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Abstract

Google’s Inception-V4 using an activation function RELU is a very deep convolu-1

tional neural network (CNN) that consists of 4 Inception-A blocks, 7 Inception-B2

blocks, and 3 Inception-C blocks. To improve classification performance, reduce3

training and testing times, and reduce power consumption and memory usage4

(model size), a new "Compressed Multi-function Inception-V4" (CMIV4) using5

different activation functions is created by using k Inception-A blocks, m Inception-6

B blocks, and n Inception-C blocks where k ∈ {1, 2, 3, 4}, m ∈ {1, 2, 3, 4, 5, 6, 7},7

n ∈ {1, 2, 3}, and (k + m + n) < 14. For performance analysis, two datasets8

for two different applications (classifying brain MRI images into one of the four9

stages of Alzheimer’s disease and using a sample of CIFAR-10 data) are used to10

compare three CMIV4 architectures with Inception-V4 in terms of F1-score, train-11

ing and testing times (related to power consumption), and memory usage (model12

size). Overall, simulations show that the new CMIV4 can outperform both the13

commonly used single-function CNN with Inception-V4 and multi-function CNNs14

with Inception-V4. In the future, other compressed multi-function CNNs, such15

as compressed multi-function ResNets and compressed multi-function DenseNets16

with a reduced number of convolutional blocks using different activation functions,17

will be developed to increase classification accuracy, reduce training and testing18

times, reduce computational power, and reduce memory usage (model size) for19

industrial applications in IoT, big data mining, green computing, etc.20

1 Introduction21

In recent years, deep learning techniques have been effectively used in various applications in22

computer vision, pattern recognition, etc. [1-15]. The new 28nm Two-Dimensional Convolutional23

Neural Network (CNN)-DSA accelerator with an ultra power-efficient performance of 9.3 TOPS/Watt24

was implemented for low-end mobile and embedded platforms and MCUs (Microcontroller Units)25

[16]. Since DenseNets require large GPU memory, new methods were developed to reduce the26

memory consumption for training them [17]. Currently, it is especially important to build effective,27

power-efficient, memory-efficient, and compact CNNs for applications in the internet of things (IoT),28

big data mining, green computing, etc. Traditional CNNs usually use the same activation function,29

such as Google’s very deep Inception-V4 network [15] using the popular rectified linear unit (RELU).30

However, traditional CNNs using RELU may not be optimal for power-efficient and memory-efficient31

applications. Thus, we design an effective, fast, power-efficient, memory-efficient, and compact32

multi-function CNN architecture based on Inception-V4 ("Compressed Multi-function Inception-V4)33

(CMIV4), by using different activation functions and reducing the number of convolutional blocks.34
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2 Compressed Multi-function CNNs with Compact Inception-V435

A very deep convolutional neural network Inception-V4 with a commonly used activation function36

RELU uses 4 Inception-A blocks, 7 Inception-B blocks, and 3 Inception-C blocks [15]. However,37

Inception-V4 with RELU may not be optimal for different applications. Thus, a new Multi-function38

Inception-V4 (MIV4) is developed by using different activation functions. In order to improve39

classification performance, reduce training and testing times, reduce power consumption, reduce40

memory usage (model size), the new CMIV4 using different activation functions for compact41

Inception-V4 uses k Inception-A blocks, m Inception-B blocks, and n Inception-C blocks where42

k ∈ {1, 2, 3, 4}, m ∈ {1, 2, 3, 4, 5, 6, 7}, n ∈ {1, 2, 3}, and (k + m + n) < 14. For instance, a43

CMIV4 using 1 Inception-A block, 2 Inception-B blocks, and 1 Inception-C block can run faster44

(use less power) and has a smaller model size (129MB) than the original Inception-V4 with RELU,45

which has a larger model size of 323MB. The CMIV4 uses 58 convolutional blocks with 58 functions46

and the Inception-V4 with RELU uses 149 convolutional blocks with 149 functions. The goal is to47

discover a CMIV4 model with better classification performance, faster training and testing times, and48

less power consumption and memory usage (model size) than the popular Google’s Inception-V4.49

3 Experimental Results50

Let "CMIV4_x" and "RELx" mean that a CMIV4 and a compressed Inception-V4 with RELU have x51

Inception-A, x+1 Inception-B, and x Inception-C blocks. "MIV4" and “REL” means that a MIV4 and52

the original Inception-V4 with RELU have 4 Inception-A, 7 Inception-B, and 3 Inception-C blocks.53

Stratified 3-fold cross validation was used to evaluate and compare the three CMIV4 models, the54

MIV4 model, the three compressed Inception-V4 models with RELU, and the original Inception-55

V4 using multi-class classification metrics (i.e. training F1-score (F1_train), validation F1-scores56

(F1_valid), training times (Time_train) in seconds, and classification testing times (Time_test) in57

seconds. An activation function set {RELU, SIG, TANH, ELU} was used to build all of the multi-58

function models. Each activation function is randomly chosen from this set. The model sizes of59

CMIV4_1, CMIV_2, CMIV_3, and MIV4 are 129MB, 190MB, 252MB, and 323MB, respectively.60

3.1 Application 1: Brain MRI Images61

A dataset of 436 brain MRI images (cross-sectional collection of 416 subjects aged 18 to 96 and with62

extra data for 20 subjects), pre-processed and ready to be used, is used for performance analysis [18].63

This research work uses all brain MRI images for a 4-class classification problem to determine the64

Alzheimer’s Disease stage (non-demented, very mild dementia, mild dementia, or moderate dementia)65

of a person [18][19]. For each architecture (CMIV4_1, CMIV4_1, CMIV4_1, or MIV4), 10 random66

CMIV4 models and 10 random MIV4 models are created and tested. The highest cross-validation67

F1-score for each architecture is shown in Table 1 (50 training epochs). Table 1 shows that MIV468

using 323MB memory is better than the best CMIV4 by only 0.01 for F1_valid, but CMIV4_2 using69

190MB memory is much faster (more power-efficient) and more memory-efficient. In addition, Table70

1 shows that the three best CMIV4 models and one MIV4 model always performed better than both71

the three compressed Inception-V4 models with RELU (REL1, REL2 and REL3) and the original72

Google’s Inception-v4 using RELU. REL1, REL2, and REL3 performed better, trained and predicted73

faster, and used less power and memory than REL did.74

Table 1: Comparing the Best CMIV4 Models and MIV4 Model for Brain Images

Model: CMIV4_1 REL1 CMIV4_2 REL2 CMIV4_3 REL3 MIV4 REL

F1_train 0.77 0.76 0.85 0.76 0.83 0.74 0.83 0.73
F1_valid 0.77 0.76 0.81 0.74 0.81 0.74 0.82 0.73

Time_train (s) 845 815 1139 1117 1456 1394 1869 1793
Time_test (s) 1.31 1.25 1.60 1.56 1.93 1.86 2.50 2.35

Average performance results for 10 CMIV4_1 models, 10 CMIV4_2 models, 10 CMIV4_3 models,75

and 10 MIV4 models are shown in Table 2 (90 training epochs). CMIV4_3 has shorter training and76

classification times, and less power consumption and memory usage (252MB), and it can perform77

better than the MIV4 model, which uses more memory (323MB).78
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Table 2: Average Performance of 30 CMIV4 Models and 10 MIV4 Models for Brain Images

Model: CMIV4_1 CMIV4_2 CMIV4_3 MIV4

Avg. F1_train 0.726 0.758 0.772 0.773
Avg. F1_valid 0.717 0.745 0.760 0.759

Avg. Time_train (s) 1690 2325 2930 3751
Avg. Time_test (s) 1.31 1.54 1.87 2.36

3.2 Application 2: CIFAR1079

A sample of the CIFAR10 data was used to test the performance of CMIV4 models compared to that80

of MIV4 models using RELU by randomly selecting the activation function for each neuron [20].81

The training sample size is 1000 and the test sample size is 300. For each architecture (CMIV4_1,82

CMIV4_2, CMIV4_3, or MIV4), 8 random CMIV4 models and 8 random MIV4 models are created83

and tested. The highest cross-validation F1-score for each architecture is shown in Table 3. 4084

training epochs were used. Table 3 shows that CMIV_1 and CMIV4_2 performed better than MIV485

and have faster training and test times. REL1, REL2, and REL3 performed better than REL and have86

faster training and test times. In addition, Table 3 shows that the best three CMIV4 models and one87

MIV4 model always performed better than both the three compressed Inception-V4 models with88

RELU (REL1, REL2 and REL3) and the original Google’s Inception-v4 using RELU in terms of89

both cross-validation training F1-scores and validation F1-scores.90

Table 3: Comparing the Best CMIV4 Models and MIV4 Model for CIFAR10

Model: CMIV4_1 REL1 CMIV4_2 REL2 CMIV4_3 REL3 MIV4 REL

F1_train 0.59 0.44 0.61 0.20 0.49 0.14 0.54 0.10
F1_valid 0.56 0.42 0.57 0.20 0.47 0.15 0.53 0.09

Time_train (s) 2862 2801 3780 3766 4783 4714 6260 6001
Time_test (s) 7.05 6.84 8.68 8.43 10.0 9.93 13.0 12.6

Average performance results for 8 CMIV4_1 models, 8 CMIV4_2 models, 8 CMIV4_3 models, and91

8 MIV4 models are shown in Table 4 (40 training epochs). All three compressed multi-function CNN92

models have shorter training and classification times, and less power consumption and memory usage93

than MIV4, and can still perform better than MIV4.94

Table 4: Average Performance of 24 CMIV4 Models and 8 MIV4 Models for CIFAR10

Model: CMIV4_1 CMIV4_2 CMIV4_3 MIV4

Avg. F1_train 0.477 0.465 0.449 0.445
Avg. F1_valid 0.459 0.443 0.430 0.423

Avg. Time_train (s) 2858 3811 4781 6123
Avg. Time_test (s) 7.39 8.59 10.1 12.9

4 Conclusions and Future Works95

Simulation results show that CMIV4 can achieve both better performance, shorter training and96

testing times (i.e., less power consumption), and less memory usage (model size) than both MIV497

and REL. Thus, compressed CNNs using a small number of convolutional blocks with different98

activation functions are useful for power-efficient and memory-efficient applications. In the future,99

better and automatic optimization algorithms will be developed to efficiently find the most effective,100

power-efficient, and memory-efficient CMIV4 models. Other compressed multi-function CNNs, such101

as compressed multi-function ResNets and compressed multi-function DenseNets with a reduced102

number of convolutional blocks using different activation functions, will be developed to increase103

classification accuracy, reduce training and testing times, reduce computational power, and reduce104

memory usage (model size) for industrial applications in IoT, big data mining, green computing, etc.105
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