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Abstract

In order to deploy robots in previously unseen and unstructured environments,1

the robots should have the capacity to learn on their own and adapt to the changes2

in the environments. For instance, in mobile robotics, a robot should be able3

to learn a map of the environment from data itself without the intervention4

of a human to tune the parameters of the model. To this end, leveraging the5

latest developments in automatic machine learning (AutoML) and probabilistic6

programming, under the Hilbert mapping framework which can represent the7

occupancy of the environment as a continuous function of locations, we formulate8

a Bayesian framework to learn all parameters of the map. Crucially, this way,9

the robot is capable of learning the optimal shapes and placement of the kernels10

in Hilbert maps by merely embedding high-level human knowledge of the11

problem by means of prior probability distributions. A direct consequence of12

this is the ability to enable improved risk management through more robust13

perception and planning in complex environments. Experiments conducted on14

simulated and real-world datasets demonstrate the importance of incorporating15

prior information.16

17

1 Introduction18

Modeling the environment a robot operates in is fundamental to safer decision-making such as path19

planning in safety and infrastructure critical situations. To this end, discerning occupied areas from20

unoccupied areas of the environment using depth measurements is required. Typically, occupancy21

states exhibit highly nonlinear and spatially correlated patterns that cannot be captured with a simple22

linear classification model. Furthermore, because it is required to learn the occupancy level using23

very few sparse sensor measurements in a reasonable time, kernel methods have been the de jure24

choice in recent occupancy mapping [1, 2].25

One of the major challenges in employing kernel methods in occupancy mapping is the requirement26

of choosing parameters and hyperparameters of the model [3]. In order for mobile robots to ma-27

neuver fully autonomously in unknown environments or to interact with humans and other agents,28

the robots should have the capability to automatically learn their model parameters from data. Only29

the most simple environments contain spatially homogenous features, however this is typically not30

the case in real-world mapping - e.g. walls and furniture may contribute to sharp features while31

open spaces and large hills may contribute to spatially smooth features. To better understand the32

significance of representing nonstationarity in terms of kernels, first consider the SE kernel which is33

parametrized with lengthscale and position hyperparameters. As seen in Figure 1, with large length-34

scales it is possible to capture smoother changes across the space, while small lengthscales allow35

one to capture sharp changes in the space. Hyperparameter optimization is critical for almost all36

machine learning methods and the best values are almost always dependent on the dataset. Often,37
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Figure 1: Comparison of stationary and nonstationary kernels, exp(−‖x − x̃‖22/2l2) with bivariate Gaussian
distributions x̃ hinged on the environment and lengthscales l, and their ability to represent sharp spatial changes.
Note that both examples have the same number of kernels, however in the non-stationary case the kernels have
different positions and lengthscales to account for abrupt changes in the training data.

Figure 2: (a) A 50 × 300 m section of a simulated environment with obstacles in yellow. A robot shown as a
black arrow has a lidar with beams shown in blue and the laser hit points in red. (b) The robot moves around
and collects data. Red points are laser hit points and blue points are samples taken from lidar beams between
the robot and laser hit points (c) The occupancy probability map. Red indicates occupied space, blue indicates
free space, and colors in-between indicates the uncertainty of occupancy. (d) The map is built based on a set
of squared-exponential kernels. The mean of the initial bivariate Gaussians is shown here—Gaussians are in
a grid. (e) The proposed algorithm can learn both kernel parameters l and positions x̃ alongside other model
parameters. Both the color and the size of the marker indicates the size of the learned lengthscales. For instance,
larger lengthscales are shown in a bigger marker size and in red.

a single best lengthscale is chosen that performs, on average, the best for the entire dataset. In our38

contribution, we address where to place kernels and what lengthscales they should have.39

Another important aspect that should be taken into account when designing robot models is the un-40

certainty inherent to all levels of all interacting systems—from sensor and actuator imperfections to41

model misspecifications. Another incentive to use Bayesian models is that they provide an interface42

to incorporate high-level human knowledge about the system into the model through prior probabil-43

ity distributions. Furthermore, they inherently allow us to capture uncertainty about the perceived44

world as well as uncertainty about the model parameters themselves. This is an essential part of45

developing more explainable models which are particularly relevant to the future of intelligent sys-46

tems. Such an approach where data, alongside prior knowledge or structure, are injected into the47

model is known as gray-box modeling [4].48

In this paper, we use stochastic gradient descent with the reparameterization trick [5] to solve a49

challenging learning problem of automatically determining all parameters for Hilbert maps - which50

have traditionally used human-designed kernel hyperparameters. We demonstrate the importance of51

using more involved Bayesian formulations for uncertainty representation and learning thousands of52

parameters (Figure 2) in both small and bigdata settings without laborious mathematical derivations.53
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2 Background54

2.1 Bayesian Hilbert maps55

With the advancement of depth sensors such as lidar and sonar, occupancy grid maps (OGM)56

developed in 1980s [6] became a popular choice for representing the environment. To allevi-57

ate the disadvantages of OGMs, Gaussian process occupancy maps (GPOMs) [7] were proposed.58

Eliminating the cubic run-time complexity in GPOMs, Hilbert maps (HMs) [1] and Bayesian59

Hilbert maps (BHMs) were proposed [8]. In BHMs, the map is learned on a reproducing ker-60

nel Hilbert space (RKHS) where kernel functions are used to characterize spatial relationships.61

A kernel k(x, x̃) : X × X → R is a function that measures the similarity between two mul-62

tidimensional inputs x, x̃ ∈ X ⊂ R2. The pairwise similarities between the elements of the63

two sets of points {xn ∈ R2}Nn=1 and {x̃m ∈ R2}Mm=1 are computed. Here, x are longitude-64

latitude locations of either free or occupied y ∈ {0, 1} = {free, occupied} data points sampled65

from lidar beams and x̃ are points hinged on pre-defined locations of the space. A SE kernel66

k(xn, x̃m; l) = exp
(
− ‖xn − x̃m‖22/2l2

)
with a heuristically determined lengthscale l is used67

to compute the the feature vector φ(xn; l) = (k(xn, x̃1; l), k(xn, x̃2; l), ..., k(xn, x̃M ; l)) ∈ RM for68

all data points {xn}Nn=1. In this sense, {(xn, yn)}Nn=1 is the dataset and
{
l, {x̃m}Mm=1

}
is the pre-69

defined parameter set. Once the feature vector is computed, it passes through a sigmoidal function70

to estimate the occupancy level ŷ = p(y|x∗,w) = 1/(1 + exp(w>φ(xn; l))) of a query point in71

the space x∗, given the weights w ∼ N . As this query point can be any longitude-latitude pair, as72

opposed to OGMs, BHMs can produce maps with arbitrary resolution at prediction time. In BHMs,73

the lengthscales of the kernel l and where to place them x̃ are prefixed values.74

2.2 Kernel learning75

Kernels methods are used in robotics especially when the objective is to learn nonlinear patterns76

with a small amount of data [9–12]. Although only SE kernels with fixed lengthscales are used in77

robotic mapping [1–3], different kernel learning techniques have been previously discussed in ma-78

chine learning, especially in the Gaussian process literature. The selection of kernels is typically79

done through expert human knowledge [13], a model selection criteria such as Bayesian informa-80

tion criteria [14], or expensive optimization procedures [15]. Alternatively, it is possible to combine81

kernels as a sum or a product of kernels [13] or as representing them as a spectral mixture in the fre-82

quency domain [16]. However, unlike in Gaussian process where optimizing the hyperparameters is83

well-studied and readily available through the log marginal likelihood, directly learning parameters84

online in a classification setting is not straightforward in HMs.85

3 Nonstationary kernels for Hilbert mapping86

Figure 3: Feature vector
computation. {x̃}M=12

m=1

are hinge distributions and
xn is the nth data point.
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Figure 4: The graphical model. k represents the
kernel which is evaluated N ×M times.

87

In this section, we propose novel techniques for mapping unstructured environments without a hu-88

man explicitly providing hyper-parameters. As the main contribution of this paper, we propose a89
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Figure 5: (a) Environment and entire dataset 1 (b) The averaged occupancy map of BHM with a random set of
lengthscales (c) Predicted occupancy map using ABHM.

Figure 6: Predicted occupancy map and learned lengthscales. (a) Dataset 2 (b) Dataset 3

principled approach to learn weights, lengthscales, and positions of kernels. Individual lengthscales90

{lm}Mm=1 essentially model the nonstationary behavior and can easily acclimatize to local changes91

in the environment. To this end, in a sense of gray-box modeling, we start with possible locations for92

kernels as bivariate Gaussians and inverse length-scales as Gamma distributions, and then optimize93

them as the robot captures more data.94

Since observed occupancy values are always binary and are independent of each other, we as-95

sume the likelihood follows a Bernoulli distribution p(y|x,w, l, x̃) where log(θ/(1 − θ))) =96

w>Φ(x; l, x̃). As shown in Figure 3, kernel functions are now implicitly evaluated between dat-97

apoints point and hinge distributions, naturally accounting for uncertainty. Our objective is to learn98

the posterior distribution. However, because of the Bernoulli likelihood, the posterior is intractable99

and hence is approximated using another distribution q. With the variables defined in Table 1, in-100

dicating longitude and latitude with lon and lat, respectively, the basic formulation with mean-field101

variational approximation is given in Figure 3 and the following equation,102

M∏
m=1

q(wm)q(llon
m )q(llat

m)q(x̃m)︸ ︷︷ ︸
factorized variational distribution

= q(w, l, x̃)︸ ︷︷ ︸
variational
distribution

≈ p(w, l, x̃|x,y)︸ ︷︷ ︸
posterior

∝ p(w)p(l)p(x̃)︸ ︷︷ ︸
priors

p(y|x,w, l, x̃)︸ ︷︷ ︸
likelihood

.

3.1 Experiments103

We conducted experiments on four different datasets given in Table 2. These datasets contain both104

static and dynamic environments. As with [3, 8], our model will estimate the average long-term105

occupancy which is different to mapping short-term occupancy [17] or removing dynamics to build106

a static occupancy map [18, 19].107

Table 2: Description of the datasets.

Dataset Real Dynamic Description
1 7 7 A 600× 300m2 area [3]. This is a simple but large environment.
2 3 7 Intel lab dataset: a complex indoor environment.
3 7 3 Vehicles move in two directions and the robot sits in the middle [3].
4 3 3 Lidar dataset in a busy intersection [3].

This experiment was designed to validate the main contribution of the method—learning length-108

scales and hinge locations. The learned environments for different datasets are shown in 6. To109

understand the full effect of the proposed model it is not enough to look at the predicted occupancy110

map—we must consider the underlying distributions. Figure 7 provides a visual map of the means111

and variances of a learned model’s variational posteriors. Accounting for a large part of the upper112

and lower parts of the map, the position variance in Figure 7b shows that in areas of dense laser113

scans where no walls exist, a larger but uniform variance for each spatial dimension is learned. For114
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Figure 7: Uncertainty plots (a) A portion of the environment (b) Positions of hinge kernels x̃ (c) Lengthscales
(d) Weights

Table 3: Losses on all real datasets. The higher the area under curve (AUC) or the lower the mean negative log
loss (MNLL), the better the model is.

Method Dataset 1 Dataset 2 Dataset 3 Dataset 4
AUC MNLL AUC MNLL AUC MNLL AUC MNLL

ABHM 0.999 0.015 0.994 0.093 0.993 0.175 0.889 0.477
BHM 1.000 0.176 0.921 0.362 0.990 0.280 0.825 0.570
HM 0.992 0.226 0.938 0.666 0.920 0.903 0.778 0.677
VSDGPOM 0.801 0.372 0.794 0.530 0.990 0.233 0.788 0.886
DOGM 0.792 0.593 0.901 0.744 0.980 0.495 0.779 3.449

the areas where the laser scanner has detected walls one observes a stark contrast exhibited by the115

smaller spatial variances. In the walled area spanning the middle of the map the learned variances116

in the latitudinal direction are stretched out further relative to the longitudinal direction reflecting117

the narrow corridor-like shape of the wall. Concerning now the lengthscale mean and variance in118

Figure 7c we can observe the most significant effect in terms of the learned posteriors. At the top119

and the bottom open areas the largest lengthscales are observed signifying a minimal complexity120

of occupancy. Paralleling the learned position variances, the learned lengthscale means are clus-121

tered around either areas of detail or areas of uncertain occupancy. This effect is repeated in the122

lengthscale variance.123

The kernel weights means and variances are depicted in Figure 7d where one can see the high-124

est weights appear around areas associated with the smallest position and lengthscale variances.125

Contrastingly, the most negative weights appear in regions of highly confident predicted empty oc-126

cupancy. The weights closest to zero occur in areas of the map the robot has no visual perception127

and these constitute the insides of walls. The effect of the weight means is reflected in the weight128

variance where areas of high observability, which include open spaces and walls, have a low un-129

certainty in their estimates. Areas of low observability, i.e. inner parts of walls, have extremely130

high variances. This underlying analysis of the learned posterior distributions not only substantiates131

the motivation for spatially adaptive kernel learning, but also gives an explainable and intuitive un-132

derstanding of what the model has learned which is often critically important for robotic tasks that133

interact with real-world environments.134

Using all four datasets, the area under curve (AUC) and mean negative log loss (MNLL) were cal-135

culated. As reported in Table 3, these metrics were also calculated for occupancy grid maps with136

dynamic updates (DOGM), variational sparse dynamic Gaussian process occupancy maps (VSDG-137

POM) [8], HMs, and Bayesian Hilbert Maps with sequential updates (BHM). The best lengthscales138

for previous Hilbert mapping techniques were determined using five-fold cross validation. Even139

when compared with hand-crafted features, ABHM outperforms. This is because it models nonsta-140

tionarity and can capture subtle changes. For dataset 1 which has straight boundaries, the AUC value141

of both BHM and ABHM are comparable. However, ABHM outperforms in complex datasets such142

as in dataset 2 and dynamic environments such as in datasets 3 and 4. This is because only ABHMs143

can adjust the position and shape of kernels to locally adapt to environments.144
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Figure 8: Performance vs. number of features for dataset 2. The blue lines show performance for fixed hinge
positions while the red lines show the full ABHM model.

To further understand the relationship between the performance and number of hinge points, we145

analyzed the speed time and accuracy for dataset 2. We did this by, 1) learning both lengthscales146

and position, and 2) learning only the lengthscale keeping the kernels hinged on a grid. As shown in147

Figure 8, to achieve the same level of accuracy, only a smaller number of features is required when148

learning both the lengthscale and position.149

Runtime: We conducted all experiments on a computer with a GTX1080 Ti 11 GB. For datasets 1150

and 2, on average it takes around 10 minutes to learn all parameters. Note that this is to learn upwards151

of 57,600 parameters (8 parameters per hinge with more than 7200 hinges) and 300,000 data points.152

In contrast, [3] has an inevitable computational complexityO(M3) while the proposed method uses153

stochastic gradient descent (SGD). Although analyzing the theoretical asymptotic complexity is not154

straightforward, it linearly increases with M and N empirically. In ABHM, we take the advantage155

of SGD to scalable for large datasets.156

4 Conclusion157

With the intention of building continuous occupancy maps without the human intervention, we de-158

vised methods to learn all parameters of the Hilbert maps. We also demonstrated the use of the latest159

AutoML techniques to learn complex models without relying on tedious mathematical derivations.160

Since kernel methods have also been successfully used in a variety of nonlinear path planning meth-161

ods [9, 20, 21] we plan to extend these ideas to path planning so that mapping and path planning can162

be performed simultaneously in real-world in an end-to-end fashion under one framework.163
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7


	Introduction
	Background
	Bayesian Hilbert maps
	Kernel learning

	Nonstationary kernels for Hilbert mapping
	Experiments

	Conclusion

