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ABSTRACT

Deep learning applied to the reconstruction of 3D shapes has seen growing in-
terest. A popular approach to 3D reconstruction and generation in recent years
has been the CNN decoder-encoder model often applied in voxel space. However
this often scales very poorly with the resolution limiting the effectiveness of these
models. Several sophisticated alternatives for decoding to 3D shapes have been
proposed typically relying on alternative deep learning architectures. We show
however in this work that standard benchmarks in 3D reconstruction can be tack-
led with a surprisingly simple approach: a linear decoder obtained by principal
component analysis on the signed distance transform (SDF) of the surface. This
approach allows easily scaling to larger resolutions. We show in multiple exper-
iments it is competitive with state of the art methods and also allows the decoder
to be fine-tuned on the target task using a loss designed for SDF transforms, ob-
taining further gains.

1 INTRODUCTION

In recent years there has been an increased interest in extending the successes of deep learning to
problems requiring analysis and representation of 3D shapes. This includes many long standing
tasks such as 3D shape reconstruction (Wu et al., 2016a; Choy et al., 2016) from single or multiple
views, as well as shape completion Mescheder et al. (2018). There are a number of applications of
these methods in robotics, surgery, and augmented reality.

A popular approach has been the use of CNN decoder-encoder architectures Choy et al. (2016) as
popularized in applications like segmentation Chen et al. (2017). Here for example in the single view
reconstruction 2D CNN will encode the 2-D image and a 3D CNN decoder model will produce the
final representation in voxels. This however is ineffective in larger resolutions and does not make
full use of the structure of the object. Similar problems arise in more general attempts to learn latent
variable models of shapes (Wu et al., 2016b; Gadelha et al., 2017). Here one may be interested in
tasks such as unconditional generation and reconstruction.

More recently authors have considered alternative representations of shapes to a standard 3D dis-
cretized set of voxels(Choy et al., 2016; Girdhar et al., 2016b; Wu et al., 2016a; Yan et al., 2016;
Zhu et al., 2017), one that can permit more efficient learning and generation. These include point
clouds Fan et al. (2017), meshes(Wang et al., 2018; Georgia Gkioxari, 2019), and signed distance
transform based representations (Michalkiewicz et al., 2019; Park et al., 2019). To date there is not
an agreed upon canonical 3-D shape representation for use with deep learning models. Further-
more authors have considered alternative architectures aimed at dealing with this problem (Richter
& Roth, 2018; Tatarchenko et al., 2017). However, in this work, we ask whether a simpler approach
can yield strong results. Building on the recent use of the Signed Distance Function (SDF) in shape
representation we demonstrate a simple latent shape representation that can be used in downstream
tasks and easily decoded. More specifically, in this work, we consider a latent shape representation
obtained by applying PCA on the SDF transformed shape. We show this leads to a latent shape
representation that can be used directly in downstream tasks like 3D shape reconstruction from a
single view and 3D shape completion from a point cloud.

Our work a) reinforces the relevance of SDF as a representation for 3D deep learning b) demonstrates
that a simple representation obtained by applying PCA on the SDF transform can lead to an effective
latent shape representation. This representation allows for results competitive to state-of-the-art
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in standard benchmarks. Our work also suggests more complex benchmarks than those currently
considered may be needed to push forward the study of learned 3D shape reconstruction.

The paper is structured as follows. In Sec. 2 we discuss the related work. We outline the basic
methods used in the experiments in Sec. 3. We show extensive quantitative and experimental results
comparing the eigenSDF approach to existing methods in Sec. 4.

2 RELATED WORK

Point cloud based representation require a tedious step of sampling points from the surface and to
generate shape subsequently inferring the continuous shape from a sample of points. Meshes present
a challenge in that no clear way to generate valid meshes is available. Proposals have consisted of
starting with template shapes and progressively deforming them Wang et al. (2018). This how-
ever can be problematic as it never explicitly represents the shape and may suffer issues with local
coherence.

Michalkiewicz et al. (2019) and Park et al. (2019) also use the SDF representation. Unlike our work
Deep Level Sets still relies on a decoder encoder CNN architecture thus not removing the desired
computational constraints associated with the 3D shape modeling. DeepSDF attempts to directly
fit a continuous function to each shape which gives the SDF representations. Although it avoids
discretization this function can lead to a complex decoder model, for example an 8 layer network
is used to fit the SDF. Another recent work Mescheder et al. (2018) similar in spirit to Park et al.
(2019) learns a classifier to predict whether a point is inside or outside of the boundary, using this
classifier as the shape representation. Unlike our proposal these methods cannot easily learn a latent
shape representation to be applied on downstream task, since the shape is represented by the weights
of the classifier or regression model. On the other hand our latent representation can easily encode
an unseen shape and be easily used as a prediction target for deep learning models.

Our work can also be seen as complementary to the very recent observations in Tatarchenko et al.
(2019) which highlights that good 3D single view reconstruction performance can be achieved by
using retrieval or clustering methods. We note however the descriptors used in that work are more
complex.

PCA has been classically used to represent shapes in a variety of contexts. For example classical
methods in computer vision such as the active appearance model Edwards et al. (1998) and the 3D
morphable model used in face analysis Blanz et al. (1999) are based on PCA shape representations.
However, these typically are applied in a different context requiring transforming the shape to a
reference set of points and applying PCA on the coordinates. Leventon et al. (2002) used signed
distance functions to embed 2D curves applying PCA to obtain statistical models. To the best of
our knowledge it has not been combined with the SDF representing a surface in 3D. We note level
set methods and the SDF have only recently been revisited as an effective representation that can
be combined with 3D deep learning Michalkiewicz et al. (2019); Park et al. (2019). Moreover it is
enlightening that this classic approach to shape representation can be competitive with deep learning
methods on standard benchmarks.

3 METHODS

In this section, we review the SDF transform and describe the simple latent representation that we
consider.

3.1 SIGNED DISTANCE FUNCTIONS

The Signed Distance Function (SDF) of a given closed surface Γ ⊂ R3 is defined by the signed
distance d : R3 × R3 7→ R from any point x ∈ R3 to the surface Γ. Given a discretized grid Ω we
can represent each shape as an SDF on Ω by

φi(x) = ± inf
y∈Γ

d(x, y), (1)

with the convention that φi(x) is positive on the interior and negative on the exterior of Γ.
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Figure 1: Overview of our experiments. We construct eigenSDF representations and evaluate them
on multiple downstream tasks. As an additional approach we also consider finetuning the decoder
using the eigenvectors from PCA as initializations and the chamfer loss

In Michalkiewicz et al. (2019) a CNN decoder model is used to predict the SDF representation
from a latent space as well as to learn autoencoders. We note however that this representation is
well structured and objects are often grouped by category, we thus ask if a much simpler linear and
non-convolutional decoder model can be effective.

Michalkiewicz et al. (2019) further considers a loss function for the SDF representation that approx-
imately minimizes the chamfer loss.

Lε(θ) =
∑
j∈D

(∑
x∈Ω

δε(φ̃
j(x))dj(x)p

)1/p

+ α
∑
j∈D

∑
x∈Ω

(‖∇φ̃j(x)‖ − 1)2 (2)

with δε being approximated Dirac delta, φ̃ inferred Signed Distance Function, and d(x) the closest
distance between grid point x and the ground truth shape. We will further leverage this representa-
tion in the sequel.

3.2 EIGENSDF

We apply the PCA transform to S = {φi}i=..N , where N is the number of training examples. The
eigenvectors E have the shape of (k,M3) with M being the grid resolution. We project each SDF
to φc = φET . Here φc has a shape of (1, k). In the sequel we will denote this representation as the
EigenSDF. Note that applying PCA to the naive voxel representation would be inappropriate as the
data is binary and largely zeros. For downstream tasks we predict directly the latent representation
φc. We will also consider usingE as an initialization which is finetuned by training on the SDF shape
representation directly using Eq. 2. A high level overview of our framework is given in Figure 1.

4 EXPERIMENTS

We evaluate the proposed representations on 3 tasks. These are single view 3D reconstruction, 3D
reconstruction from point cloud, and 3D reconstruction with autoencoders. We take many of our
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baselines and comparisons from the recently proposed Mescheder et al. (2018). These applications
are evaluated on 13 categories from ShapeNet repository (Chang et al., 2015).

Preprocessing In order to work on SDFs we need to have a well defined interior and exterior of
an object, we have first preprocessed the meshes to make them watertight using method proposed
by Stutz & Geiger (2018). Following common practice we render each ground truth mesh into 24
2D views using equally spaced azimuth angles. For each ground truth mesh we get a corresponding
SDF φ of shape 128× 128× 128.

Metrics Following Mescheder et al. (2018) experimental setup, we report 3 metrics. The first one
is Intersection over Union (IoU), also known as Jaccard Index, between ground truth shape S and
prediction S̃:

IoU =
|S ∩ S̃|
|S ∪ S̃|

Second metric measures reconstruction error using symmetric chamfer distance:

chamfer(SP , S̃Q) =
1

2|P |
∑
p∈P

min
q∈Q
|p− q|+ 1

2|Q|
∑
q∈Q

min
p∈P
|p− q|

Finally, we measure the angular distance using normal consistency (nc) metric:

nc(SP , S̃Q) =
1

2|P |
∑
p∈P
|NSP

(p) ·NS̃Q
(nS̃Q

(p))|+ 1

2|Q|
∑
q∈Q
|NS̃Q

(q) ·NSP
(nSP

(q))|

,

where NS(p) denotes normal of point p lying on surface S and nS(q) denotes nearest neighbour of
point q lying on surface S.

Chamfer distance and normal consistency metrics are evaluated by sampling 105 points from the
surfaces, while the IoU is calculated by sampling 105 points from within the bounding volume.

4.1 3D RECONSTRUCTION FROM SINGLE 2D VIEW

In this set of experiments, we evaluate the eigenSDF approach from Sec 3. We use a starting reso-
lution of 1283. For each category we perform PCA on SDFs. We chose k to capture at least 99.5%
of the variance within the dataset. The image encoder is a 2D CNN whose architecture is taken
from Richter & Roth (2018). We minimize the `2 loss between φc, the SDF projected into the latent
space, and the prediction of the 2D CNN. We train this network for 100 epochs using 1e-3 learning
rate, later dropping to 1e-4. Furthermore, we consider finetuning the representation starting with the
eigenvectors from PCA and using Eq 2, this baseline is referred to as eigenSDF (finetuned).

In order to demonstrate that a gain is made by PCA versus just architecture we also train a linear
autoencoder of the same size (M ) and finetune it with Eq 2. This baseline is referred to as linearSDF
and linearSDF(finetune).

Finally we compare to a set of standard benchmarks from the recent literature including voxel based
CNN encoder/decoder Choy et al. (2016), point cloud based methods Fan et al. (2017), a mesh based
method Wang et al. (2018), and the recently introduced ONet Mescheder et al. (2018).

Complete results are given in Table 1. First we observe that the simply using a same sized linear
model linearSDF (finetune) is outperformed by using the eigenSDF. Compared to alternatives our
method gives more significant gains in chamfer metric than all competitors and can be further im-
proved with the finetuning. We also observe improvements in the normal consistency metric. For
the IoU metric we observe that eigenSDF outperforms all methods except Mescheder et al. (2018).
Note that according to Sun et al. (2018) chamfer distance is a far better metric for shape comparison
than IoU.
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Table 1: Single-view 3D reconstruction results on ShapeNet. We observe that compared to other
state-of-the-art learning based methods eigenSDF outperforms in normal consistency and Chamfer
distance. Finetuning can further improve this result. Compare to training a linear autoencoder or
just finetuning the performance is substantially better, showing that eigen decomposition obtains
best results.

Chamfer↓
Cat name 3D R2N2 PSGN Pix2Mesh AtlasNet ONet linearSDF linearSDF (ft) eigenSDF eigenSDF (ft)
airplane 0.227 0.137 0.187 0.104 0.147 0.256 0.250 0.102 0.080
bench 0.194 0.181 0.201 0.138 0.155 0.247 0.241 0.085 0.072

cabinet 0.217 0.215 0.196 0.175 0.167 0.223 0.220 0.082 0.065
car 0.213 0.169 0.180 0.141 0.159 0.232 0.231 0.072 0.057

chair 0.270 0.247 0.265 0.209 0.228 0.265 0.261 0.110 0.092
display 0.314 0.284 0.239 0.198 0.278 0.286 0.258 0.115 0.115
lamp 0.778 0.314 0.308 0.305 0.479 0.633 0.625 0.465 0.377

loudspeaker 0.318 0.316 0.285 0.245 0.300 0.262 0.257 0.097 0.092
rifle 0.183 0.134 0.164 0.115 0.141 0.282 0.267 0.148 0.140
sofa 0.229 0.224 0.212 0.177 0.194 0.273 0.266 0.192 0.137
table 0.239 0.222 0.218 0.190 0.189 0.201 0.195 0.127 0.115

telephone 0.195 0.161 0.149 0.128 0.140 0.181 0.177 0.047 0.045
vessel 0.238 0.188 0.212 0.151 0.218 0.424 0.440 0.347 0.335
mean 0.278 0.215 0.216 0.175 0.215 0.279 0.273 0.163 0.142

IoU↑
Cat name 3D R2N2 PSGN Pix2Mesh AtlasNet ONet linearSDF linearSDF (ft) eigenSDF eigenSDF (ft)
airplane 0.426 - 0.420 - 0.571 0.425 0.433 0.465 0.487
bench 0.373 - 0.323 - 0.485 0.372 0.375 0.382 0.405

cabinet 0.667 - 0.664 - 0.733 0.658 0.661 0.670 0.686
car 0.661 - 0.552 - 0.737 0.665 0.669 0.672 0.704

chair 0.439 - 0.396 - 0.501 0.385 0.401 0.402 0.414
display 0.440 - 0.490 - 0.471 0.388 0.395 0.406 0.424
lamp 0.281 - 0.323 - 0.371 0.201 0.211 0.230 0.280

loudspeaker 0.611 - 0.599 - 0.647 0.554 0.561 0.599 0.609
rifle 0.375 - 0.402 - 0.474 0.256 0.261 0.289 0.299
sofa 0.626 - 0.613 - 0.680 0.611 0.619 0.633 0.639
table 0.420 - 0.395 - 0.506 0.401 0.406 0.422 0.426

telephone 0.611 - 0.661 - 0.720 0.590 0.615 0.685 0.715
vessel 0.482 - 0.397 - 0.530 0.443 0.449 0.494 0.508
mean 0.493 - 0.480 - 0.571 0.457 0.465 0.488 0.507

Normal Consistency↑
Cat name 3D R2N2 PSGN Pix2Mesh AtlasNet ONet linearSDF linearSDF (ft) eigenSDF eigenSDF (ft)
airplane 0.629 - 0.759 0.836 0.840 0.713 0.717 0.809 0.813
bench 0.678 - 0.732 0.779 0.813 0.754 0.762 0.815 0.832

cabinet 0.782 - 0.834 0.850 0.879 0.771 0.773 0.880 0.882
car 0.714 - 0.756 0.836 0.852 0.787 0.802 0.855 0.878

chair 0.663 - 0.746 0.791 0.823 0.757 0.777 0.824 0.828
display 0.720 - 0.830 0.858 0.854 0.755 0.787 0.859 0.859
lamp 0.560 - 0.666 0.694 0.731 0.575 0.584 0.741 0.775

loudspeaker 0.711 - 0.782 0.825 0.832 0.745 0.755 0.839 0.846
rifle 0.670 - 0.718 0.725 0.766 0.668 0.695 0.768 0.793
sofa 0.731 - 0.820 0.840 0.863 0.733 0.739 0.861 0.863
table 0.732 - 0.784 0.832 0.858 0.731 0.735 0.801 0.808

telephone 0.817 - 0.907 0.923 0.935 0.851 0.855 0.938 0.940
vessel 0.629 - 0.699 0.756 0.794 0.704 0.735 0.802 0.811
mean 0.695 - 0.772 0.811 0.834 0.734 0.747 0.830 0.840

4.2 3D SHAPE COMPLETION FROM POINT CLOUDS

We next consider shape completion from a point cloud. This task has been considered in e.g.
Mescheder et al. (2018). Similar to experimental setup of Mescheder et al. (2018) we use 13 cat-
egories from ShapeNet repository and we preprocess the meshes to make them watertight. We
randomly sample 300 points from ground truth meshes and add a Gaussian noise with 0 mean and
0.05 std. We have used the same metrics as in section 4.1.

We have used PointNet encoder with a bottleneck dimension of 512 Qi et al. (2017) and linear
decoder from section 4.1. We use a similar set of baselines as in the previous section and compare
to eigenSDF. We observe similar large gains in the chamfer metric and competitive performance in
other metrics. Results are shown in Table 2.
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We can see that, similar to 3D reconstruction task, our performance in chamfer is much better,
normal consistency is similar and iou is worse but still competitive.

Table 2: Results on 3D Shape completion

IoU↑ Chamfer ↓ nc ↑
eigenSDF (ours) 0.571 0.073 0.853
3D-R2N2 (Choy et al. (2016)) 0.565 0.169 0.719
PSGN (Fan et al. (2017)) - 0.144 -
DMC (Liao et al. (2018)) 0.674 0.117 0.848
ONet (Mescheder et al. (2018)) 0.778 0.079 0.895

Table 3: We compare eigenSDF to other methods in terms of reconstruction. We find that compared
to linear autoencoders trained on voxels or SDFs, it performs better. We also compare to more
sophisticated methods.

method IoU↑ Chamfer↓ NC↑ F-score↑
eigenSDF 0.746 0.0425 0.869 0.484

eigenSDF (ft) 0.758 0.0325 0.896 0.529
Linear (φ) (chamfer) 0.582 0.050 0.773 0.315

Linear(voxels) 0.637 0.067 0.737 0.384
DLS (Michalkiewicz et al. (2019)) 0.681 0.047 0.858 0.103

TL (Girdhar et al. (2016b)) 0.656 0.082 0.847 0.081

4.3 3D RECONSTRUCTION FROM LATENTS

Finally we consider a simple 3D reconstruction task Girdhar et al. (2016a). This can also be viewed
as measuring the representational power of the model Mescheder et al. (2018). This evaluates re-
construction quality of eigenSDF versus other methods particularly CNN based autoencoders. The
goal is to reconstruct test set shapes. We use an initial resolution of 1283 and reduce it to k = 512 as
done in other works Mescheder et al. (2018). We use cars category from ShapeNet repository and
evaluate reconstruction on unseen data. For the evaluations in addition to the metrics used in section
4.1 we further analyse the decoders using F-score Knapitsch et al. (2017).

Figure 2: Training time of eigenSDF (finetuned) and dense convnets (Voxels, DLS). Figure shows
on a logscale amount of seconds a network needs for forward and backward pass of 1 iteration using
a batchsize of 32. Resolution 256 not shown due to clarity.

6



Under review as a conference paper at ICLR 2020

category DLS eigenSDF(ft)
IoU↑ Chamf↓ NC↑ F-score↑ IoU↑ Chamf↓ NC↑ F-score↑

cars 0.784 0.055 0.804 0.148 0.821 0.040 0.909 0.432
chairs 0.434 0.360 0.743 0.066 0.553 0.125 0.820 0.168
sofas 0.581 0.132 0.779 0.089 0.647 0.082 0.867 0.248

Table 4: Comparison to the SDF based method Michalkiewicz et al. (2019) in single view recon-
struction. There is marked improvement due to the ability to model higher resolution.

4.4 COMPARISON WITH DEEP LEVEL SETS

In this section, we compare our method to the other recent approach relying on the signed distance
transform Michalkiewicz et al. (2019) and learning with the chamfer loss Lε. This one however
uses the CNN decoder model and does not learn a latent shape representation. We have chosen
a similar experimental setup of 3 subsets each having 2 000 examples from ShapeNet repository:
cars, sofas, chairs. We observed that remaining 2 categories, bottles and phones, are too simple to
see a difference in higher resolution. Reported metrics might differ due to different pre-processing
techniques. Networks here are the one used in Michalkiewicz et al. (2019) paper and the one used
in Section 4.1. We first compare the training time for both methods for various resolutions. Figure 2
shows the result demonstrating that it is not feasible to use the CNN decoder in higher resolutions.
It is consistent with the findings of (Richter & Roth, 2018).

4.5 RECONSTRUCTION AND GENERATION

Finally we evaluate the performance on the single view reconstruction qualitatively. In Table 4 we
can see that reconstructions (on unseen data) can be effective capturing more complex structures
ignored by Michalkiewicz et al. (2019). Multiple authors have also consider generating uncondi-
tionally shapes, typically using sophisticated non-linear deep learning models like GANs and VAEs.
We compare some of these to sampling a gaussian in the latent space of the eigenSDF, some qualita-
tive results are shown in Figure 3. We observe this simple approach yields some shapes comparable
to those o the complex non-linear models.

Figure 3: We compare unconditional generations of cars category. Generations from a gaussian fit to
eigenSDF is shown in the top row (blue). Second row are generations from Mescheder et al. (2018)
and the third row is from a 3D GAN Wu et al. (2016b)

5 CONCLUSION

We have shown that using a simple linear decoder coupled with the SDF representation yields com-
petitive results. The SDF lends itself to the application of PCA yielding a strong but simple baseline
for future work in learned 3D shape analysis. Moreover, our work suggests that more complex
baseline datasets may be needed to further evaluate deep learning methods on 3D shape inference.
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2D view GT Deep Level Sets eigenSDF

Table 5: We compare reconstruction of eigenSDF and the CNN decoder based Michalkiewicz et al.
(2019) (which also uses SDF representations). eigenSDF permits us to operate at a higher resolution
and generally produces more locally coherent results.
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A APPENDIX

A.1 NUMBER OF EIGENVECTORS

In Figure 4, we show the number of eigenvectors which captures 99.5% of variance within the dataset
of approximately 6000 examples of ShapeNetCars. Number of eigenvectors required to represent
shapes from other categories vary from 512 to 2048, shown in Figures 5-6.
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Figure 4: Cumulative fraction of total variance captured by eigenvectors
obtained from applying PCA on ShapeNetCars dataset.
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Figure 5: Cumulative fraction of total variance captured by eigenvectors
obtained from applying PCA on large ShapeNet categories.

A.2 PCA APPLIED TO OTHER SHAPE REPRESENTATIONS

As mentioned in the Section 1, there are 4 commonly used shape representations: voxels, Signed
Distance Functions (SDF), point clouds and meshes. Because of lack of canonical order or repre-
sentation it is hard to apply PCA on point clouds or meshes in a straightforward way. Compared to
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Figure 6: Cumulative fraction of total variance captured by eigenvectors
obtained from applying PCA on small ShapeNet categories.

Figure 7: SDF-based pca reconstruction of an example from ShapeNetCars
dataset. Left - Level set of a SDF of a car with resolution 1283, right - pca-
based recostruction using 2048 eigenvectors.

Figure 8: Failed attempt of reconstructing an example from ShapeNetCars
dataset using voxel-based representation. Left - voxelized car with resolu-
tion 1283, right - pca-based recostruction using 2048 eigenvectors

the results of pca reconstruction using Signed Distance Function as shape representation, applying
PCA directly on voxels yeilds poor results, as shown in Figures 7-8.
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