
Under review as a conference paper at ICLR 2019

CHEMICAL NAMES STANDARDIZATION USING
NEURAL SEQUENCE TO SEQUENCE MODEL

Anonymous authors
Paper under double-blind review

ABSTRACT

Chemical information extraction is to convert chemical knowledge in text into
true chemical database, which is a text processing task heavily relying on chem-
ical compound name identification and standardization. Once a systematic name
for a chemical compound is given, it will naturally and much simply convert the
name into the eventually required molecular formula. However, for many chemi-
cal substances, they have been shown in many other names besides their system-
atic names which poses a great challenge for this task. In this paper, we propose
a framework to do the auto standardization from the non-systematic names to the
corresponding systematic names by using the spelling error correction, byte pair
encoding tokenization and neural sequence to sequence model. Our framework is
trained end to end and is fully data-driven. Our standardization accuracy on the
test dataset achieves 54.04% which has a great improvement compared to previous
state-of-the-art result.

1 INTRODUCTION

There are more than 100 million named chemical substances in the world. In order to uniquely
identify every chemical substance, there are elaborate rules for assigning names to them on the basis
of their structures. These names are called systematic names. The rules for these names are defined
by International Union of Pure and Applied Chemistry (IUPAC) (Favre & Powell, 2013).

However, besides the systematic name, there can be also many other names for a chemical sub-
stance due to many reasons. Firstly, many chemical are so much a part of our life that we know
them by their familiar names which we call them common names or trivial names for the sake of
simplicity. For example, sucrose is a kind of sugar which we are very familiar with. Its systematic
name is much more complicated, which is (2R,3R,4S,5S,6R)-2-[(2S,3S,4S,5R)-3,4-dihydroxy-2,5-
bis(hydroxymethyl)oxolan-2-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol.

Secondly, in chemistry industry, especially in pharmaceutical industry, many producers always gen-
erate new names to a chemical substance in order to distinguish their products from those of their
competitors. We call these kind of names proprietary names. The most famous example is Aspirin.
Its systematic name is 2-Acetoxybenzoic acid. So due to the history reasons and idiomatic usages, a
chemical substance can have many other names.

Chemical information extraction is a research that extracts useful chemical knowledge in text and
converts it into a database, which strongly relies on the unique standard chemical names. Nowa-
days, there are many chemical databases such as PubChem and SciFinder, which are designed to
store chemical information including chemical names, chemical structures, molecular formulas and
other relevant information. For these databases, it is still an ongoing work to extract chemical infor-
mation from chemical papers to update the databases. If all the chemical substances are expressed by
the systematic names, it is easy to generate other information. For example, we can nearly perfectly
convert the systematic name to other representations such as Simplified Molecular-Input Line-Entry
System (SMILES) (Weininger, 1988) and International Chemical Identifier (InCHI) (Mcnaught,
2006) and then generate the structural formulas. Some online systems are already well developed
for converting automatically systematic names to SMILES string with a very high precision such
as Open Parser for Systematic IUPAC Nomenclature (OPSIN) (Lowe et al., 2011) developed by

1

Under review as a conference paper at ICLR 2019

Table 1: Examples of different types of error

Error type Non-systematic name Systematic name

Spelling error benzoil chloride benzoyl chloride
1,3-benzoxazoole 1,3-benzoxazole

Ordering error benzene, 1,4-dibromo-2-methyl 1,4-dibromo-2-methylbenzene
4-pyrimidinecarbaldehyde pyrimidine-4-carbaldehyde

Common name error adenine 9H-purin-6-amine
Aspirin 2-Acetoxybenzoic acid

Synonym error sodium butoxide sodium;butan-1-olate
2-ethylfuroate ethyl furan-2-carboxylate

Mixed of synonym error 2-hydroxy-8-iodonaphthalene 8-iodonaphthalen-2-ol
and ordering error 3-amino-1,2-benzisoxazole 1,2-benzoxazol-3-amine

University of Cambridge1. Unfortunately, nowadays a great number of the chemical substances are
expressed by their non-systematic names in chemical papers, which increases significantly the diffi-
culties for this task, so our work focuses on the standardization of non-systematic names. Examples
of chemical information extraction are shown in Figure 1.

Figure 1: Examples of chemical information extraction (the parts in the same color means the same
chemical constituent name)

In the following passage, we consider the differences between non-systematic names and systematic
names as ”error”2. In view of natural language processing, the error types of non-systematic names
can be summarized by four types: 1. Spelling error. It means that non-systematic names just
have slightly differences from systematic names in spelling; 2. Ordering error. It means that the
groups in a non-systematic name are in wrong order; 3. Common name error. As mentioned
above, many chemical substances have common names or proprietary names which look totally
different from their systematic names; 4. Synonym error. It means that the words in the non-
systematic names are different from those in the systematic names but they share the same root of
word. In fact, it is the error type which happens most often. For example, 2-(Acetyloxy)benzoic Acid
has synonyms Acetylsalicylic Acid and Acetysal and these three words share the same root of word
”Acety”. Some examples of different types of errors are shown in Table 1. What is worth mentioning
is that several types of error can appear at the same time in a single non-systematic name, especially
for the ordering error and synonym error. The mixed types of error make this task very challenging.

Based on these four error types, we propose a framework to convert automatically the non-systematic
names to systematic names. Our framework is structured as followed: 1. Spelling error correction.
It aims to correct the spelling errors; 2. Byte pair encoding (BPE) tokenization. It aims to split a
name into small parts; 3. Sequence to sequence model. It aims to fix all the remaining ordering
errors, common name errors and synonym errors.

Actually, due to its great challenge, few work has been done on the chemical name standardiza-
tion. To our best knowledge, Golebiewski et al. (2009) is the only work deserving a citation which

1Its precision reaches 99.8%.
2It does not mean that non-systematic names are wrong. It is just an expression for the differences.

2

Under review as a conference paper at ICLR 2019

developed an online system ChemHits to do the standardization basing on several transformation
rules and the queries to online chemical databases. The work of Golebiewski et al. (2009) severely
depends on chemical knowledge, limiting its application potential and effectiveness to some extent.

Differently, we adopt sequence to sequence model that has been widely used on neural machine
translation. The reason why we apply the sequence to sequence model is that our task has some
similarities with the machine translation problem. In machine translation, there are source language
and target language which correspond to the non-systematic names and the systematic names in
our task. Two different languages can be different in: 1. Vocabularies, which corresponds to the
common name error and synonym error; 2. Word order, which corresponds to the ordering error. Our
framework is trained end-to-end, fully data-driven and without using external chemical knowledge.
With this approach, we achieve an accuracy of 54.04% in our test data set.

Our work will be done on a corpus containing chemical names extracted from report of Chemical
Journals with High Impact factors (CJHIF)3. The corpus is collected and checked by paid manual
work. It is a parallel corpus which includes non-systematic names and systematic names of chemical
substances. In the following passage, we call a non-systematic name and the corresponding system-
atic name of a chemical substance data pair. In our corpus, there are 384816 data pairs. In Figure
2, we give an overview of the distribution of the Levenshtein distance between the non-systematic
names and the systematic names to show how different the non-systematic names and the systematic
names are. In the experiment, we use 80%, 19% and 1% data as training set, test set and development
set respectively.

Figure 2: Distribution of the Levenshtein distance between non-systematic names and systematic
names

2 PROPOSED FRAMEWORKS

Our framework consists of spelling error correction, byte pair encoding tokenization and sequence
to sequence model which can be summarized in Figure 3.

2.1 SPELLING ERROR CORRECTION

In this part, we aim to correct the spelling errors. Given a name of a chemical substance, we can
separate it into different elemental words by all the non-alphabet characters. For example, 2-(chloro-
fluoro-methyl)-benzooxazole can be separated into chloro, fluoro, methyl and benzooxazole. To cor-
rect the spelling error, firstly we set up two vocabularies from the dataset: vocabulary of the sys-
tematic elemental words and of the non-systematic elemental words. For the systematic elemental
words, we just split all the systematic names to build the vocabulary. For the non-systematic ele-
mental words, firstly we use all the non-systematic names to build an elemental vocabulary, and then
we just keep the elemental words which appear many times in the non-systematic names but outside

3The full journal name list will be given later in supplementary material. Our corpus will be publicly
released later.

3

Under review as a conference paper at ICLR 2019

Figure 3: Illustration of the framework

the vocabulary of systematic elemental words and remove the rest. By this way, the vocabulary we
build from the non-systematic names is the set of common names or synonyms. We then combine
these two vocabularies together to get a final elemental vocabulary.

To do the correction search efficiently enough, we use BK-Tree (Burkhard & Keller, 1973) to struc-
ture the elemental vocabulary. BK-Tree is a tree structure which is widely used in spelling error
correction. BK-Tree is defined in the following way. An arbitrary vocabulary item a is selected as
root node. The root node may have zero or more subtrees. The k-th subtree is recursively built of all
vocabulary items b such that d(a, b) = k where d(a, b) is the Levenshtein distance between a and
b. Given a word and a threshold, BK-Tree can return rapidly, if possible, the vocabulary item which
have the smallest Levenshtein distance with the given word and the Levenshtein distance is smaller
than the threshold by using the triangle rules: |d(a, b) − d(b, c)| ≤ d(a, c) ≤ d(a, b) + d(b, c). By
using the BK-Tree, we can correct the spelling error of non-systematic names. Another advantage
of using BK-Tree is that it is easy to insert new training data which makes it scalable. An example
of BK-Tree built from a part of our dataset is shown in Figure 4.

At this stage, given a name of a chemical substance, we firstly separate it into elemental words
and then input the elemental words one by one to the BK-Tree. After the correction, we combine
the elemental words to get the full name. In this step, a few non-systematic names can be directly
corrected and some non-systematic names can be partially corrected. It is also helpful in the training
of the sequence to sequence model because it can reduce the noise of elemental words.

Figure 4: Example of BK-Tree built from a part of our dataset. Each node is an elemental word.
The value on each edge is the Levenshtein distance between two nodes. All the nodes in the same
subtree of a node have the same Levenshtein distance to this node. For instance, the Levenshtein
distances from dimethyl, diethyl, methan to methyl are all 2.

4

Under review as a conference paper at ICLR 2019

Table 2: Examples of applying BPE to chemical names (subwords are separated by @@)

Original name Split name

4-bromo-6-methoxyquinaldine 4-bromo@@ -6-methoxy@@ quinaldine
ethynyltris(propan-2-yl)silane ethynyl@@ tris(propan-2-yl)@@ silane
methyltrioctylazanium bromide methyl@@ trioctyl@@ azanium bromide

2.2 TOKENIZATION BY BYTE PAIR ENCODING

To apply the sequence-to-sequence model, firstly we need to tokenize all the chemical names. In
this paper, we use Byte Pair Encoding (BPE) (Sennrich et al., 2015) to do the tokenization. Firstly,
we initialize a symbol set by split all the names into characters. At this moment, the symbol set
contains only the single characters. Then we iteratively count all symbol pairs and replace each
occurrence of the most frequent pair (X, Y) with a new symbol XY and add it to the symbol set.
Each merge operation produces a new symbol. The size of final symbol set is equal to the size of
initial character, plus the number of merge operations. We then use the trained symbol vocabulary
set to do the tokenization.

The reasons why we choose BPE are as follow: Firstly, it can deal with out-of-vocabulary problem
because the vocabulary set generated by BPE contains the vocabularies at character level. Secondly,
it can separate a name into meaningful subwords because it can find the small molecules which
appear frequently in the corpus and tokenize a chemical name into the names of the small molecules.
Some examples of applying BPE to the chemical name are shown in Table 2. After the tokenization,
we can use the split pairs to train the sequence to sequence model.

2.3 SEQUENCE TO SEQUENCE MODEL

Sequence to sequence model (Sutskever et al., 2014) is widely used in machine translation. In this
work, we adapted an existing implementation OpenNMT (Klein et al., 2017) with a few modifica-
tions. The sequence to sequence model consists of two recurrent neural networks (RNN) working
together: (1) an encoder that gets the source sequences (here are the non-systematic names sepa-
rated by BPE) and generates a context vector H , and (2) a decoder that uses this context vector to
generate the target sequences (here are the corresponding systematic names). For the encoder, we
use a multilayers bidirectional LSTM (BiLSTM) (Graves & Schmidhuber, 2005). BiLSTM consists
of two LSTMs: one that processes the sequence forward and the other backward, with their forward
and backward hidden states

−→
ht and

←−
ht at each time step. The hidden state at time step t is just a

concatenation of the two hidden states: ht = {
−→
ht ;
←−
ht}. At the final time step T of the encoder, by

combining all the hidden states, we get the context vector H = {h1, ..., hT }. For the decoder, it
gives the probability of an output sequence ŷ = {ŷi}:

P (ŷ) =

M∏
t=1

p(ŷt|{ŷi<t})

and for a single token ŷt, the probability is calculated by

st = f(st−1, ŷt−1)

αj =
exp(score(st, hj))∑T

j′=1 exp(score(st, hj′))

ct =
∑
j

αjhj

at = tanh(Wc[st; ct])

p(ŷt|{ŷi<t}) = softmax(Wsat)

5

Under review as a conference paper at ICLR 2019

where f is a multilayer LSTM; st is the decoder’s hidden state at time step t; andWc,Ws are learned
weights. For the score function, we use the attention mechanism proposed by Luong et al. (2015):

score(st, hj) = sTt Wahj

where Wa are also learned weights.

3 EXPERIMENTS

3.1 TRAINING DETAILS

In our framework, at the spelling error correction stage, the only parameter is the threshold of the
BK-Tree. In the experiment, we have tried several threshold values: 1, 2 and 3. At the BPE stage,
the only parameter is the number of the merge operations. In the experiments, we have tried several
values: 2500, 5000, 10000, 20000. For the sequence to sequence model, the dimensions of word
embeddings and hidden states are both 500. The vocabulary size is equal to the number of basic
characters plus the number of merge operations of BPE. The numbers of layers in encoder and
decoder are both 2. Before training the sequence to sequence model, we also do the spelling error
correction for the non-systematic names in the training data.

During training, all parameters of the sequence to sequence model are trained jointly using stochastic
gradient descent (SGD). The loss function is a cross-entropy function, expressed as

L(y, ŷ) = −
∑
i

yilog(ŷi)

The loss was computed over an entire minibatch of the size 64 and then normalized. The weights
are initialized using a random uniform distribution ranging from -0.1 to 0.1. The initial learning rate
is 1.0 and the decay will be applied with the factor 0.5 every epoch after and including epoch 8 or
when the perplexity does not decrease on the validation set. The drop out rate is 0.3 and we train the
model for 15 epochs. We set the beam size to 5 for the decoding.

For comparison, we also do another experiment by replacing sequence to sequence model with
Statistical Machine Translation (SMT) model. In this experiment, we use implemented Moses sys-
tem Koehn et al. (2007). In the training, we limit the length of training sequences to 80 and apply
the 3-grams language model by using KenLM (Heafield, 2011). The tokenization for the pairs we
use is BPE with 5000 merge operations.

Besides the spelling error correction, data augmentation is another technique for the neural model
learning to deal with the noisy data (in this case, the noise is the spelling error). For comparison, we
also do the experiment of data augmentation. For every non-systematic name, we insert an error into
it for the probability of 0.025. The error insertion has four types: we insert randomly a character
in a random position; we randomly delete a character in a random position; we randomly exchange
two characters; we randomly replace a character by another random character. The four insertion
methods are applied in an equal probability.

3.2 RESULTS

In the experiment, we measure the standardization quality with accuracy and BLEU score (Papineni
et al., 2002). Accuracy is calculated by the number of non-systematic names which are successfully
standardized divided by the total number of non-systematic names. Note the accuracy that we adopt
here is a very strong performance metric, as it equally means that the entire translated sentence is
exactly matched for a machine translation task. The experiment results for different models on test
dataset are shown in Table 3. We can see that the combination of spelling error correction, BPE
tokenization and sequence to sequence model achieves the best performance. Our framework has
a great improvement compared to the SMT model and the ChemHits system. The latter is slightly
better than just applying spelling error correction. The results for different numbers of BPE merge
operation are shown in Table 4. 5000 is the best value for this parameter. 0 means a character-
level sequence to sequence model. The results show the usefulness of BPE. The results for different
Levenshtein distance thresholds for the spelling error correction and the result of data augmentation
are shown in Table 5. We can see that spelling error correction is indeed helpful for our framework.

6

Under review as a conference paper at ICLR 2019

Table 3: Results of different models on test dataset
Models Accuracy (%) BLEU (%)

ChemHits (Golebiewski et al.) 6.14 -
Spelling error correction 2.89 -
Spelling error correction + SMT 26.25 53.90
Spelling error correction + sequence to sequence 54.04 69.74

Table 4: Results for different numbers of BPE merge operation.

Number of merge operation Accuracy (%) BLEU (%)

20000 52.70 68.62
10000 53.55 69.22
5000 54.04 69.74
2500 53.90 70.19
0 23.60 64.25

Data augmentation also helps but does not perform as well as spelling error correction. Note that
when the threshold is too large, the overcorrection might occur which reduces the standardization
quality.

3.3 ANALYSIS

Some examples of the non-systematic names which are successfully standardized are shown in Ta-
ble 6. These 4 examples show what the sequence to sequence model can do. In the first example, the
parentheses in the non-systematic name are replaced by another parentheses and brackets. It means
that the sequence to sequence model can fix also the non-alphabet spelling errors. The synonym
error is also corrected: from 1-propanetriol to propane-1-thiol. In the second example, the wrong
order ethane,1,2-dichloro is corrected to 1,2-dichloroethane. In the third example, the mixture of
ordering error and synonym error are corrected. In the last example, P-anise alcohol is a propri-
etary name which looks like totally different from its systematic name but it is also successfully
standardized.

To better illustrate how the sequence to sequence model works, here we give the visualization of
attentions of an example, which is shown in Figure 5. The non-systematic name is adenine,9-
methyl- (7ci,8ci) and the corresponding systematic name is 9-methyl-9H-purin-6-amine. In the non-
systematic name, adenine itself is also a chemical substance whose systematic name is 9H-purin-6-
amine. So it is a mixture of common name error and ordering error. From Figure 6, we can see that
seq2seq model can find the relation between adenine and 9H-purin-6-amine and can find the right
place for 9-methyl.

Figure 5: Visualization of attentions Figure 6: Accuracy for different lengths

7

Under review as a conference paper at ICLR 2019

Table 5: Results of different Levenshtein distance thresholds for the spelling error correction. For
each threshold, the first line is the accuracy after just doing the spelling error correction. The second
line is the accuracy after processing the non-systematic name by our whole framework. The numbers
of BPE merge operation are all 5000.

Threshold Accuracy (%) BLEU (%)

Without spelling error 0 -
correction 49.94 66.98
1 2.89 -

54.04 69.74
2 2.51 -

52.08 68.82
3 2.39 -

53.84 69.60
Data augmentation 52.95 69.00

Table 6: Examples of the non-systematic names which are successfully standardized. For each
example, the first line is the name before standardization and the second line is the name after
standardization.

Example 1 3-(dimethoxymethylsilyl)-1-propanetriol
3-[dimethoxy(methyl)silyl]propane-1-thiol

Example 2 ethane,1,2-dichloro
1,2-dichloroethane

Example 3 1-phenyl-3-methyl-4-benzoyl-1h-pyrazol-5(4h)-one
4-benzoyl-3-methyl-1-phenyl-4,5-dihydro-1H-pyrazol-5-one

Example 4 P-anise alcohol
(4-methoxyphenyl)methanol

3.4 ERROR ANALYSIS

In this section, we will analyze the fail standardization attempts of our system. Firstly, we randomly
select 100 samples of failed attempts and label their error types manually and carefully. The distribu-
tion over error types is shown in Table 7. We can see that synonym error is the most confusing error
type and our system performs well at spelling error. As for the common error, since it is very hard
to find a rule between an unseen common name and its systematic name, our system also perform
poorly at this error type.

Among these 100 samples, there are 10 samples which are nearly correct (only one or two characters
different from the systematic name), 7 examples are totally incorrect (none of the subwords of
prediction match the systematic name) and the rest are partially correct. Some samples of failed
attempts are shown in Table 8.

3.5 LIMITATIONS

We noticed that there are still nearly a half of the non-systematic names which are not successfully
standardized. The accuracy for systematic names of different lengths are shown in Figure 6. We can
see that our framework achieves the best performances for the systematic names of length between
20 and 40 while performing poorly for the systematic names of length bigger than 60 which account
for 37% of our test dataset. Another limitation of our model is that we do not take into account
chemical rules in our model. For this reason, a few names generated by our model disobey the
chemical rules and at the tokenization stage, some subwords generated by BPE are not explicable as
well.

8

Under review as a conference paper at ICLR 2019

Table 7: Distribution over error types of 100 failed attempts.

Error types Number of failed attempts

Synonym error 59
Common name error 33
Synonym error + ordering error 7
Spelling error 1

Table 8: Examples of failed attempts. For each example, the first line is the name before stan-
dardization and the second line is the systematic name and the third line is the prediction of our
model.

Nearly correct 5-bromo-2-(chlorosulfanyl)toluene
4-bromo-2-methylbenzene-1-sulfonyl chloride
5-bromo-2-methylbenzene-1-sulfonyl chloride

Totally incorrect choline dicarbonate
(2-hydroxyethyl)trimethylazanium hydrogen carbonate
(carbamoylimino)urea

Partially correct 3,5 - dichloro - 4 - nitrobenzotrifluoride
1,3-dichloro-2-iodo-5-(trifluoromethyl)benzene
4,5-dichloro-2-nitro-1-(trifluoromethyl)benzene

4 CONCLUSION

In this work, we propose a framework to automatically convert non-systematic names to systematic
names . Our framework consists of spelling error correction, byte pair encoding tokenization and
sequence to sequence model. Our framework achieves an accuracy of 54.04% on our dataset, which
is far better than previous rule based system (nine times of accuracy) and thus enables the related
chemical information extraction into more practical use stage. The advantage of our framework is
that it is trained end to end, fully data-driven and independent of external chemical knowledge. This
work starts a brand new research line for the related chemical information extraction as to our best
knowledge.

REFERENCES

W. A Burkhard and R. M Keller. Some approaches to best-match file searching. Communications
of the Acm, 16(4):230–236, 1973.

Henry A. Favre and Warren H. Powell. Nomenclature of Organic Chemistry:IUPAC Recommenda-
tions and Preferred 224 Names 2013. Butterworths, 2013.

Martin Golebiewski, Jasmin Saric, Henriette Engelken, Meik Bittkowski, Ulrike Wittig, Wolfgang
Mller, and Isabel Rojas. Normalization and matching of chemical compound names. Nature
Precedings, 06 2009. doi: 10.1038/npre.2009.3322.1.

Alex Graves and Jrgen Schmidhuber. Framewise phoneme classification with bidirectional lstm and
other neural network architectures. Neural Netw, 18(5):602–610, 2005.

Kenneth Heafield. Kenlm: faster and smaller language model queries. In The Workshop on Statisti-
cal Machine Translation, pp. 187–197, 2011.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean Senellart, and Alexander M Rush. Opennmt:
Open-source toolkit for neural machine translation. 2017.

9

Under review as a conference paper at ICLR 2019

Philipp Koehn, Hieu Hoang, Alexandra Birch, Nicola Bertoldi, Nicola Bertoldi, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran, and Richard Zens. Moses: open source toolkit for
statistical machine translation. In Meeting of the ACL on Interactive Poster and Demonstration
Sessions, pp. 177–180, 2007.

D. M. Lowe, P. T. Corbett, P Murray-Rust, and R. C. Glen. Chemical name to structure: Opsin, an
open source solution. Journal of Chemical Information Modeling, 51(3):739–53, 2011.

Minh Thang Luong, Hieu Pham, and Christopher D Manning. Effective approaches to attention-
based neural machine translation. Computer Science, 2015.

Alan Mcnaught. The iupac international chemical identifier: Inchi - a new standard for molecular
informatics. Chemistry International, 2006.

K. Papineni, S. Roukos, T. Ward, and W. J. Zhu. Ibm research report bleu: a method for automatic
evaluation of machine translation. Acl Proceedings of Annual Meeting of the Association for
Computational Linguistics, 30(2):311–318, 2002.

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. Computer Science, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
4:3104–3112, 2014.

David Weininger. Smiles, a chemical language and information system. 1. introduction to method-
ology and encoding rules. Journal of Chemical Information Computer Sciences, 28(1):31–36,
1988.

10

	Introduction
	Proposed frameworks
	Spelling error correction
	Tokenization by Byte Pair Encoding
	Sequence to sequence model

	Experiments
	Training details
	Results
	Analysis
	Error analysis
	Limitations

	Conclusion

