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Abstract

GloVe and Skip-gram word embedding methods learn word vectors by decompos-
ing a denoised matrix of word co-occurrences into a product of low-rank matrices.
In this work, we propose an iterative algorithm for computing word vectors based
on modeling word co-occurrence matrices with Generalized Low Rank Models.
Our algorithm generalizes both Skip-gram and GloVe as well as giving rise to other
embedding methods based on the specified co-occurrence matrix, distribution of
co-occurences, and the number of iterations in the iterative algorithm. For example,
using a Tweedie distribution with one iteration results in GloVe and using a Multi-
nomial distribution with full-convergence mode results in Skip-gram. Experimental
results demonstrate that multiple iterations of our algorithm improves results over
the GloVe method on the Google word analogy similarity task.

1 Introduction

Word embeddings are low dimensional vector representations of words or phrases. They are applied to
word analogy tasks and used as feature vectors in numerous tasks within natural language processing,
computational linguistics, and machine learning. They are constructed by various methods which
rely on the distributional hypothesis popularized by Firth: “words are characterized by the company
they keep” [Firth, 1957]. Two seminal methodological approaches to finding word embeddings are
Skip-gram [Mikolov et al., 2013a] and GloVe [Pennington et al., 2014]. Both methods input a corpus
D, process it into a word co-occurence matrix X , then output word vectors with some dimension d.

Skip-gram processes a corpus with w words into a count co-occurence matrix X ∈ Rw×w, where xij
is the number of times word wi appears in the same context as the word wj . Here, two words being in
the same context means that they’re within lc tokens of each other. Define this co-occurence matrix to
be the count co-occurence matrix. Next, Skip-gram [Pennington et al., 2014, Section 3.1] estimates

(Û , V̂ ) = arg max
U∈Rw×d,V ∈Rw×d

w∑
i=1

w∑
j=1

xij log
exp

(
uuuTi vvvj

)∑w
k=1 exp

(
uuuTi vvvk

) , (1)

where uuuTi is the ith row of U , then defines the word vectors to be the rows of Û .

GloVe processes a corpus with w words into a harmonic co-occurence matrix X ∈ Rw×w where xij
is the harmonic sum of the number of tokens between words wi and wj over each co-occurrence.
That is, xij =

∑
p1<p2,|p1−p2|≤lc,D(p1)=wi,D(p2)=wj

1
|p1−p2| , where D(p1) is the pth1 word in the

corpus and lc is the length of the context window. Define this co-occurence matrix to be the harmonic
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co-occurence matrix. Next, GloVe estimates

(Û , V̂ , âaa, b̂bb) = arg min
U,V ∈Rw×d;aaa,bbb∈Rw

w∑
i=1

w∑
j=1

h(xij)
(
uuuTi vvvj + ai + bj − log xij

)2
, (2)

where ai and bj are bias terms, h(xij) = (min{xij , xmax}).75 is the weight, and xmax is some
prespecified cutoff. GloVe then defines the estimated word vectors to be the rows of 1

2 Û + 1
2 V̂ .

In both Skip-gram and GloVe, a matrix of co-occurences X is introduced by processing the corpus,
and an objective function is introduced to find a low rank factorization related to the co-occurences
X . In this paper, we derive the objective functions from a model-based perspective. We introduce
an iterative algorithm, and show that problem (1) results from running the iterative algorithm on
full-convergence mode for a Multinomial model and problem (2) is one step of the iterative algorithm
for a Tweedie model. This algorithm additionally allows us to introduce methods to “fill in the gaps”
between Skip-gram and GloVe and to introduce altogether new methods for finding word vectors.

2 Related Work

We saw that Skip-gram and GloVe compute a co-occurence matrix X which results from processing
the corpus D and an objective function J to relate the matrix X to a product of low rank matrices U
and V . Many existing approaches for explaining word embedding methods do so by identifying or
deriving the co-occurence matrix X or the objective function J . In this section, we review relevant
work in this area, which helps frame our approach discussed in Section 4.1.

Much of the related work involves using the co-occurence matrix from Skip-gram. For the remainder
of this section, let X be the count co-occurence matrix.

Early approaches to finding low-dimensional embeddings of words relied on the singular value
decomposition [Landauer et al., 1998, Turney and Pantel, 2010]. These methods would truncate the
singular value decomposition by zeroing out the small singular values. Eckart and Young [1936] show
that this is equivalent to using an objective function J which is invariant to orthogonal transformation.
For simplicity, we specialize to the Frobenius norm and say these early approaches find

arg min
U∈Rw×d,V ∈Rc×d

‖UV T −X‖2F .

That is, here J(M,X) = ‖M −X‖2F is the objective function and X is the co-occurence matrix.

The co-occurence matrix and the loss function for Skip-gram can be read off from problem (1): the
co-occurence matrix is X and the objective function is written in problem (1) with uuuTi vvvj replaced
by mij . Cotterell et al. [2017] find a probabilistic interpretation of this loss function related to a
Multinomial distribution, but do not take advantage of it and only replace the inner product with a
(higher dimensional) variant, somewhat similar to the approach in Tifrea et al. [2018].

Mikolov et al. [2013a] introduce Skip-gram with negative sampling (SGNS), a variant of Skip-gram.
If we view Skip-gram as maximizing the true positive rate of predicting a word will appear within
a context window of another word, we can view SNGS as maximizing the true positive rate plus k
times an approximation of the true negative rate. When k = 0, Skip-gram and SGNS coincide.

Levy and Goldberg [2014] use a heuristic argument to interpret SGNS as using a co-occurence matrix
that is a shifted PMI matrix.2 However, they did not determine the objective function. Later, Li et al.
[2015] and Landgraf and Bellay [2017] explicitly identified both the co-occurence matrix and the
objective function. They find a different co-occurence matrix than Levy and Goldberg [2014], one
that does not depend on k, while their loss function does depend on k. Surprisingly, they establish
that SGNS is finding a low-rank matrix related to X , the same matrix that Skip-gram uses. The loss
function is

w,w∑
i,j=1

xij(uuu
T
i vvvj)−

(
xij + k

xi·x·j
x··

)
log
(
1 + exp(uuuTi vvvj)

)
.

2Define the total number of times word wi appears to be xi· =
∑w

j=1 xij , the total number of times context
wj appears to be x·j =

∑w
i=1 xij , and the total number of words to be x·· =

∑w,w
i,j=1 xij . The shifted PMI

matrix has entries log xijx··
xi·x·j

− log k.
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Landgraf and Bellay [2017] explain that this loss function has a probabilistic interpretation, and they
use that interpretation to recover the shifted PMI matrix as a prediction from within their model.

The approach in this paper will be to view the entries of the co-occurence matrix as random variables
and introduce an objective function via the likelihood of that random variable. Our approach is most
similar to Landgraf and Bellay [2017] and, to a lesser extent, Cotterell et al. [2017]. In order proceed,
some background in probabilistic modeling and estimation needs to be developed.

3 Background

In this section, we review iteratively reweighted least squares (IRLS) for generalized linear models
and review generalized low rank models [Udell et al., 2016]. Further background (and notation) in
exponential dispersion families and generalized linear models is developed in Section A.

3.1 Iteratively Reweighted Least Squares

Generalized linear models (GLMs) are a flexible generalization of linear regression where the mean
is a not necessarily linear function of a coefficient βββ and the response has an error distribution
which is an exponential dispersion family. The coefficient βββ is unknown and a target of estimation.
The standard approach to estimate βββ is maximum likelihood estimation [Fisher, 1922, Section 7] to
produce the maximum likelihood estimator, or MLE, β̂ββ.

A computational approach to find the MLE is through Fisher scoring, a variant of Newton’s method
on the log likelihood which uses the expectation of the Hessian in place of the Hessian [Agresti,
2015, Section 4.5]. Define `(βββ) to be the log likelihood. Specifically, Fisher scoring produces

a sequence of estimates {β̂ββ
(t)
}∞t=1 starting with some initialization β̂ββ

(0)
so that β̂ββ

(t+1)
= β̂ββ

(t)
+(

E
[
D2`(βββ)

] ∣∣∣
β̂ββ

(t)

)−1
∇`(β̂ββ

(t)
), where∇` is the gradient andD2` is the Hessian. Upon plugging in

the gradient and expected Hessian for an exponential dispersion family, a surprising identity emerges:
each iteration of Fisher scoring is equivalent to minimizing a weighted least squares objective:

β̂ββ
(t+1)

= arg min
βββ∈Rp

∥∥∥∥(H(t)
)1/2 (

Xβββ − zzz(t)
)∥∥∥∥2

2

, (3)

where the weight H(t) and pseudo-response z(t) at iteration t have

h
(t)
ii =

[(
g′
(
µ
(t)
i

))2
b′′
(

(b′)−1
(
µ
(t)
i

))]−1
, z

(t)
i = η

(t)
i + g′

(
µ
(t)
i

)(
yi − µ(t)

i

)
, (4)

hij = 0 for i 6= j, ηηη(t) = Xβ̂ββ
(t)

, and µ(t)
i = g−1(η

(t)
i ).

3.2 Generalized Low Rank Models

Principal components analysis [Jolliffe, 2011] is one well-known method for finding a low rank
matrix related toX ∈ Rw×c. In principal components analysis, we model xij

ind.∼ Normal(uuuTi vvvj , σ
2)

where uuui, vvvj ∈ Rd for some dimension d� w, c. A maximum likelihood estimator for uuui is taken
to be a low-dimensional embedding of the ith row of X . The low-dimensional embedding enables
interpretability and reduces noise. However, data cannot always be viewed as being drawn from a
normal distribution, so it’s necessary to extend the method of principal components to non-normal data.
The extension can be made in a manner similar to the extension from linear models to generalized
linear models: the new model, called a generalized low rank model [Udell et al., 2016] allows us to
estimate model-based low-dimensional embeddings of non-normal data.

Definition 1 For some exponential dispersion family ED(µ, ϕ) with mean parameter µ and disper-
sion parameter ϕ, the model for X ∈ Rw×c is a generalized low rank model with link function g
when {

xij
ind∼ ED(µij , ϕ) (5)

g(µij) = ηij = uuuTi vvvj + ai + bj , , (6)
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where uuui, vvvj ∈ Rd are the rows of matrices U ∈ Rw×d and V ∈ Rc×d, respectively, and aaa ∈ Rw
and bbb ∈ Rc are bias (or offset) terms.

The difference between the generalized low rank model and the generalized linear model is in the
systematic component in equation (6). Here, the data is modeled as having its link-transformed mean
be a matrix with rank at most d. This formalizes the way in which we relate the co-occurence matrix
X to a low rank factorization.

When the link function g is taken to be canonical, the generalized low rank model is identical to ePCA
[Collins et al., 2002]. The generalization is worthwhile since the canonical link can be inappropriate,
as we will see, for instance, in Section 5.1.

4 Methodology

We now present a method to find word vectors. A key innovation in the method is an iterative
algorithm inspired by IRLS to find a maximum likelihood estimator in a generalized low rank model.

4.1 Our Proposed Method

Our method has three steps:

Step 1 Choose a co-occurence matrix X ∈ Rw×c to summarize the document. (Note, in many
cases c = w so that the “contexts” are just the words.)

Step 2 Choose a plausible exponential dispersion family to model the entries of the co-occurence
matrix. Choose a corresponding link function.

Step 3 Choose a number of iterations r to run IWLRLS (Algorithm (1)) with the input specified
above to output word vectors.

Data: Co-occurrence matrix X ∈ Rw×c
Require: Distribution ED(µ, ϕ), link function g, number of iterations r, dimension d
Result: Û ∈ Rw×d, V̂ ∈ Rc×d, âaa ∈ Rw, b̂bb ∈ Rc
Initialize µ(0) = X;
for t = 0 : r do

Update H(t+1) according to h(t)ij =

[(
g′
(
µ
(t)
ij

))2
b′′
(

(b′)−1
(
µ
(t)
ij

))]−1
;

Update Z(t+1) according to z(t)ij = g(µ
(t)
ij ) + g′

(
µ
(t)
ij

)(
xij − µ(t)

ij

)
;

Evaluate the least squares problem

arg min
U∈Rw×d,V ∈Rc×d,aaa∈Rw,bbb∈Rc

w,c∑
i,j=1

h
(t)
ij

(
uuuTi vvvj + ai + bj − z(t)ij

)2
;

Update µ(t+1) according to g(µij) = uuuTi vvvj + ai + bj ;
end

return Û (r), V̂ (r), âaa(r), b̂bb
(r)

Algorithm 1: Iteratively weighted low rank least squares (IWLRLS) algorithm for GLRMs

The first step of our method processes the corpus in order to extract the linguistic information. Some
co-occurence statistics use more information than others: for instance, the harmonic co-occurence
matrix makes use of the number of tokens between words while the count co-occurence matrix does
not. A typical tuning parameters here is the length lc of the context window. We view this step as
involving a “linguistic” choice.

The second step specifies a distribution for the co-occurence matrix. A distribution can be considered
as plausibly corresponding to reality if it can be derived by a connection to the corpus. In our
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Co-occurence: Harmonic Count
Distribution: Tweedie Gaussian Multinomial Poisson Binomial
One iteration GloVe SVD · Arora et al. [2016] ·
Early stopping · SVD · · ·
Full likelihood · SVD Skip-gram · SGNS

Table 1: The rows refers to the number of steps of IWLRLS. A “·” represents no existing work. All
filled-in positions in the lowest row were established in previous work.

framework, the model is explicit: this is helpful since knowing a model provides interpretation for its
output [Gilpin et al., 2018, Section II.A.]. The choice of distribution will often determine, through
convention, the link function, so the link function often does not need to be separately chosen. We
view this step as involving a “statistical” choice.

The third step runs IWLRLS, a generalized version of IRLS. Recall that IRLS is derived by iteratively
maximizing a second order Taylor expansion of the likelihood as a function β. The Taylor expansion
is centered at the previous iterate. IWLRLS can be derived by iteratively maximizing a second order
Taylor expansion of the likelhood as a function of η subject to the constraint 6. We view this as a
“computational” choice that we fix in advance.

5 Examples

In the following subsections, we run through many examples of our method as it would be used in
practice. There are two distinct choices of co-occurence matrices that are made. Various choices
of distributions recover common methods for finding word vectors. An altogether new estimator is
proposed via an improvement of the assumed distribution in Skip-gram. Casting these estimators in
this general framework provides an interpretation and understanding of them: we make explicit their
assumptions and therefore know the driver of their behavior.

5.1 Example 1: GloVe

We will apply our proposed method under the choice of the harmonic co-occurence matrix and the
Tweedie distribution: one iteration of IWLRLS will recover GloVe.

Step 1 The first step of our method is to pick a co-occurence matrix that summarizes the corpus. We
choose the harmonic co-occurence matrix X ∈ Rw×w.

Step 2 Now we must determine a plausible distribution for the co-occurence matrix that is an
exponential dispersion family. Recall that the Tweedie distribution has the property mentioned in
equation (12) that it is a sum of Poisson many independent Gamma distributions. An informal way to
write this is that

Tweedie
d
=

Poisson∑
i=1

Gammai
d
=

Poisson∑
i=1

1

InvGammai
.

We argue that the Tweedie distribution is reasonable by connecting the Poisson and Inverse Gamma
distributions displayed above to attributes of the corpus. Intuitively, it is reasonable that the number
of times word wi and word wj co-occur within the corpus can be modeled as having a Poisson
distribution. Another choice of distribution is that of an Inverse Gamma distribution for the number
of tokens between word wi and word wj at some co-occurence, although it is an approximation as
the number of tokens is an integer while the Inverse Gamma is supported on non-integers.

Instead of using the canonical link function, we will take g(µ) = logµ, which is standard [Smyth,
1996]. A problem with the canonical link function preventing its use is that its range is nonpositive.

Step 3 Next, we find the form of the weightH and the pseudo-responseZ that the Tweedie distribution
provides. This amounts to plugging in the cumulant generating function ψ that is given in Section A.1.
This results in

hij = µ2−p
ij , zij =

xij − µij
µij

+ log µij . (7)
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When the algorithm is initialized with µ̂(0) = X , the pseudo-response simplifies to zij = log xij .
Taking the power p = 1.25, the weight simplifies to x3/4ij . In summary, we’ve shown that:

Result 1 Inputting the harmonic co-occurence matrix, the Tweedie distribution with power p = 1.25,
the log link, and the number of iterations k = 1 into IWLRLS results in GloVe (without the algorithmic
regularization induced by truncating the weights.)

Given this connection, we can extend GloVe for several iterations rather than one or even use the full
likelihood. We experiment with this using real data examples in Section 6. This result shows that
even though the first iteration does not depend on word pairs where xij = 0, later iterations do.

5.2 Example 2: SVD, Skip-gram, and More

We now consider an alternative first step: we choose another co-occurence matrix to summarize the
corpus. Then, we make multiple possible choices for step 2 to illustrate connections to previous
work that step 3 recovers. Various choices for step 2 will recover the SVD [Landauer et al., 1998],
Skip-gram [Mikolov et al., 2013a], a new estimator which is a distributional improvement over those,
and Skip-gram with negative sampling [Mikolov et al., 2013b].

Step 1 We choose the count co-occurence matrix.

5.2.1 The SVD

Step 2 A proposed distribution for the entries of X is the Gaussian distribution. This may not be the
best choice, since the entries of X are non-negative integers. As is usual, we take the link function to
be g(µ) = µ. We restrict the systematic component to not include the bias terms, so that ηij = uuuTi vvvj .

Step 3 We showed in Section A.1 that the cumulant generation function from the normal distribution
is ψ(θ) = 1

2θ
2. This makes it so that

hij = 1, zij = xij . (8)
In other words, the IWLRLS algorithm will always converge in one iteration, so our method recovers
the method of computing a truncated SVD of X by Eckart and Young [1936].

Another choice that could have been made in step 2 is to have the link function g(µ) = logµ. This
still may not be the best choice since the normal distribution still has the same problems as before.

5.2.2 Skip-gram

Step 2 Another proposed distribution for the entries of X is a Multinomial distribution. Specif-
ically, we could propose that the the row of X corresponding to word wi has the distribution
xxxi ∼ Multinomial

(∑w
j=1 xij ,πππ

)
, where πππ ∈ Rw is vector of probabilities of word wi appearing

within a context window with the other words and
∑w
j=1 xij is the total number of times word wi

appears in the corpus. We take the link function to be the multi-logit.3

Cotterell et al. [2017] show that the objective function of Skip-gram coincides with the likelihood of
this model when the bias terms are removed, so that the systematic component ηij = uuuTi vvvj instead of
the usual representation in equation 6.

Step 3 The Poisson trick [Birch, 1963] can be used to reduce estimation in a Multinomial model to
estimation in a particular Poisson model. Let Û , V̂ be the maximum likelihood estimators in the
Multinomial generalized low rank model described in step 2. Using this trick, it holds that âaa, (the
same) Û , and (the same) V̂ are maximum likelihood estimators in a Poisson generalized low rank
model with independent responses xij and systematic component

ηij = uuuTi vvvj + ai. (9)
Notice that there is only one bias term. The weight and pseudo-response are

hij = µij , zij =
xij − µij
µij

+ log µij . (10)

3The Multinomial distribution is not in the exponential dispersion family, while it is in the multivariate
exponential dispersion family. (See Section A.1.1.) In step 3, the problem is reduced to one in an exponential
dispersion family.
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5.2.3 Poisson Estimator

In the previous subsubsection, we saw that the choice of Multinomial model implicitly gives rise to a
Poisson model with a systematic component given by equation (9). Since it could be most appropriate
to have bias terms for both rows and columns due to the symmetry of the co-occurence matrix, we
directly introduce a Poisson estimator with a non-restricted systematic component.

Step 2 Another proposed distribution is a Poisson. Due to the "law of rare events" [Durrett, 2010,
Section 3.6.1], this is a plausible model. We use the canonical link function g(µ) = log µ.

Step 3 The cumulant generating function is ψ(θ) = exp(θ) [Agresti, 2015], so that the weight and
pseudo-response are given by equations (10).

Arora et al. [2016] propose an estimator which is a close variant of one iteration of IWLRLS. At one
point in their derivation, they (using our notation) take ηij = ‖uuui − vvvj‖22 + c, where c is an arbitrary
constant which does not depend on the word. This is inspired by their theorem 2.2. On the other hand,
taking ηij = uuuTi vvvj + ai + bj (as in equation 6) in their derivation recovers one iteration of IWLRLS.

The Negative-Binomial distribution is commonly used as an alternative for the Poisson in the presence
of over-dispersion, which is the case when the variance is higher than the mean. It produces the same
weight and pseudo-response as the Poisson.

5.2.4 Skip-gram with Negative Sampling

Step 2 We model xij
ind.∼ binomial (sij , πij), where sij = xij + k

xi·x·j
x··

is an inflated count,
ηij = uuuTi vvvj , and k ≥ 0. Landgraf and Bellay [2017] showed that a maximum likelihood estimator
from this model with canonical link g(π) = log π

1−π is identical to a SGNS estimator.

Step 3 The cumulant generating function for the binomial distribution is ψ(θ) = log(1 + exp θ), so
the weight and pseudo-response are:

hij = πij(1− πij), zij = log
πij

1− πij
+

1

πij(1− πij)

(
xij
sij
− πij

)
(11)

6 Experiments

In Section 4.1 we introduced the IWLRLS algorithm to compute word vectors such as those produced
by GloVe or SGNS. We now conduct quantitative evaluation experiments on an English word analogy
task, a variety of word similarity tasks [Mikolov et al., 2013a] to demonstrate the performance of
the algorithm. First, in Section 6.1 we introduce the analogy similarity task for evaluating word
vectors. In Section 6.2 we present results of the algorithm with different distributions according
to those presented in Section 5.1 and 5.2. In Section B.1 we provide parameter configurations and
training procedures, and in Sections B.2-B.5 we present results of IWLRLS in numerous scenarios
showcasing improvement through multiple iterations and robustness to other model parameters.

6.1 Word Analogies

We introduce the word analogy task following the presentation of [Pennington et al., 2014]. The
word analogy task is a dataset of 19, 544 statements of the basic form “a is to b as c is to __”, which
are divided into a semantic and syntactic subsets. The semantic statements are typically analogies
relating to people, places, or nouns such as “Athens is to Greece as Berlin is to __”, while the syntactic
questions relate to verb or adjective forms such as “dance is to dancing as fly is to __”. The basic
analogy statement is answered by finding the closest vector uuud to uuub − uuua + uuuc

4 in the embedding
space via cosine similarity5. The task has been shown under specific assumptions to be provably
solvable by methods such as GloVe and Skip-gram [Ethayarajh et al., 2018, Gittens et al., 2017] and
as such is closely related to solving the objectives introduced in Sections 1 and 4.1.

4When evaluating analogies, the search space for d excludes any of a, b, or c.
5Many have considered other forms of distance such as Euclidean distance, or other forms of evaluation such

as multiplicative evaluation
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6.2 Experimental Results

In this section, results of the IWLRLS algorithm are performed for the Tweedie, Multinomial, and
Poisson models. Based on the additional experiments in Sections B.2-B.6 we train the Tweedie
model with p = 1.25 (Section B.3) and for all models include weight truncation to penalize large
co-occurrences (Section B.4), regularization terms (outlined in Section B.5), and include only a single
bias term within the systematic component of the Tweedie model (Section B.6).

Step Semantic Syntactic Total
Tweed Pois Mult Tweed Pois Mult Tweed Pois Mult

One-step 71.4 61.37 73.27 47.62 43.18 46.63 52.13 46.63 50.65
Early-stop 73.98 64.83 75.22 45.64 43.43 46.05 51.02 47.49 51.59

Full-likelihood 74.51 66.87 76.64 48.20 43.03 47.43 53.20 47.56 52.98

Table 2: Accuracy of the IWLRLS algorithm for Multinomial, Tweedie, and Poisson distributions on
the Google word analogy task.

To demonstrate the effectiveness of performing multiple iterations of the IWLRLS algorithm, we
present results for the one-step estimator, an early-stopped estimator, and the full-likelihood estimator.
Of particular interest in our results are the Tweedie one-step estimator (a variant of the GloVe method),
and the full-likelihood estimator for the Multinomial (a variant of the Skip-gram method). For the
results in Table 2, the full-likelihood result is taken to be the iteration which achieves the maximum
total accuracy on the analogy task, and the early-stop algorithm is taken to be an iteration between the
one-step and full-likelihood iterations which performs best in total accuracy on the analogy task. For
both the Tweedie and Multinomials, the full-likelihood result is the result after 3 iterations and the
early-stopped result is the result after 2 iterations. For the Poisson model, the full-likelihood result is
the result after 9 iterations, and the early-stopped result is the result after 3 iterations.

We find a small difference in total accuracy on the analogy task with the one-step estimator (GloVe)
and the full-likelihood differing by roughly 1%. We find a similar relationship in the Poisson estimator
and further note that the early-stopped estimator for the Poisson has very similar accuracy to the
full-likelihood algorithm. Finally, the Multinomial model yields a difference of 2% between the
full-likelihood algorithm (Skip-gram) and the one-step algorithm. The early-stopped algorithm for the
Multinomial also performs 1% higher than the one-step algorithm indicating a fair tradeoff between
running an additional iteration and stopping after only one iteration.

7 Conclusion

We present a general model-based methodology for finding word vectors from a corpus. This
methodology involves choosing the distribution of a chosen co-occurrence matrix to be an exponential
dispersion family and choosing the number of iterations to run our algorithm.

In Table 1, we see that our methodology unifies the dominant word embedding methods available
in the literature and provides new and improved methods. We introduce an extension of Skip-gram
that is stopped before full-convergence analagously to GloVe and an extension to GloVe beyond one
iteration. Experimental results on a small corpus demonstrate our method improves upon GloVe and
Skip-gram on the Google word analogy similarity task. It is our hope that this methodology can lead
to the development of better, more statistically sound, word embeddings and consequently improve
results on many other downstream tasks.
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A Extended Background

Further background in exponential dispersion families and generalized linear models is developed
here.

A.1 Exponential Dispersion Families and the Tweedie Distribution

We begin by discussing exponential dispersion families, the distribution of the response in generalized
linear models.

Definition 2 Let y ∈ R be a random variable. If the density function f(y; θ, ϕ) of y satisfies

log f(y; θ, ϕ) =
y θ − ψ(θ)

δ(ϕ)
+ c(y;ϕ)

over its support, then the distribution of y is in the exponential dispersion family. The parameter θ is
the natural parameter, ϕ is the dispersion parameter, and the function ψ is the cumulant generating
function.

In many cases, the function δ(ϕ) is very simple, meaning that, for instance, δ(ϕ) = 1 or δ(ϕ) = ϕ.
The function c(y;ϕ) can be viewed as the normalizing constant ensuring that the density integrates to
one. When y follows a distribution in the exponential dispersion family with natural parameter θ, its
mean µ = ψ′(θ), so we can equivalently specify the mean µ or the natural parameter θ.

Many classical distributions such as the Poisson, Normal, Binomial, and Gamma distribution are
exponential dispersion families. For example, when y ∼ Normal(µ, σ2) is a normal distribution with
mean µ and variance σ2, its log density satisfies

log

{
1√

2πσ2
exp

[
−1

2

(
y − µ
σ

)2
]}

=
yµ− 1

2µ
2

σ2
− 1

2
log(2πσ2)− y2

2σ2
,

showing that here the natural parameter θ = µ, the dispersion parameter ϕ = σ2, the functions
ψ(θ) = 1

2θ
2, δ(ϕ) = ϕ, and c(y;ϕ) = 1

2 log(2πσ2) + y2

2σ2 .

The Tweedie distribution [Jørgensen, 1997], of particular importantance to us, also lies within the
exponential dispersion family. Instead of defining the Tweedie distribution through the form of its
density, we will define it through the relationship between its mean and variance. This relies on a
result from [Jørgensen, 1987, Theorem 1] that distributions within the exponential dispersion family
are defined by the relationship between their mean and variance.

Definition 3 A random variable y has a Tweedie distribution with power parameter p ∈ {0}∪ [1,∞)
when

var(y) = ϕ (E[y])
p

and the distribution of y is an exponential dispersion family. In this case, we write y ∼
Tweediep(µ, ϕ), where µ = E(y) is the mean.

The Normal distribution discussed above has a variance that does not depend on the mean. In our
new notation, this means that the Normal distribution is a Tweedie distribution with power parameter
p = 0. The Poisson distribution has variance equal to the mean and is in the exponential dispersion
family, so is a Tweedie distribution with power parameter p = 1 and dispersion parameter ϕ = 1.
A Gamma distribution with shape parameter α and rate parameter β is a Tweedie distribution with
power p = 2, mean µ = α

β , and dispersion parameter ϕ = α−1.

We will only consider Tweedie distributions with power parameter p ∈ (1, 2). These distributions are
also known as compound Poisson-Gamma distributions due to the representation

Tweediep(µ, ϕ) =

n∑
i=1

gi, (12)

where n ∼ Poisson(λ) and gi
i.i.d.∼ Gamma(α, β), and λ = µ2−p

(2−p)ϕ , α = 2−p
p−1 , and β = µ1−p

(p−1)ϕ
[Jørgensen, 1997]. It is important to note that the Tweedie distribution has positive mass at zero, an
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important characteristic for capturing the zero-inflation prominent in some co-occurence matrices
due to some words never appearing within the same context. Specifically,

P [y = 0] = exp

(
−µ2−p

ϕ(2− p)

)
> 0.

Using other arguments related to representations of the mean and variance in terms of the cu-
mulant generating function ψ, Jørgensen [1997] show that the Tweedie distribution has ψ(θ) =
1

2−p ((1− p)θ)
2−p
1−p .

A.1.1 Multivariate Exponential Dispersion Families

Exponential dispersion families are defined over real numbers. Now, we generalize their definition to
a multivariate setting.

Definition 4 Let yyy ∈ Rm be a random vector. If the density function f(yyy;θθθ, ϕ) of yyy satisfies

log f(yyy;θθθ, ϕ) =
yyyT θθθ − ψ(θθθ)

δ(ϕ)
+ c(yyy;ϕ)

over its support, then the distribution of yyy is in the multivariate exponential dispersion family. The
parameter θθθ ∈ Rm is the natural parameter, ϕ ∈ R is the dispersion parameter, and the function
ψ : Rm → R is the cumulant generating function.

A collection of independent draws from the same exponential dispersion family is a multivari-
ate exponential dispersion family. To see this, let yi (i = 1, . . . ,m) be i.i.d. from an exponen-
tial dispersion family. Then, the density of yyy satisfies log f(yyy;θθθ, ϕ) =

∑m
j=1 log f(yi; θi, ϕ) =∑m

j=1
yjθj−ψ(θj)

δ(ϕ) + c(yj ;ϕ), which has cumulant generation function ψ(θθθ) =
∑m
j=1 ψ(θj).

Another useful example of a multivariate exponential dispersion family is the Multinomial. Let
xxx ∈ Rc have be distributed as xxx ∼ multinomial(s,πππ), where s ∈ N is the total number of draws and
πππ ∈ Rc is the probability vector. Introduce a change of parameters where πj =

exp θj∑c
k=1 exp θk

. Then
the log density

log

c∏
j=1

π
xj

j =

c∑
j=1

xjθj − s log

(
c∑

k=1

exp θk

)
,

showing that the multinomial distribution is in the multivariate exponential dispersion family with
ψ(θθθ) = s log (

∑c
k=1 exp θk) .

A.2 Generalized Linear Models

We start by reviewing the linear model. Given a response yyy ∈ Rn comprising n observations,
the model for yyy is a linear model with covariates xxxi ∈ Rp when yi

ind.∼ Normal(xxxTi βββ, σ
2) for all

i ∈ {1, . . . , n}. In vector notation, this reads that yyy ∼ Normal(Xβββ, σ2I), where X ∈ Rn×p is a
matrix with ith row xxxTi . This is one of the more primitive models in the statistical modeling toolbox
and isn’t always appropriate for the data.

Generalized linear models remove the the assumptions of normality and that the mean is a linear
function of the coefficients βββ.

Definition 5 For some exponential dispersion family ED(µ, ϕ) with mean parameter µ and dis-
persion parameter ϕ, the model for yyy ∈ Rn is a generalized linear model with link function g
when 

yi
ind.∼ ED(µi, ϕ) (13)

g(µi) = ηi (14)

ηi = xxxTi βββ. (15)
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In the first line of the displayed relationships, the distribution of the response yyy is described. In the
third line, the systematic component ηi expresses the effect of the covariates xxxi. The second line
connects the distribution to the covariates through the link function. That is, the covariates effect a
link-transformed mean.

The canonical link (b′)−1 is often chosen as the link function, due to its computational and math-
ematical properties [Agresti, 2015]. Other times, the canonical link is inappropriate and there are
alternative default choices.

Generalized linear models are used as the default modeling framework in many fields of applied
science for non-normal distributions [McCullagh and Nelder, 1989]. When g(µ) = µ is the identity
map and ED is the Normal distribution, the generalized linear model is simply the linear model.
When g(µ) = logit(µ) = log 1−µ

µ and ED is the Binomial distribution, the generalized linear model
is logistic regression. Further, a generalized linear model can be viewed as a no-hidden-layer neural
network with activation function g.

B Extended Experiments

B.1 Training Details

We train our models on the English text8 corpus6 with approximately 17 million tokens. We filter out
word types that occur fewer than 50 times to obtain a vocabulary size of approximately 11, 000; a
ratio consistent with other embedding literature experiments7.

The adjustable model configurations in IWLRLS are the choice of power parameter p, penalty
tuning parameter λ, and co-occurrence processing step. We experiment with different choices of
p ∈ {1.1, 1.25, 1.5, 1.75, 1.9}, different choices of processing including no processing, clamping
the weights (as in GloVe) and truncating the outliers in the co-occurrence matrix (elaborated on in
Section B.4, and set the penalty tuning parameter λ = 0.002. The estimated word vectors are the
rows of 1

2 Û + 1
2 V̂ .

For all of our experiments, we set the dimension of the word vectors to d = 150, and the objective
function at each iteration is optimized using Adagrad [Duchi et al., 2011] with a fixed learning rate
of 0.18. Models are trained for up to 50 epochs (50 passes through the co-occurrence matrix) with
batches of size 512. We evaluate the impact of multiple iterations of the IWLRLS algorithm on all
models, but examine different additions to the model only when p = 1.25. We believe the impact of
these changes will be present however for any value of p.

B.2 Experiment 1: Effects of Multiple Iterations

We present results of multiple iterations of our IWLRLS algorithm with different distributions. In
particular, we perform multiple iterations of the IWLRLS algorithm with Tweedie distribution and
weight truncation to match the GloVe objective function and processing by setting the weight function
in our model from h(x) = x2−p to h(x) = (min{x, xmax}).75 with xmax = 10 and p = 1.25. We
also presents results for an early-stopped version of skip-gram, and the new Poisson estimator.

The results are summarized in Figure 1. We remark on a few observations based on these results.
First, as the number of steps increases, the accuracy on the analogy task increases for the first few
iterations. Second, relatively few steps are needed with the accuracy of Tweedie model performing
best at the first and second steps of the algorithm, and the Multinomial and model performing best
in steps 3-5 but with very similar performance at earlier steps. The Poisson model performs best
after 9 iteration, however performs nearly identically to the result of an early stopped algorithm at
3 iterations. In conclusion, we find that early-stopped and one-step versions of the algorithm can
perform comparably to full-likelihood methods.

6http://mattmahoney.net/dc/text8.zip
7By truncating the vocabulary size to 11, 000 we note that we are unable to solve all 19, 544 analogies. We

are able to solve roughly one-third of the analogies, and present results on this subset.
8This training procedure is slightly different from the asynchronous stochastic gradient descent training

procedure used in [Pennington et al., 2014].
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Figure 1: Accuracy Left: Semantic Accuracy, Middle: Syntactic Accuracy, Right: Total Accuracy
on Google word analogy task with multiple iterations of the IWLRLS algorithm.

B.3 Experiment 2: Effects of Varying p

In this section, we examine the effect of the choice of the power p in the tuning parameter when you
run a Tweedie generalized low rank model.

p Iterations Semantic Syntactic Total
1.1 1 66.7 36.8 42.48
1.1 2 72.74 43.39 48.96

1.25 1 72.9 42.26 48.09
1.25 2 74.6 45.26 50.84
1.5 1 73.0 44.7 50.08
1.5 2 70.78 44.68 49.64

1.75 1 63.95 43.5 47.38
1.75 2 65.81 40.01 44.91
1.9 1 53.2 39.91 42.43
1.9 2 53.02 33.6 37.29

Table 3: Results for multiple choices of p for one and two iterations.

The Results in Table 3 show that values of p which are high perform poorly, while values of p below
1.5 perform similarly. We find that p = 1.25 performs the best, and view this value of p as a good
choice as it accounts for zero-inflation present in the co-occurence X . This also agrees with the
results of [Pennington et al., 2014] and [Kobayashi and Tanaka-Ishii, 2018].

An even more interesting and perhaps more appropriate way to estimate the power p of the Tweedie
distribution is in a data-driven and model-based way. This approach is taken in Kobayashi and
Tanaka-Ishii [2018]. In future work, we plan to use an improved estimating equation relative to
[Kobayashi and Tanaka-Ishii, 2018] to estimate p as part of the algorithm. This would be modeling
the marginal distribution of the co-occurences as being Tweedie with the same power. Under a similar
assumption, modified likelihood calculations are tractable and so are another possibility. We plan to
explore this in future work.

B.4 Experiment 3: Effects of Co-occurrence Matrix and Weight Truncation

We set p = 1.25 in our algorithm with Tweedie distribution, and explore the effect of different
strategies in handling large entries in the co-occurrence matrix X . One strategy is to simply input X
into step 3 of our method. A second strategy is to clamp the weight h(·) that results from step 3 of our
method by taking h(x) = (min{x, xmax}).75 as in GloVe. A third strategy is to input min{x, xmax}
for each entry of the matrix X , where xmax = 10, into step 3 of our method9.

We find that no adjustment to the weights and GloVe’s method of weight truncation both perform
similarly with weight truncation slightly outperforming no adjustment. We suspect a more significant
improvement will show with larger corpora such as a full Wikipedia corpus.

Alternative approaches to alleviating the problem of large co-occurences are to use a more robust
distribution or link function. Indeed, the weight truncation in GloVe can be directly mimicked by

9The choice of xmax = 10 is set according to the default hyperparameters provided in the GLoVe source
code available at https://github.com/stanfordnlp/GloVe for training on the text8 corpus.
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Strategy Iterations Semantic Syntactic Total
1 1 72.91 42.26 48.09
1 2 74.6 45.26 50.84
2 1 70.6 45.51 50.28
2 2 71.94 45.97 50.9
3 1 54.88 44.01 46.08
3 2 53.82 45.3 46.92

Table 4: Results for multiple choices of regularizing the large values of the co-occurrence matrix.
Our strategies are (1) harmonic matrix, (2) truncation of the weight only, (3) truncation of the
co-occurrence matrix to xmax = 10.

either altering the distribution or the link function. The desired form can be found via the weight and
pseudo-response equations in algorithm 1. We leave this to future work.

B.5 Experiment 4: Regularization Effects

Strategy Iterations Semantic Syntactic Total
Penalty 1 69.89 44.32 49.18
Penalty 2 73.98 46.2 51.48

No Penalty 1 72.91 42.26 48.09
No Penalty 2 74.6 45.26 50.84

Table 5: Results for including the penalty term in Equation (16) and not including the diagonal terms.

We consider regularizing the word vectors by including the penalty

λ

2

(
‖U‖2F + ‖V ‖2F

)
, (16)

with λ = .002 for two reasons. One is to reduce noise in the estimation of the word vectors. Udell
et al. [2016, Lemma 7.3] show that penalizing by (16) is equivalent to penalizing by λ‖UV T ‖∗,
the nuclear norm of UV T . Since penalizing the nuclear norm UV T shrinks the dimension of the
embedding and larger dimensional embeddings tend to be better [Melamud et al., 2016], we choose a
small tuning parameter to reduce noise while still preserving the dimension.

Another reason is to symmetrically distribute the singular values of Û V̂ T to both matrices Û and V̂ .
Write the singular value decomposition Û V̂ T = UΣV

T
, for U and V orthogonal and Σ diagonal.

Mu et al. [2018, Theorem 1] shows that using penalty (16) results in having Û = UΣ1/2Q and
V̂ = V Σ1/2Q for some orthogonal matrix Q. This is desirable since it was argued empirically by
Levy et al. [2015] that a symmetric distribution of singular values works optimally on semantic tasks.

Finally, we experiment with whether the penalty introduced in Equation (16) improves results and
accurately reduces noise in the estimate. We also consider not including the diagonal elements of
X as a form of regularization and experiment here as well, as these terms are often large (can be
considered as outliers) and do not contain a great deal of linguistic information. Table 5 demonstrates
the included regularization within the IWLRLS algorithm with Tweedie distribution and p = 1.25
improves results.

B.6 Experiment 5: Bias Term Effects

In Experiment 1, we found that the Multinomial model outperforms the Poisson model, although the
Poisson model has an additional bias term to model context word frequencies. This result was fairly
counterintuitive, so we additionally experiment with having only a single bias term ai in the Tweedie
model as in the Multinomial model.

We find overall that the Tweedie model with a systematic component without the bias term bj
performs slightly better than the Tweedie model with systematic component containing both bias
terms ai and bj . We hope to further study the impact of bias terms and other systematic components
in future work.
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Strategy Iterations Semantic Syntactic Total
Both Bias 1 73.18 47.87 52.67
Both Bias 2 75.04 45.76 51.32
Both Bias 3 74.25 47.82 52.84
Both Bias 4 73.36 45.87 51.09
Both Bias 5 73.53 47.20 52.20

Single Bias 1 71.4 47.62 52.13
Single Bias 2 73.98 45.64 51.02
Single Bias 3 74.51 48.20 53.20
Single Bias 4 74.51 46.24 51.61
Single Bias 4 75.22 47.87 53.06

Table 6: Results for including the bias term on the context word bj in addition to ai.
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