ “ ∇wϕpwq “ pc̄, sZ,ĎM, sLq are given by c̄ as defined above and

sZ “ SZ

«

1

d

d
ÿ

k“1

z̄kx
J
k

ff

, ĎM “ SM

«

1

d

d
ÿ

k“1

z̄kz
J
k

ff

, sL “ SL

«

1

d

d
ÿ

k“1

z̄k|zk|
J

ff

.

Here the linear operators SZ ,SL and SZ may enforce any desired sparsity pattern
of the matrices, including especially the strict lower triangularity of M and L.
Hence we see that the total effort for calculating ϕpwq and ∇wϕpwq is almost
exactly three times as much as evaluating ϕpwq as such, which requires one fused
multiply add for each nonzero entry in w. This factor 3 agrees exactly with the
multiplicative upper bound in the cheap gradient principle [6]. The derivative
formulas above can be easily adopted to the piecewise linearized system (3) and
the resulting objective ϕ̃pẘ;w ´ ẘq.

At the time of writing we have only done some very preliminary calculations
comparing the general abs-linear model to a one-layer neural net with the same
number of degrees of freedom in the coefficients. The learning task was regression
on the Griewank function [7] with feature dimension 4 and a training set of 20
data points. The same problem was used in Fig. 1 to compare four methods on
the training of a neural net with a single intermediate layer of 10 nodes and
inhomogeneous shifts. For a detailed description of TOAST see [5] and the talk.



Fig. 1. Decimal digits gained by four methods on single layer regression problem.
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