BACKPROP WITH APPROXIMATE ACTIVATIONS FOR MEMORY-EFFICIENT NETWORK TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

With innovations in architecture design, deeper and wider neural network models deliver improved performance on a diverse variety of tasks. But the increased memory footprint of these models presents a challenge during training, when all intermediate layer activations need to be stored for back-propagation. Limited GPU memory forces practitioners to make sub-optimal choices: either train inefficiently with smaller batches of examples; or limit the architecture to have lower depth and width, and fewer layers at higher spatial resolutions. This work introduces an approximation strategy that significantly reduces a network’s memory footprint during training, but has negligible effect on training performance and computational expense. During the forward pass, we replace activations with lower-precision approximations immediately after they have been used by subsequent layers, thus freeing up memory. The approximate activations are then used during the backward pass. This approach limits the accumulation of errors across the forward and backward pass—because the forward computation across the network still happens at full precision, and the approximation has a limited effect when computing gradients to a layer’s input. Experiments, on CIFAR and ImageNet, show that using our approach with 8- and even 4-bit fixed-point approximations of 32-bit floating-point activations has only a minor effect on training and validation performance, while affording significant savings in memory usage.

1 INTRODUCTION

Deeper neural network models are able to express more complex functions, and recent results have shown that with the use of residual (He et al., 2016a) and skip (Huang et al., 2017) connections to address vanishing gradients, such networks can be trained effectively to leverage this additional capacity. As a result, the use of deeper network architectures has become prevalent, especially for visual inference tasks (He et al., 2016b). The shift to larger architectures has delivered significant improvements in performance, but also increased demand on computational resources. In particular, deeper network architectures require significantly more on-device memory during training—much more so than for inference. This is because training requires retaining the computed activations of all intermediate layers since they are needed to compute gradients during the backward pass.

The increased memory footprint means fewer training samples can fit in memory and be processed as a batch on a single GPU. This is inefficient: smaller batches are not able to saturate all available parallel cores, especially because computation in “deeper” architectures is distributed to be more sequential. Moreover, smaller batches also complicate the use of batch-normalization (Ioffe & Szegedy, 2015), since batch statistics are now computed over fewer samples making training less stable (even when training with data parallelism across multiple GPUs, separate batch statistics are computed for each GPU). These considerations often force the choice of architecture to be based not just on optimality for inference, but also practical feasibility for training—for instance, deep residual networks for large images drop resolution early, so that most layers have smaller sized outputs.

While prior work to address this has traded-off memory for computation (Martens & Sutskever, 2012; Chen et al., 2016; Gruslys et al., 2016; Gomez et al., 2017), their focus has been on enabling exact gradient computation. However, since stochastic gradient descent (SGD) inherently works with noisy gradients at each iteration, we propose an algorithm that computes reasonably approximate gradients, while significantly reducing a network’s memory footprint and with virtually
Figure 1: Proposed Approach. We show the computations involved in the forward and backward pass during network training for a single “pre-activation” layer, with possible residual connections. The forward pass is exact, but we discard full-precision activations right after use by subsequent layers (we store these in common global buffers, and overwrite activations once they have been used and no longer needed for forward computation). Instead, we store a low-precision approximation of the activations which occupies less memory, and use these during back-propagation. Our approach limits errors in the gradient flowing back to the input of a layer, and thus accumulation of errors across layers. Since our approximation preserves the signs of activations, most of the computations along the path back to the input are exact—with the only source of error being the use of the approximate activations while back-propagating through the variance-computation in batch-normalization.

no additional computational cost. Our work is motivated by distributed training algorithms (Recht et al., 2011; Dean et al., 2012; Seide et al., 2014; Wen et al., 2017) that succeed despite working with approximate and noisy gradients aggregated across multiple devices. We propose using low-precision approximate activations—that require less memory—to compute approximate gradients during back-propagation (backprop) on a single device. Note that training with a lower-precision of 16- instead of 32-bit floating-point representations is not uncommon. But in this case, the lower precision is used for all computation. While this yields benefits to both memory usage and computation, it typically allows only for a modest lowering of precision as the approximation error builds up across the forward and then backward pass through all layers in the network.

In this work, we propose a new backprop implementation that performs the forward pass through the network at full-precision, and incurs limited approximation error during the backward pass. We use the full-precision version of a layer’s activations to compute the activations of subsequent layers. However, once these activations have been used in the forward pass, our method discards them and stores a low-precision approximation instead. During the backward pass, gradients are propagated back through all the layers at full precision, but instead of using the original activations, we use their low-precision approximations. As a result, we incur an approximation error at each layer when computing the gradients to the weights from multiplying the incoming gradient with the approximate activations, but ensure the error in gradients going back to the previous layer is minimal.

Our experimental results show that even using only 4-bit fixed-point approximations, for the original 32-bit floating-point activations, leads to only a minor degradation in training performance. This significantly lowers the memory footprint required for training, and this reduction comes essentially for “free”—we incur only the negligible additional computational cost of converting activations to
and from lower precision representations. Our memory-efficient version of backprop is thus able to use larger batch sizes at each iteration—leading to full use of available parallelism and stable computation of batch statistics—and makes it practical for researchers and practitioners to explore the use of much larger and deeper architectures than before.

2 RELATED WORK

With growing preference for larger and deeper network architectures, a common recourse to the increased memory requirements has been to simply use multiple GPUs during training. However, this is inefficient because it adds the overhead of intra-device communication, and often represents an under-utilization of the available parallelism on each device—for the same number of floating-point operations, deeper architectures distribute computation to be more sequential which, without sufficient data parallelism, often does not saturate all GPU cores.

A popular strategy to reduce memory requirements is “checkpointing”—dating at least as far back as the work of Martens & Sutskever (2012). Checkpointing stores activations for only a subset of layers at a time, and recovers the rest by repeating forward computations. Thus, the memory savings come at additional computational cost, and different checkpointing strategies (Martens & Sutskever, 2012; Chen et al., 2016; Gruslys et al., 2016) result in different memory-computation trade-offs. Recently, Gomez et al. (2017) proposed modifying the architecture of the network itself to yield a better trade-off. Their “reversible” networks constrain the operations at each layer to be invertible. As such, they do not need to save any intermediate activations, and instead are able to re-create them during the backward pass (with additional computational cost equivalent to a single forward pass).

These methods likely represent the best possible solutions if the goal is restricted to computing exact gradients. But SGD is fundamentally a noisy process, and the exact gradients computed over a batch at each iteration are already an approximation—of gradients of the model over the entire training set (Robbins & Monro, 1985). Researchers have posited that further approximations are possible without degrading training ability, and used this to realize gains in efficiency. For distributed training, asynchronous methods (Recht et al., 2011; Dean et al., 2012) delay synchronizing models across devices to mitigate communication latency. As a result, gradients computed in individual devices are approximate since they are computed with respect to older versions of the model. Despite this, there is no major degradation in training performance. Other methods carry out synchronization after each iteration, but use a different approximation strategy. They quantize gradients to two (Seide et al., 2014) or three levels (Wen et al., 2017), so as to reduce communication overhead, and again find that training remains robust to such approximation. Our work also adopts an approximation strategy to gradient computation, but targets the problem of memory usage on a single device. We approximate activations, rather than gradients, with lower-precision representations, and by doing so, we are able to achieve considerable reductions in a model’s memory footprint during training.

It is worth differentiating our work from those that carry out all training computations at lower-precision Micikevicius et al. (2017); Gupta et al. (2015). This strategy allows for a modest loss in precision: from 32- to 16-bit representations. In contrast, our approach allows for much greater reduction in precision. This is because we carry out the forward pass in full-precision, and approximate activations only after they have been used by subsequent layers. Our strategy limits accumulation of errors across layers, and we are able to replace 32-bit floats with 8- and even 4-bit fixed-point approximations, with little to no effect on training performance. Note that performing all computation at lower-precision also has a computational advantage: due to reduction in-device memory bandwidth usage (transferring data from global device memory to registers) in Micikevicius et al. (2017), and due to the use of specialized hardware in Gupta et al. (2015). While our goal is different and we do not pursue these computational gains in our work, it is relatively simple to incorporate these ideas within our framework: by adopting our strategy to compress intermediate activations to a greater degree, while also using 16- instead of 32-bit precision for all other computation.

3 PROPOSED METHOD

We now describe our approach to memory-efficient training. We begin by reviewing the computational steps in the forward and backward pass for a typical network layer, and then describe our approximation strategy to reducing the memory requirements for storing intermediate activations.
3.1 Background

A neural network is composed of linear and non-linear functions that map the input to the final desired output. These functions are often organized into “layers”, where each layer consists of a single linear transformation—typically a convolution or a matrix multiply—and a sequence of non-linearities. We use the “pre-activation” definition of a layer, where we group the linear operation with the non-linearities that immediately precede it. Consider a typical network whose \(l\)-th layer applies batch-normalization and ReLU activation to its input \(A_{l;i}\) followed by a linear transform:

\[
\begin{align*}
[A \text{Batch Normalization}] & \quad A_{l;1} = (\sigma_t^2 + \epsilon)^{-1/2} \circ (A_{l;i} - \mu_t), \quad \mu_t = \text{Mean}(A_{l;i}), \quad \sigma^2 = \text{Var}(A_{l;i}); \\
[\text{Scaling and Bias}] & \quad A_{l;2} = \gamma_l \circ A_{l;1} + \beta_l; \\
[\text{ReLU}] & \quad A_{l;3} = \max(0, A_{l;2}); \\
[\text{Linear Transform}] & \quad A_{l;o} = A_{l;3} \times W_l;
\end{align*}
\]

yielding the output activations \(A_{l;o}\) that are fed into subsequent layers. Here, each activation is a tensor with two or four dimensions: the first indexing different training examples, the last corresponding to “channels”, and others to spatial location. Mean\((\cdot)\) and Var\((\cdot)\) aggregate statistics over batch and spatial dimensions, to yield vectors \(\mu_t\) and \(\sigma^2\) with per-channel means and variances. Element-wise addition and multiplication (denoted by \(\circ\)) are carried out by “broadcasting” when the tensors are not of the same size. The final operation represents the linear transformation, with \(\times\) denoting matrix multiplication. This linear transform can also correspond to a convolution.

Note that (1)-(4) are defined with respect to learnable parameters \(\gamma_l, \beta_l, \text{ and } W_l\), where \(\gamma_l, \beta_l\) are both vectors of the same length as the number of channels in \(A_l\), and \(W_l\) denotes a matrix (for fully-connected layers) or elements of a convolution kernel. These parameters are learned iteratively using SGD, where at each iteration, they are updated based on gradients—\(\nabla \gamma_l, \nabla \beta_l, \text{ and } \nabla W_l\)—of some loss function with respect to these parameters, computed on a batch of training samples.

To compute gradients with respect to all parameters for all layers in the network, the training algorithm first computes activations for all layers in sequence, ordered such that each layer in the sequence takes as input the output from a previous layer. The loss is then computed with respect to activations of the final layer, and then the training algorithm goes through all layers again in reverse sequence, using the chain rule to back-propagate gradients of this loss. For the \(l\)-th layer, given the gradients \(\nabla A_{l;o}\) of the loss with respect to the output, this involves computing gradients \(\nabla \gamma_l, \nabla \beta_l, \text{ and } \nabla W_l\)—of some loss function with respect to these parameters, as well as gradients \(\nabla A_{l;i}\) with respect to its input for further propagation. These gradients are given by:

\[
\begin{align*}
\text{Linear Transform: } & \quad \nabla W = A_{l;3}^T \times (\nabla A_{l;o}), \quad \nabla A_{l;3} = (\nabla A_{l;o}) \times W_l^T; \\
\text{ReLU: } & \quad \nabla A_{l;2} = \delta(A_{l;2} > 0) \circ (\nabla A_{l;3}); \\
\text{Scaling and Bias: } & \quad \nabla \beta_l = \text{Sum}(\nabla A_{l;2}), \quad \nabla \gamma_l = \text{Sum}(A_{l;1} \circ (\nabla A_{l;2})), \quad \nabla A_{l;1} = \gamma_l \circ \nabla A_{l;2}; \\
\text{Batch Normalization: } & \quad \nabla A_{l;i} = (\sigma_t^2 + \epsilon)^{-1/2} \circ [\nabla A_{l;i} - \text{Mean}(\nabla A_{l;i}) - A_{l;i} \circ \text{Mean}(A_{l;i} \circ (\nabla A_{l;i}))];
\end{align*}
\]

where \text{Sum}(\cdot)\) and \text{Mean}(\cdot)\) involve aggregation over all but the last dimension, and \(\delta(A > 0)\) a tensor the same size as \(A\) that is one where the values in \(A\) are positive, and zero otherwise.

When the goal is to just compute the final output of the network, the activations of an intermediate layer can be discarded during the forward pass as soon as we finish processing the subsequent layer or layers that use it as input. However, we need to store all these intermediate activations during training because they are needed to compute gradients during back-propagation: (5)-(8) involve not just the values of the incoming gradient, but also the values of the activations themselves. Thus, training requires enough available memory to hold the activations of all layers in the network.

3.2 Back-propagation with Approximate Activations

We begin by observing we do not necessarily need to store all intermediate activations \(A_{l;1}, A_{l;2}, \text{ and } A_{l;3}\) within a layer. For example, it is sufficient to store the activation values \(A_{l;2}\) right before the ReLU, along with the variance vector \(\sigma^2\) (which is typically much smaller than the activations
themselves). Given $A_{l:2}$, we can reconstruct the other activations $A_{l:3}$ and $A_{l:4}$ needed in (5)-(8) using element-wise operations, which typically have negligible computational cost compared to the linear transform itself. Some deep learning frameworks already use such “fused” layers to conserve memory, and we consider this to be our “baseline” for memory usage.

However, storing one activation tensor at full-precision for every layer still requires a considerable amount of memory. We therefore propose retaining an approximate low-precision version $\tilde{A}_{l:2}$ of $A_{l:2}$, that requires much less memory for storage, for use in (5)-(8) during back-propagation. As shown in Fig. 1, we use full-precision versions of all activations during the forward pass to compute $A_{l:o}$ from $A_{l:i}$ as per (11)-(4), and use $\tilde{A}_{l:2}$ to compute its approximation $\tilde{A}_{l:2}$. The full precision approximations are discarded as soon they have been used—the intermediate activations $A_{l:1}, A_{l:2}, A_{l:3}$ are discarded as soon as the approximation $\tilde{A}_{l:2}$ and output $A_{l:o}$ have been computed, and $A_{l:o}$ is discarded after it has been used by a subsequent layer. Thus, only the approximate activations $\tilde{A}_{l:2}$ and (full-precision) variance vector $\sigma_{l:2}^2$ are retained in memory for back-propagation.

We use a simple, computationally inexpensive approach to approximate $A_{l:2}$ via a K-bit fixed-point representation for some desired value of K. Since $A_{l:1}$ is normalized to be zero-mean and unit-variance, $A_{l:2}$ has mean β_{l} and variance γ_{l}^2. We compute an integer tensor $\tilde{A}^*_l:2$ from $A_{l:2}$ as:

$$\tilde{A}^*_l:2 = \text{Clip}_K(\lfloor A_{l:2} \pm 2K \gamma_{l} \rfloor, x, \beta_{l} - 2K \gamma_{l})$$

where $\lfloor \cdot \rfloor$ indicates the “floor” operator, and $\text{Clip}_K(x) = \max(0, \min(2^K - 1, x))$. The resulting integers (between 0 and $2^K - 1$) can be directly stored with K-bits. When needed during back-propagation, we recover a floating-point tensor holding the approximate activations $\tilde{A}_{l:2}$ as:

$$\tilde{A}_{l:2} = \frac{2^{-K} \gamma_{l}}{2} \circ \tilde{A}^*_l:2 + \frac{2K - 1}{2} \circ \beta_{l} \circ 2K \gamma_{l}$$

This simply has the effect of clipping $A_{l:2}$ to the range $\beta_{l} \pm 3\gamma_{l}$ (approximately, the range may be slightly asymmetric around β_{l} because of rounding), and quantizing values in 2^K fixed-size intervals (to the median of each interval) within that range. However, crucially, this approximation ensures that the sign of each value is preserved, i.e., $\delta(\tilde{A}_{l:2} > 0) = \delta(\tilde{A}_{l:2} > 0)$.

3.3 Approximation Error in Training

Since the forward computations happen in full-precision, there is no error introduced in any of the activations A_l prior to approximation. To analyze the error introduced by our approach, we then consider the effect of using $\tilde{A}_{l:2}$ instead of $A_{l:2}$ (and equivalently, $\tilde{A}_{l:1}$ and $\tilde{A}_{l:3}$ derived from $\tilde{A}_{l:2}$) to compute gradients in (5)-(8). We begin by noting that for all values of $A_{l:2}$ that fall within the range $\beta_{l} \pm 3\gamma_{l}$ (and are therefore not clipped), the worst-case approximation error in the activations themselves is bounded by half the width of the quantization intervals:

$$|A_{l:2} - \tilde{A}_{l:2}| \leq \frac{3}{2K} \gamma = \frac{3}{2K} \sqrt{\text{Var}(A_{l:2})},$$

where $\text{Var}(\cdot)$ denotes per-channel variance (and the RHS is interpreted as applying to all channels). Hence, the approximation error is a fraction of the variance in the activations themselves, and is lower for higher values of K. It is easy to see that $|A_{l:3} - \tilde{A}_{l:2}| \leq |A_{l:2} - \tilde{A}_{l:2}|$ since $A_{l:3}$ and $\tilde{A}_{l:3}$ are derived from $A_{l:2}$ and $\tilde{A}_{l:2}$ by clipping negative values of both to 0, which only decreases the error. Further, since $A_{l:2}$ is related to $A_{l:1}$ by simply scaling, the error in $\tilde{A}_{l:1}$ is also bounded as a fraction of its variance, which is one, i.e.: $|A_{l:1} - \tilde{A}_{l:1}| \leq 3/2K$.

We next examine how these errors in the activations affect the accuracy of gradient computations in (5)-(8). During the first back-propagation step in (5) through the linear transform, the gradient ∇W to the learnable transform weights will be affected by the approximation error in $\tilde{A}_{l:3}$. However, the gradient $\nabla A_{l:2}$ can be computed exactly (as a function of the incoming gradient to the layer $\nabla A_{l:o}$), because it does not depend on the activations. Back-propagation through the ReLU in (7) is also not affected, because it depends only on the sign of the activations, which is preserved by our approximation. When back-propagating through the scale and bias in (6), only the gradient $\nabla \gamma$ to the scale depends on the activations, but gradients to the bias β_{l} and to $A_{l:1}$ can be computed exactly.

And so, although our approximation introduces some error in the computations of ∇W and $\nabla \gamma$, there is no error introduced in the gradient flowing towards the input of the layer, until it reaches...
the batch-normalization operation in (8). Here, we do incur an error, but note that this is only in one of the three terms of the expression for $\nabla A(l)$—which accounts for back-propagating through the variance computation, and is the only term that depends on the activations. Hence, while our activation approximation does introduce some errors in the gradients for the learnable weights, we limit the accumulation of these errors across layers because a majority of the computations for back-propagation to the input of each layer are exact. This is illustrated in Fig. 1 with the use of green arrows to show computations that are exact, and red arrows for those affected by the approximation.

3.4 Network Architectures and Memory Usage

Our full training algorithm applies our approximation strategy to every layer (defined by grouping linear transforms with preceding non-linear activations) during the forward and backward pass. Skip and residual connections are handled easily, since back-propagation through these connections involves simply copying to and adding gradients from both paths, and doesn’t involve the activations themselves. (Although we do not consider this in our implementation, older residual connections that are added after batch-normalization but before the ReLU can also be handled, but would require saving activations both before and after addition—in the traditional case, well as our approach).

Our method is predicated on the use of ReLU activations since its gradient depends only on the sign of the activations, and can be used for other such non-linearities such as “leaky”-ReLU. Other activations (like sigmoid) may incur additional errors—in particular, we do not approximate the activations of the final output layer in classifier networks that go through a Soft-Max. However, since this is typically at the final layer, and computing these activations is immediately followed by back-propagating through that layer, approximating these activations offers no savings in memory. Our approach also handles average pooling by simply folding it in with the linear transform. For max-pooling, exact back-propagation through the pooling operation would require storing the arg-max indices (the number of bits required to store these would depend on the maximum index field size). However, since max-pool layers are used less often in recent architectures in favor of learned downsampling (ResNet architectures for image classification use max-pooling only in one layer), we instead choose not to approximate layers with max-pooling for simplicity.

Given a network with L layers, our memory usage depends on connectivity for these layers. Our approach requires storing the approximate activations for each layer, each occupying reduced memory rate at a fractional rate of $\alpha < 1$. During the forward pass, we also need to store, at full-precision, those activations that are yet to be used by subsequent layers. This is one layer’s activations for feed-forward networks, and two layers’ for standard residual architectures. More generally, we will need to store activations for up to W layers, where W is the “width” of the architecture—which we define as the maximum number of outstanding layer activations that remain to be used as process layers in sequence. During back-propagation, the same amount of space is required for storing gradients till they are used by previous layers. We also need space to re-create a layer’s approximate activations as full-precision tensors from the low-bit stored representation, for use in computation.

Thus, assuming that all activations of layers are the same size, our algorithm requires $O(W + 1 + \alpha L)$ memory, compared to the standard requirement of $O(L)$. This leads to substantial savings for deep networks with large L (note $\alpha = 1/4, 1/8$ when approximating 32-bit floats with $K = 8, 4$ bits).

4 Experiments

We implemented our approximate training algorithm using the TensorFlow library (Abadi et al., 2016). However, we only used TensorFlow’s functions for individual forward and gradient computations, but not on its automatic differentiation functionality. Instead, we implemented a framework that allows specifying residual network architectures, and then creates a set of TensorFlow ops for doing forward and backward passes through each layer. We also used custom ops implemented in CUDA to handle the conversion to and from low-precision representations. Each layer’s forward and backward ops are called in separate sess.run calls, and all data that needs to persist between calls—including still to be used full precision activations and gradients in the forward and backward pass, and approximate intermediate activations—are stored explicitly as TensorFlow variables.

For the forward and backward passes through the network, we call these ops in sequence followed by ops to update the model parameters based on the computed gradients. We chose not to allocate and
Figure 2: Approximate Training on CIFAR. (Left) We show the evolution of training and test error for ResNet-164 models trained on CIFAR-10 and CIFAR-100 (with four different random seeds for each case). Even when using 8- and 4-bit activation approximations, performance closely follows that of exact training. (Right) We visualize errors in the computed gradients of learnable parameters (convolution kernels) for different layers. For two snapshots of a CIFAR-100 model—at the beginning and end of training—we plot errors between the true gradients and those computed by our approximation, averaged over a 100 batches. We compare to the errors inherent in SGD itself: the variance between the (exact) gradients for the same parameters computed from different batches. The additional error due to our approximation is 1-2 orders of magnitude lower than the existing SGD noise, explaining why our approximation does not significantly impact training performance.

then free variables for the full-precision layer activations and gradients, since this caused memory fragmentation with Tensorflow’s memory management routines. Instead as shown in Fig. 1, we use two common buffers for all layers to hold activations for the feed-forward and residual paths in the network respectively, and reuse them by overwriting old activations and gradients with new ones.

For comparison, our implementation supports storing intermediate activations without approximation—although, we only store one set of activations (A_{ℓ}) per layer. This requires less memory than with Tensorflow’s automatic differentiation implementation, and we use this as our baseline. Our approximation strategy incurs very little additional computational expense—e.g., the running time per iteration (on a single 1080Ti GPU) for exact vs approximate (4-bit) training is 0.66 seconds vs 0.72 seconds for CIFAR-100, and 1.68 seconds vs 1.71 seconds for ImageNet.

4.1 RESULTS

CIFAR-10 and CIFAR-100. We begin with comparisons on 164-layer pre-activation residual networks [He et al., 2016b] on CIFAR-10 and CIFAR-100 [Krizhevsky & Hinton, 2009]. These networks contain 3 blocks of 18 “bottle-neck” three-layer residual units each, along with an additional initial layer, and a final layer preceded by average pooling to produce the output. Note that we use parameter-free shortcuts for all residual connections. We train the network for 64K iterations with a batch size of 128, momentum of 0.9, and weight decay of 2×10^{-4}. Following [He et al., 2016b], the learning rate is set to 10^{-2} for the first 400 iterations, then increased to 10^{-1}, and dropped by a factor of 10 at 32K and 48K iterations. We use standard data-augmentation with random translation and horizontal flips. We train these networks with our approach using $K = 8$ and $K = 4$ bit approximations, and measure degradation in training performance with respect to the baseline. We repeat training for all three cases with four different random seeds. We visualize the evolution of training and test set error in Fig. 2 and report statistics of the final test error in Table 1.

We find that both training and test errors when using our low-memory approximation strategy closely follow those of exact back-propagation, throughout the training process. Moreover, the final median test errors of models trained with even 4-bit approximations (i.e., corresponding to $\alpha = 1/8$) are
Table 1: Test error on CIFAR-10 and CIFAR-100 with ResNet-164 (4 seeds)

<table>
<thead>
<tr>
<th>Memory Factor α</th>
<th>CIFAR-10</th>
<th></th>
<th></th>
<th>CIFAR-100</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Median</td>
<td>Mean ± STD</td>
<td>Median</td>
<td>Mean ± STD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exact</td>
<td>5.56%</td>
<td>5.54% ± 0.14</td>
<td>23.59%</td>
<td>23.58% ± 0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-bit</td>
<td>5.61%</td>
<td>5.63% ± 0.14</td>
<td>23.63%</td>
<td>23.75% ± 0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-bit</td>
<td>5.63%</td>
<td>5.62% ± 0.07</td>
<td>23.66%</td>
<td>23.71% ± 0.29</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Error on ImageNet validation with ResNet-34 (10-crop)

<table>
<thead>
<tr>
<th>Mem. Factor α</th>
<th>Exact</th>
<th>8-bit</th>
<th>4-bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top-5 Error</td>
<td>10.06%</td>
<td>10.60%</td>
<td>10.74%</td>
</tr>
</tbody>
</table>

higher only by 0.07% compared to those trained with exact computations. To examine the reason behind this robustness, Fig. 2 also visualizes the error in the final parameter gradients used to update the model. Specifically, we take two models for CIFAR-100—at the start and end of training—and then compute gradients for a 100 batches with respect to the convolution kernels of all layers exactly, and using our approximate strategy. We plot the average squared error between these gradients. We compare this approximation error to the "noise" inherent in SGD, due to the fact that each iteration considers a random batch of training examples. This is measured by average variance between the (exact) gradients computed in the different batches. We see that our approximation error is between one and two orders of magnitude below the SGD noise for all layers, both at the start and end of training. So while we do incur an error due to approximation, this is added to the much higher error that already exists due to SGD even in exact training, and hence further degradation is limited.

ImageNet. We also report results on training models for ImageNet (Russakovsky et al., 2015). Here, we use a 34-layer pre-activation residual network—with two-layer residual units without bottlenecks, and again using parameter free shortcuts. We train with a batch size of 256: we were able to fit an entire batch in memory for our approach, but had to repeat forward-backward twice with a batch size of 128, and average the gradients, when using exact computation. We train for a total of 640k iterations with a momentum of 0.9, weight decay of 10^{-4}, and an initial learning rate of 10^{-1}, which is dropped by a factor of 10 at 16k, 32k, and 48k iterations. We use standard scale, color, flip, and translation augmentation. Table 2 reports top-5 validation accuracy (using 10 crops at a scale of 256) for models trained using exact computation, and our approach with $K = 8$ and $K = 4$ bit approximations. Again, we find that the total drop in accuracy is relatively small, at less than 0.7% for a memory savings factor of $\alpha = 1/8$ with $K = 4$.

5 Conclusion

We introduced a new algorithm for approximate gradient computation in neural network training, that significantly reduces the amount of required on-device memory. Our experiments show that this comes at a minimal cost in terms of both quality of the learned models, and computational expense. With a lower memory footprint, our method allows training with larger batches in each iteration—improving efficiency and stability—and exploration of deeper architectures that were previously impractical to train. We will release our reference implementation on publication.

Our method shows that SGD is reasonably robust to working with approximate activations. While we used an extremely simple approximation strategy—uniform quantization—in this work, we are interested in exploring whether more sophisticated techniques—e.g., based on random projections or vector quantization—can provide better trade-offs, especially if informed by statistics of gradients and errors from prior iterations. We are also interested in investigating whether our approach to partial approximation can be utilized in other settings, especially to reduce inter-device communication for distributed training with data or model parallelism.
REFERENCES

