
Progressive Memory Banks for Incremental Domain Adaptation

Nabiha Asghar * 1 2 Lili Mou * 1 Kira A. Selby 1 2 Kevin D. Pantasdo 1 Pascal Poupart 1 2 Xin Jiang 3

Abstract
This paper addresses the problem of incremental
domain adaptation (IDA). We assume each do-
main comes sequentially, and that we could only
access data in the current domain. The goal of
IDA is to build a unified model performing well
on all the encountered domains. We propose to
augment a recurrent neural network (RNN) with
a directly parameterized memory bank, which
is retrieved by an attention mechanism at each
step of RNN transition. The memory bank pro-
vides a natural way of IDA: when adapting our
model to a new domain, we progressively add
new slots to the memory bank, which increases
the model capacity. We learn the new memory
slots and fine-tune existing parameters by back-
propagation. Experiments show that our approach
significantly outperforms naı̈ve fine-tuning and
previous work on IDA, including elastic weight
consolidation and the progressive neural network.
Compared with expanding hidden states, our ap-
proach is more robust for old domains, shown by
both empirical and theoretical results.

1. Introduction
Domain adaptation aims to transfer knowledge from a
source domain to a target domain in a machine learning
system. This is important for neural networks, which are
data-hungry and prone to overfitting. In this paper, we focus
on incremental domain adaptation (IDA), where we assume
different domains come one after another. We only have
access to the data in the current domain, but hope to build
a unified model that performs well on all the domains that
we have encountered (Xu et al., 2014; Rusu et al., 2016;
Kirkpatrick et al., 2017).

Incremental domain adaptation is useful in various scenarios.

*Equal contribution 1University of Waterloo, Canada. 2Vector
Institute for AI, Toronto, Canada. 3Noah’s Ark Lab, Huawei
Technologies, Hong Kong. Correspondence to: Nabiha Asghar
<nasghar@uwaterloo.ca>.

Proceedings of the 1 st Adaptive & Multitask Learning Workshop,
Long Beach, California, 2019. Copyright 2019 by the author(s).

Suppose a company is doing business with different partners
over a long period of time. The company can only access
the data of the partner with a current contract. However,
the machine learning model is the company’s property (if
complying with the contract). Therefore, it is desired to
preserve as much knowledge as possible in the model and
not to rely on the availability of the data.

Another important application of IDA is a quick adaptation
to new domains. If the environment of a deployed machine
learning system changes frequently, traditional methods like
jointly training all domains require the learning machine to
be re-trained from scratch every time. Fine-tuning a neural
network by a few steps of gradient updates does transfer
quickly, but it suffers from the catastrophic forgetting prob-
lem (Kirkpatrick et al., 2017). Suppose we do not know the
domain of a data point when predicting; the (single) fine-
tuned model cannot predict well for samples in previous
domains, as it tends to “forget” quickly during fine-tuning.

A recent trend of domain adaptation in the deep learning
regime is the progressive neural network (Rusu et al., 2016),
which progressively grows the network capacity if a new do-
main comes. Typically, this is done by enlarging the model
with new hidden states and a new predictor (Figure 1a). To
avoid interfering with existing knowledge, the newly added
hidden states are not fed back to the previously trained states.
During training, they fix all existing parameters, and only
train the newly added ones. For inference, they use the new
predictor for all domains. This is sometimes undesired as
the new predictor is trained with only the last domain.

In this paper, we propose a progressive memory bank for
incremental domain adaptation. Our model augments a re-
current neural network (RNN) with a memory bank, which
is a set of distributed, real-valued vectors capturing domain
knowledge. The memory is retrieved by an attention mech-
anism. When our model is adapted to new domains, we
progressively increase the slots in the memory bank. But
different from (Rusu et al., 2016), we fine-tune all the pa-
rameters, including RNN and the existing memory slots.
Empirically, when the model capacity increases, the RNN
does not forget much even if the entire network is fine-tuned.
Compared with expanding RNN hidden states, the newly
added memory slots do not contaminate existing knowledge
in RNN states, as will be shown by a theorem.



Progressive Memory Banks for Incremental Domain Adaptation

𝒉"#$

𝑀('())

Compute	
attention
probability

𝒉"

𝒙"#$ 𝒙"

Weighted	sum
by	attention
probability

𝑀(,-.)

Predictor	1

Predictor	2

Predictor	3

(a)	Progressive	neural	network			 (b)	Progressive	memory

Figure 1. (a) Progressive neural network (Rusu et al., 2016). (b)
One step of RNN transition in our progressive memory network.
Colors indicate different domains.

We evaluate our approach1 on Natural Language Infer-
ence and Dialogue Response Generation. Experiments
support our hypothesis that the proposed approach adapts
well to target domains without catastrophic forgetting of
the source. Our model outperforms the naı̈ve fine-tuning
method, the original progressive neural network, as well as
other IDA techniques including elastic weight consolidation
(EWC) (Kirkpatrick et al., 2017).

Detailed related work is provided in Appendix A.

2. Proposed Approach
Our model is based on an RNN. At each time step, the
RNN takes the embedding of the current word as input, and
changes its states accordingly. This can be represented by

hi = RNN(hi−1,xi) (1)

where hi and hi−1 are the hidden states at time steps i and
i− 1, respectively. xi is the input at the ith step. Typically,
long short term memory (LSTM) (Hochreiter & Schmid-
huber, 1997) or Gated Recurrent Units (GRU) (Cho et al.,
2014) are used as RNN transitions. In the rest of this section,
we will describe a memory augmented RNN, and how it is
used for incremental domain adaptation (IDA).

2.1. Augmenting RNN with Memory Banks

We enhance the RNN with an external memory bank, as
shown in Figure 1b. The memory bank augments the overall
model capacity by storing additional parameters in memory
slots. At each time step, our model computes an attention
probability to retrieve memory content, which is then fed to
the computation of RNN transition.

Particularly, we adopt a key-value memory bank, inspired
by Miller et al. (2016). Each memory slot contains a key
vector and a value vector. The former is used to compute
the attention weight for memory retrieval, whereas the latter

1Our IDA code is available at https://github.com/
nabihach/IDA.

is the value of memory content.

For the ith step, the memory mechanism computes an atten-
tion probability αi by

α̃i,j = exp{h>i−1m
(key)
j } (2)

αi,j =
α̃i,j∑N

j′=1 α̃i,j′
(3)

wherem(key)
j is the key vector of the jth slot of the memory

(among N slots in total). Then the model retrieves memory
content by a weighted sum of all memory values, where the
weight is the attention probability, given by

ci =

N∑
j=1

αi,jm
(val)
j (4)

Here,m(val)
j is the value vector of the jth memory slot. We

call ci the memory content. Then, ci is concatenated with
the current word xi, and fed to the RNN at step i to compute
RNN state transition.

The memory bank in our model captures distributed knowl-
edge; this is different from other work where memory slots
correspond to specific entities (Eric et al., 2017). The atten-
tion mechanism enables us to train both memory content
and its retrieval end-to-end, along with other parameters.

2.2. Progressively Increasing Memory for Incremental
Domain Adaptation

The memory bank in Subsection 2.1 can be progressively
expanded to adapt a model in a source domain to new do-
mains. This is done by adding new memory slots to the
bank which are learned exclusively from the target data.

Suppose the memory bank is expanded with anotherM slots
in a new domain, in addition to previous N slots. We then
have N +M slots in total. The model computes attention
probability over the expanded memory and obtains the atten-
tion vector in the same way as Equations (2)–(4), except that
the summation is computed from 1 to N +M . To initialize
the expanded model, we load all previous parameters, in-
cluding RNN weights and the learned N slots, but randomly
initialize the progressively expanded M slots. During train-
ing, we update all parameters by gradient descent. The
process is applied whenever a new domain comes, as shown
in Algorithm 1 in Appendix A.

We would like to discuss the following issues.

Fixing vs. Fine-tuning learned parameters. Inspired by
the progressive neural network (Rusu et al., 2016), we find
it tempting to fix RNN parameters and the learned memory
but only tune new memory for IDA. However, our prelimi-
nary results show that if we fix all existing parameters, its
performance is worse than fine-tuning all parameters.

https://github.com/nabihach/IDA
https://github.com/nabihach/IDA


Progressive Memory Banks for Incremental Domain Adaptation

Fine-tuning vs. Fine-tuning while increasing memory
slots. It is reported that fine-tuning a model (without increas-
ing model capacity) suffers from the problem of catastrophic
forgetting (Kirkpatrick et al., 2017). Our experiments con-
firm our intuition that the increased model capacity helps to
learn the new domain with less overriding of the previously
learned model.

Expanding hidden states vs. Expanding memory. An-
other way of progressively increasing model capacity is to
expand the size of RNN layers. This setting is similar to the
progressive network, except that all weights are fine-tuned
and new states are connected to existing states. However, we
prove a theorem that the expanded hidden states contaminate
the learned RNN more than the expanded memory.
Theorem 1. Let RNN have vanilla transition with the linear
activation function, and let the RNN state at the last step
hi−1 be fixed. For a particular data point, if the memory at-
tention satisfies

∑N+M
j=N+1 α̃i,j ≤

∑N
j=1 α̃i,j , then memory

expansion yields a lower expected mean squared difference
in hi than RNN state expansion, under reasonable assump-
tions2. That is,

E
[
‖h(m)

i − hi‖2
]
≤ E

[
‖h(s)

i − hi‖2
]

(5)

where h(m)
i refers to the hidden states if the memory is ex-

panded. h(s)
i refers to the original dimensions of the RNN

states, if we expand the size of RNN states themselves.

Proof: See Appendix B.

3. Experiments
We evaluate our approach on natural language inference.
This is a classification task to determine the relationship
between two sentences, the target labels being entailment,
contradiction, and neutral.

More experiments on the task of Dialogue Response Gener-
ation are provided in Appendix D.

3.0.1. DATASET AND SETUP

We use the multi-genre natural language inference
(MultiNLI) corpus (Williams et al., 2018) as our data.
MultiNLI is particularly suitable for IDA, as it contains
training samples for 5 genres: Fic, Gov, Slate, Tel, and
Travel. In total, we have 390k training samples, mostly
balanced across domains. The corpus also contains a held-
out (non-training) set of data samples with labels. We split
it into two parts for validation and test.3 For the base model,

2See Appendix B for all the assumptions.
3The labels for the official test set of MultiNLI are not publicly

available, therefore we cannot use it to evaluate performance on
individual domains. Our split of the held-out set for validation and
test applies to all competing methods, and thus is a fair setting.

% Accuracy on
#Line Model Trained on/by S T

1 RNN S 65.01⇓ 61.23⇓

2 T 56.46⇓ 66.49⇓

3

R
N

N
+

M
em

S 65.41⇓ 60.87⇓

4 T 56.77⇓ 67.01⇓

5 S+T 66.02↓ 70.00
6

R
N

N
+

M
em

S→T (F) 65.62↓ 69.90↓

7 S→T (F+M) 66.23 70.21
8 S→T (F+M+V) 67.55 70.82
9 S→T (F+H) 64.09⇓ 68.35⇓

10 S→T (F+H+V) 63.68⇓ 68.02⇓

11 S→T (EWC) 66.02⇓ 64.10⇓

12 S→T (Progressive) 64.47⇓ 68.25⇓

Table 1. Results on two domain adaptation. F: Fine-tuning. V:
Expanding vocabulary. H: Expanding RNN hidden states. M:
Our proposed method of expanding memory. We also compare
with EWC (Kirkpatrick et al., 2017) and the progressive neural
network (Rusu et al., 2016). For the statistical test (compared with
Line 8), ↑, ↓: p < 0.05 and ⇑,⇓: p < 0.01.

we train a bi-directional LSTM (BiLSTM), following the
original MultiNLI paper (Williams et al., 2018). Our BiL-
STM achieves an accuracy of 68.37 on the official MultiNLI
test set, which is better than 67.51 reported in the original
MultiNLI paper (Williams et al., 2018) using BiLSTM. This
shows that our implementation and tuning are fair for the
basic BiLSTM, and that our model is ready for the study
of IDA. The details of network architecture, training and
hyper-parameter tuning are given in Appendix C.

3.0.2. TRANSFER BETWEEN TWO DOMAINS

We want to compare our approach with a large number of
baselines and variants, and thus choose two domains as a
testbed: Fic as the source and Gov as the target. We show
results in Table 1.

First, we analyze the performance of RNN and the memory-
augmented RNN (Lines 1–2 vs. Lines 3–4). They have gen-
erally similar performance, showing that, in the non-transfer
setting, the memory bank does not help the RNN much, and
thus is not a typical RNN architecture in previous literature.
However, This later confirms that the performance improve-
ment is indeed due to our IDA technique, instead of simply
a better neural architecture.

We then apply two straightforward methods of domain adap-
tation: multi-task learning (Line 5) and fine-tuning (Line 6).
Multi-task learning jointly optimizes source and target objec-
tives, denoted by “S+T.” On the other hand, the fine-tuning
approach trains the model on the source first, and then fine-
tunes on the target. In our experiments, these two methods
perform similarly on the target domain, which is consistent
with (Mou et al., 2016). On the source domain, fine-tuning



Progressive Memory Banks for Incremental Domain Adaptation

Group Setting Fic Gov Slate Tel Travel
Non-
IDA

In-domain training 65.41⇓ 67.01⇓ 59.30⇓ 67.20⇓ 64.70⇓

Fic + Gov + Slate + Tel + Travel (multi-task) 70.60↑ 73.30 63.80 69.15 67.07↓

IDA

Fic→ Gov→ Slate→ Tel→ Travel (F+V) 67.24↓ 70.82⇓ 62.41↓ 67.62↓ 68.39
Fic→ Gov→ Slate→ Tel→ Travel (F+V+M) 69.36 72.47 63.96 69.74 68.39
Fic→ Gov→ Slate→ Tel→ Travel (EWC) 67.12⇓ 68.71⇓ 59.90⇓ 66.09⇓ 65.70⇓

Fic→ Gov→ Slate→ Tel→ Travel (Progressive) 65.22⇓ 67.87⇓ 61.13⇓ 66.96⇓ 67.90

Table 2. Comparing our approach in the multi-domain setting. In this experiment, we use the memory-augmented RNN as the neural
architecture. Italics represent best results in the IDA group.

performs significantly worse than multi-task learning, as it
suffers from the catastrophic forgetting problem. We notice
that, in terms of source performance, the fine-tuning ap-
proach (Line 6) is slightly better than trained on the source
domain only (Line 3). This is probably because our domains
are highly correlated as opposed to (Kirkpatrick et al., 2017),
and thus training with more data on target improves the per-
formance on source. However, fine-tuning does achieve the
worst performance on source compared with other domain
adaptation approaches (among Lines 5–8). Thus, we never-
theless use the terminology “catastrophic forgetting”, and
our research goal is still to improve IDA performance.

The main results of our approach are Lines 7 and 8. We see
that on both source and target domains, our approach outper-
forms the fine-tuning method alone where the memory size
is not increased (comparing Lines 7 and 6). This verifies
our conjecture that, if the model capacity is increased suffi-
ciently, the new domain does not override the learned knowl-
edge much in the neural network. Our proposed approach is
also “orthogonal” to the expansion of the vocabulary size,
where target-specific words are randomly initialized and
learned on the target domain. As seen, this combines well
with our memory expansion and yields the best performance
on both source and target (Line 8).

We now compare an alternative way of increasing model
capacity, i.e., expanding hidden states (Lines 9 and 10).
For fair comparison, we ensure that the total number of
model parameters after memory expansion is equal to the
number of model parameters after hidden state expansion.
We see that the performance of hidden state expansion is
poor especially on the source domain, even if we fine-tune
all parameters. This experiment provides empirical evidence
to our theorem that expanding memory is more robust than
expanding hidden states.

We also compare the results with previous work on IDA.
EWC (Kirkpatrick et al., 2017) does not achieve satisfac-
tory results. We investigate other published papers using
the same method and find inconsistent results: EWC works
well in some applications (Zenke et al., 2017; Lee et al.,
2017) but performs poorly on others (Yoon et al., 2018; Wu
et al., 2018); (Wen & Itti, 2018) even report near random
performance with EWC. We also re-implement the progres-

sive neural network (Rusu et al., 2016). We use the target
predictor to do inference for both source and target domains.
Progressive neural network (Rusu et al., 2016) also yields
low performance, particularly on source, probably because
the predictor is trained with only the target domain.

We measure the statistical significance of the results with
one-tailed Wilcoxon’s signed-rank test (Wilcoxon, 1945).
Each method is compared with Line 8: ↑ and ⇑ denote “sig-
nificantly better” with p < 0.05 and p < 0.01 respectively.
↓ and ⇓ similarly denote “significantly worse”. The absence
of an arrow indicates that the performance difference com-
pared with Line 8 is statistically insignificant with p < 0.05.
The test shows that our approach is significantly better than
others, both on source and target.

3.0.3. IDA WITH ALL DOMAINS

Having analyzed our approach, baselines, and variants on
two domains in detail, we test the performance of IDA with
multiple domains, namely, Fic, Gov, Slate, Tel, and
Travel. We assume these domains come one after another,
and our goal is to achieve high performance on both new
and previous domains. Table 2 shows that our approach
of progressively growing memory bank achieves the same
performance as fine-tuning on the last domain (both with
vocabulary expansion). But for all previous 4 domains,
we achieve significantly better performance. Our model is
comparable to multi-task learning on all domains. It also
outperforms EWC and the progressive neural network in
all domains; the results are consistent with Table 1. This
provides evidence of the effectiveness for IDA with more
than two domains.

It should also be mentioned that multi-task learning requires
data from all domains to be available at the same time. It is
not an incremental approach for domain adaptation, and thus
cannot be applied to the scenarios introduced in Section 1.
We include this setting mainly because we are curious about
the performance of non-incremental domain adaptation.



Progressive Memory Banks for Incremental Domain Adaptation

4. Conclusion
In this paper, we propose a progressive memory network
for incremental domain adaptation (IDA). We augment an
RNN with an attention-based memory bank. During IDA,
we add new slots to the memory bank and tune all param-
eters by back-propagation. Empirically, the progressive
memory network does not suffer from the catastrophic for-
getting problem as in naı̈ve fine-tuning. Our intuition is
that the new memory slots increase the neural network’s
model capacity, and thus, the new knowledge less overrides
the existing network. Compared with expanding hidden
states, our progressive memory bank provides a more robust
way of increasing model capacity, shown by both a theorem
and experiments. We also outperform previous work for
IDA, including elastic weight consolidation (EWC) and the
original progressive neural network.

References
Bayer, J., Osendorfer, C., Korhammer, D., Chen, N., Ur-

ban, S., and van der Smagt, P. On fast dropout and
its applicability to recurrent networks. arXiv preprint
arXiv:1311.0701, 2013.

Cho, K., van Merrienboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. Learning
phrase representations using rnn encoder–decoder for
statistical machine translation. In EMNLP, pp. 1724–
1734, 2014.

Danescu-Niculescu-Mizil, C. and Lee, L. Chameleons in
imagined conversations: A new approach to understand-
ing coordination of linguistic style in dialogs. In Work-
shop on Cognitive Modeling and Computational Linguis-
tics, pp. 76–87, 2011.

Das, R., Zaheer, M., Reddy, S., and McCallum, A. Question
answering on knowledge bases and text using universal
schema and memory networks. In ACL, pp. 358–365,
2017.

Eric, M., Krishnan, L., Charette, F., and Manning, C. D.
Key-value retrieval networks for task-oriented dialogue.
In SIGDIAL, pp. 37–49, 2017.

Ganin, Y., Ustinova, E., Ajakan, H., Germain, P., Larochelle,
H., Laviolette, F., Marchand, M., and Lempitsky, V.
Domain-adversarial training of neural networks. JMLR,
17(1):2096–2030, 2016.

Graves, A., Wayne, G., Reynolds, M., Harley, T., Dani-
helka, I., Grabska-Barwińska, A., Colmenarejo, S. G.,
Grefenstette, E., Ramalho, T., Agapiou, J., et al. Hybrid
computing using a neural network with dynamic external
memory. Nature, 538(7626):471–476, 2016.

Hochreiter, S. and Schmidhuber, J. Long short-term memory.
Neural Computation, 9(8):1735–1780, 1997.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Des-
jardins, G., Rusu, A. A., Milan, K., Quan, J., Ramalho, T.,
Grabska-Barwinska, A., et al. Overcoming catastrophic
forgetting in neural networks. PNAS, 114(13):3521–3526,
2017.

Lee, S.-W., Kim, J.-H., Jun, J., Ha, J.-W., and Zhang, B.-
T. Overcoming catastrophic forgetting by incremental
moment matching. In NIPS, pp. 4652–4662, 2017.

Liu, C.-W., Lowe, R., Serban, I., Noseworthy, M., Charlin,
L., and Pineau, J. How not to evaluate your dialogue
system: An empirical study of unsupervised evaluation
metrics for dialogue response generation. In EMNLP, pp.
2122–2132, 2016.

Liu, P., Qiu, X., and Huang, X. Adversarial multi-task
learning for text classification. In ACL, pp. 1–10, 2017.

Lowe, R., Pow, N., Serban, I., and Pineau, J. The Ubuntu dia-
logue corpus: A large dataset for research in unstructured
multi-turn dialogue systems. In SIGDIAL, pp. 285–294,
2015.

Madotto, A., Wu, C.-S., and Fung, P. Mem2seq: Effec-
tively incorporating knowledge bases into end-to-end
task-oriented dialog systems. In ACL, pp. 1468–1478,
2018.

Miller, A., Fisch, A., Dodge, J., Karimi, A.-H., Bordes, A.,
and Weston, J. Key-value memory networks for directly
reading documents. In EMNLP, pp. 1400–1409, 2016.

Mou, L., Meng, Z., Yan, R., Li, G., Xu, Y., Zhang, L., and
Jin, Z. How transferable are neural networks in NLP
applications? In EMNLP, pp. 479–489, 2016.

Pennington, J., Socher, R., and Manning, C. D. GloVe:
Global vectors for word representation. In EMNLP, pp.
1532–1543, 2014.

Rusu, A. A., Rabinowitz, N. C., Desjardins, G., Soyer, H.,
Kirkpatrick, J., Kavukcuoglu, K., Pascanu, R., and Had-
sell, R. Progressive neural networks. arXiv preprint
arXiv:1606.04671, 2016.

Serban, I. V., Sordoni, A., Lowe, R., Charlin, L., Pineau,
J., Courville, A. C., and Bengio, Y. A hierarchical latent
variable encoder-decoder model for generating dialogues.
In AAAI, pp. 3295–3301, 2017.

Sukhbaatar, S., Weston, J., Fergus, R., et al. End-to-end
memory networks. In NIPS, pp. 2440–2448, 2015.



Progressive Memory Banks for Incremental Domain Adaptation

Sutskever, I., Vinyals, O., and Le, Q. V. Sequence to se-
quence learning with neural networks. In NIPS, pp. 3104–
3112, 2014.

Wen, S. and Itti, L. Overcoming catastrophic forgetting
problem by weight consolidation and long-term memory.
arXiv preprint arXiv:1805.07441, 2018.

Wilcoxon, F. Individual comparisons by ranking methods.
Biometrics Bulletin, 1(6):80–83, 1945.

Williams, A., Nangia, N., and Bowman, S. A broad-
coverage challenge corpus for sentence understanding
through inference. In NAACL-HLT, pp. 1112–1122, 2018.

Wu, C., Herranz, L., Liu, X., Wang, Y., van de Weijer, J.,
and Raducanu, B. Memory replay GANs: learning to
generate images from new categories without forgetting.
arXiv preprint arXiv:1809.02058, 2018.

Xu, J., Ramos, S., Vázquez, D., López, A. M., and Ponsa, D.
Incremental domain adaptation of deformable part-based
models. In BMVC, 2014.

Yoon, J., Yang, E., Lee, J., and Hwang, S. J. Lifelong
learning with dynamically expandable networks. ICLR,
2018.

Zenke, F., Poole, B., and Ganguli, S. Continual learning
through synaptic intelligence. In ICML, pp. 3987–3995,
2017.

Zhang, Y., Galley, M., Gao, J., Gan, Z., Li, X., Brockett,
C., and Dolan, B. Generating informative and diverse
conversational responses via adversarial information max-
imization. arXiv preprint arXiv:1809.05972, 2018a.

Zhang, Z., Huang, M., Zhao, Z., Ji, F., Chen, H., and
Zhu, X. Memory-augmented dialogue management
for task-oriented dialogue systems. arXiv preprint
arXiv:1805.00150, 2018b.

A. Related Work
A.1. Domain Adaptation

Domain adaptation has been widely studied in NLP. Mou
et al. (2016) analyze two straightforward settings, namely,
multi-task learning (jointly training all domains) and fine-
tuning (training one domain and fine-tuning on the other).
One recent advance of domain adaptation is adversarial
learning, where the neural features are trained not to classify
the domain (Ganin et al., 2016). Such approach can be
extended to private-share architectures (Liu et al., 2017).
However, all these approaches (except fine-tuning) require
that all domains are available at the same time. Thus, they
are not IDA approaches.

Kirkpatrick et al. (2017) address the catastrophic forgetting
problem of neural networks when fine-tuning, and propose a
regularization term based on the Fisher information matrix;
they call the method elastic weight consolidation (EWC).
While some follow-up studies report EWC achieves high
performance in their scenarios (Zenke et al., 2017; Lee et al.,
2017), others show that EWC is less effective (Wen & Itti,
2018; Yoon et al., 2018; Wu et al., 2018).

Rusu et al. (2016) propose a progressive neural network
that progressively increases the number of hidden states
(Figure 1a). To avoid overriding existing information, they
propose to fix the weights of the learned network, and do not
feed new states to old ones. This results in multiple predic-
tors, requiring that a data sample is labeled with its domain
during the test time. Should different domains be highly
correlated to each other, the predictor of a previous domain
cannot make use of new data to improve performance. If we
otherwise use the last predictor to predict samples from all
domains, its performance may be low for previous domains,
as the predictor is only trained with the last domain.

Yoon et al. (2018) propose an extension of the progressive
network. They identify which existing hidden units are
relevant for the new task (with their sparse penalty), and fine-
tune only the corresponding subnetwork. However, sparsity
is not common for RNNs in NLP applications, as sparse
recurrent connections are harmful. A similar phenomenon
is that dropout of recurrent connections is harmful (Bayer
et al., 2013).

A.2. Memory-Based Neural Networks

Our work is related to memory-based neural networks.
Sukhbaatar et al. (2015) propose an end-to-end memory
network that assigns a slot for an entity, and aggregates in-
formation by multiple attention-based layers. In their work,
they design the architecture for bAbI question answering,
and assign a memory slot for each sentence. Such idea can
be extended to various scenarios, for example, assigning
slots to external knowledge for question answering (Das



Progressive Memory Banks for Incremental Domain Adaptation

Algorithm 1: Progressive Memory for IDA
Input: A sequence of domains D0, D1, · · · , Dn
Output: A model performing well on all domains
Initialize a memory-augmented RNN
Train the model on D0

for D1, · · · , Dn do
Expand the memory with new slots
Load RNN weights and existing memory banks
Train the model by updating all parameters

end
Return: The resulting model

et al., 2017) and assigning slots to dialog history for a con-
versation system (Madotto et al., 2018).

Another type of memory in the neural network regime is the
neural Turing machine (NTM) (Graves et al., 2016). Their
memory is not directly parameterized, but is read or writ-
ten by a neural controller. Therefore, such memory serves
as temporary scratch paper, but does not store knowledge
itself. In NTM, the memory information and operation are
fully distributed/neuralized, as they do not correspond to the
program on a true (non-neural) Turing machine.

Zhang et al. (2018b) combine the above two styles of mem-
ory for task-oriented dialog systems, where they have both
slot-value memory and read-and-write memory.

Different from the above work, our memory bank stores
knowledge in a distributed fashion, where each slot does
not correspond to a concrete entity. Our memory is directly
parameterized, interacting in a different way from RNN
weights. Thus, it provides a natural way of incremental
domain adaptation.

Our proposed IDA process is shown in Algorithm 1.

B. Proof of Theorem 1
It is noted that the following theorem does not explicitly
prove results for IDA, but shows that expanding memory
is more stable than expanding hidden states. This is par-
ticularly important at the beginning steps of IDA, as the
progressively growing parameters are randomly initialized
and are basically noise. Although our theoretical analysis
uses a restricted setting (i.e., vanilla RNN transition and lin-
ear activation), it provides the key insight that our approach
is appropriate for IDA.

Theorem 1. Let RNN have vanilla transition with the linear
activation function, and let the RNN state at the last step
hi−1 be fixed. For a particular data point, if the memory at-
tention satisfies

∑N+M
j=N+1 α̃i,j ≤

∑N
j=1 α̃i,j , then memory

expansion yields a lower expected mean squared difference
in hi than RNN state expansion, under reasonable assump-

𝒉"#$ 𝒉"

𝒉"#$ 𝒉"

𝒉%"#$ 𝒉%"
𝑊%

(a)	Expand	RNN	states

𝒉"#$ 𝒉"

(b)	Expand	memory

𝒄

𝒉"#$ 𝒉"

𝒄(

𝒙" 𝒙"

𝒙"
𝒙"

Figure 2. Hidden state expansion vs. memory expansion at step t.

tions. That is,

E
[
‖h(m)

i − hi‖2
]
≤ E

[
‖h(s)

i − hi‖2
]

(6)

where h(m)
i refers to the hidden states if the memory is ex-

panded. h(s)
i refers to the original dimensions of the RNN

states, if we expand the size of RNN states themselves.

Proof: We first make a few assumptions. Let hi−1 be the
hidden state of the last step. We focus on one step of tran-
sition and assume that hi−1 is the same when the model
capacity is increased. We consider a simplified case where
the RNN has vanilla transition with the linear activation
function. We measure the effect of model expansion quanti-
tatively by the expected norm of the difference on hi before
and after model expansion.

Suppose the original hidden state hi is D-dimensional. We
assume each memory slot is d-dimensional, and that the
additional RNN units when expanding the hidden state are
also d-dimensional. We further assume every variable in the
expanded memory and expanded weights (W̃ in Figure 2)
are iid with zero mean and variance σ2. This assumption
is reasonable as it enables a fair comparison of expanding
memory and expanding hidden states. Finally, we assume
every variable in the learned memory slots, i.e., mjk, fol-
lows the same distribution (zero mean, variance σ2). This
assumption may not be true after the network is trained, but
is useful for proving theorems.

We compute how the original dimensions in the hidden state
are changed if we expand RNN. We denote the expanded
hidden states by h̃i−1 and h̃i for the two time steps. We de-
note the weights connecting from h̃i−1 tohi by W̃ ∈ RD×d.
We focus on the original D-dimensional space, denoted as
h
(s)
i . The connection is shown in Figure 2a. We have



Progressive Memory Banks for Incremental Domain Adaptation

E
[
‖h(s)

i − hi‖2
]

= E
[
‖W̃ · h̃i−1‖2

]
(7)

= E
[ D∑

j=1

(
w̃>j h̃i−1

)2]
(8)

=

D∑
j=1

E
[(
w̃>j h̃i−1

)2]
(9)

=

D∑
j=1

E

[( d∑
k=1

w̃jkh̃i−1[k])

)2
]

(10)

=

D∑
j=1

d∑
k=1

E
[(
w̃jkh̃i−1[k]

)2]
(11)

=
D∑

j=1

d∑
i=1

E
[(
w̃jk

)2]E[(h̃i−1[k]
)2]

(12)

= D · d ·Var
(
w
)
·Var(h) (13)

= Ddσ2σ2 (14)

where (11) is due to the independence and zero-mean as-
sumptions of every element in W̃ and hi−1. (12) is due to
the independence assumption between W̃ and hi−1.

Next, we compute the effect of expanding memory slots.
Notice that ‖h(m)

i − hi‖ = W(c)∆c. Here, h(m)
i is the RNN

hidden state after memory expansion. ∆c
def
= c′ − c, where

c and c′ are the attention content vectors before and after
memory expansion, respectively, at the current time step.4

W(c) is the weight matrix connecting attention content to
RNN states. The connection is shown in Figure 2b. Reusing
the result of (13), we immediately obtain

E
[
‖h(m)

i − hi‖2
]

(15)

= E
[∥∥W(c)∆c‖2

]
(16)

= Ddσ2Var
(
∆ck

)
(17)

where ∆ck is an element of the vector ∆c.

To prove Equation (2), it remains to show that Var(∆ck) ≤
σ2. We now analyze how attention is computed.

Let α̃1, · · · , α̃N+M be the unnormalized attention weights
over the N +M memory slots. We notice that α̃1, · · · , α̃N

remain the same after memory expansion. Then, the original
attention probability is given by αj = α̃j/(α̃1 + · · ·+ α̃N )
for j = 1, · · · , N . After memory expansion, the attention
probability becomes α′j = α̃j/(α̃1 + · · · + α̃N+M ), illus-
trated in Figure 3. We have

4We omit the time step in the notation for simplicity.

Memory Unnormalized
measure

𝒎"

𝒎#

𝒎$

…

𝒎#&"

…

𝒎#&'

𝛼)"
𝛼)$

𝛼)#

…

𝛼)#&"

𝛼)#&'

…

Original
attn.	prob.
𝛼"
𝛼$

𝛼#

…

𝛼"*

𝛼$*

𝛼#*
…

𝛼#&"*

𝛼#&'*

…

Expanded
attn.	prob.

Figure 3. Attention probabilities before and after memory expan-
sion.

∆c = c′ − c (18)

=

N∑
j=1

(α′j − αj)mj +

N+M∑
j=N+1

α′jmj (19)

=

N∑
j=1

(
α̃j

α̃1 + · · ·+ α̃N+M
− α̃j
α̃1 + · · ·+ α̃N

)
mj

+

N+M∑
j=N+1

( α̃j
α̃1 + · · ·+ α̃N+M

)
mj (20)

=

N∑
j=1

(−α̃j α̃N+1+···+α̃N+M

α̃1+···+α̃N

α̃1 + · · ·+ α̃N+M

)
mj (21)

+

N+M∑
j=N+1

( α̃j
α̃1 + · · ·+ α̃N+M

)
mj (22)

=

N+M∑
j=1

βjmj (23)

where

βj
def
=


−α̃j α̃N+1+···+α̃N+M

α̃1+···+α̃N

α̃1 + · · ·+ α̃N+M
, if 1 ≤ j ≤ N

α̃j
α̃1 + · · ·+ α̃N+M

, if N+1 ≤ j ≤ N +M

(24)

By our assumption of total attention
∑N+M

j=N+1 α̃j ≤∑N
j=1 α̃j , we have

|βj | ≤ |α′j |, ∀1 ≤ j ≤ N +M (25)



Progressive Memory Banks for Incremental Domain Adaptation

Then, we have

Var(∆ck) = E[(c′k − ck)2
]
∀1 ≤ k ≤ d (26)

=
1

d
E
[
‖c′ − c‖2

]
(27)

=
1

d
E

[
d∑

k=1

(N+M∑
j=1

βjmjk

)2
]

(28)

=
1

d

d∑
k=1

E

[(N+M∑
j=1

βjmjk

)2
]

(29)

=
1

d

d∑
k=1

N+M∑
j=1

E
[(
βjmjk

)2]
(30)

=
1

d

d∑
k=1

N+M∑
j=1

E
[
β2
j

]
E
[
m2

jk

]
(31)

=
1

d

d∑
k=1

N+M∑
j=1

E[β2
j ]σ2 (32)

= σ2E

N+M∑
j=1

β2
j

 (33)

≤ σ2E

N+M∑
j=1

(α′j)
2

 (34)

≤ σ2 (35)

Here, (30) is due to the assumption that mjk is independent
and zero-mean, and (31) is due to the independence assump-
tion between βj and mjk. To obtain (35), we notice that∑N+M

j=1 α′j = 1 with 0 ≤ α′j ≤ 1 (∀1 ≤ j ≤ N + M ).

Thus,
∑N+M

j=1 (α′j)
2 ≤ 1, concluding our proof.

Note: In the theorem (and in experiments), memory expan-
sion and hidden state expansion are done such that the total
number of model parameters remain the same. The con-
dition

∑N+M
j=N+1 α̃i,j ≤

∑N
j=1 α̃i,j in our theorem requires

that the total attention to existing memory slots is larger
than to the progressively added slots. This is a reasonable
assumption because: (1) During training, attention is trained
in an ad hoc fashion to align information, and thus some of
αi,j for 1 ≤ j ≤ N might be learned so that it is larger than
a random memory slot; and (2) For a new domain, we do
not add a huge number of slots, and thus

∑N+M
j=N+1 α̃i,j will

not dominate.

C. Experiment I (NLI)
C.1. Training Details

We follow the original MultiNLI paper (Williams et al.,
2018) to choose the base model and most of the settings:
300D RNN hidden states, 300D pretrained GloVe embed-

dings (Pennington et al., 2014) for initialization, batch size
of 32, and the Adam optimizer for training. The initial learn-
ing rate for Adam is tuned over the set {0.3, 0.03, 0.003,
0.0003, 0.00003}. It is set to 0.0003 based on validation
performance.

For the memory part, we set each slot to be 300D, which is
the same as the RNN and embedding size.

We tune the number of progressive memory slots in Figure 4,
which shows the validation performance on the source (Fic)
and target (Gov) domains. We see that the performance is
close to fine-tuning alone if only one memory slot is added.
It improves quickly between 1 and 200 slots, and tapers
off around 500. We thus choose to add 500 slots for each
domain.

C.2. Additional Results

Table 3 shows the dynamics of IDA with our progressive
memory network. Comparing the upper-triangular values
(in gray, showing out-of-domain performance) with diago-
nal values, we see that our approach can be quickly adapted
to the new domain in an incremental fashion. Comparing
lower-triangular values with the diagonal, we see that our
approach does not suffer from the catastrophic forgetting
problem as the performance of previous domains is gradu-
ally increasing if trained with more domains. After all data
are observed, our model achieves the best performance in
most domains (last row in Table 3), despite the incremental
nature of our approach.

D. Experiment II (Dialogue Generation)
We evaluate our approach on the task of dialogue response
generation. Given an input text sequence, the task is to
generate an appropriate output text sequence as a response
in human-computer dialogue.

D.0.1. DATASET, SETUP, AND METRICS

We use the Cornell Movie Dialogs Corpus (Danescu-
Niculescu-Mizil & Lee, 2011) as the source. It contains
∼220k message-response pairs from movie transcripts. We
use a 200k-10k-10k training-validation-test split.

For the target domain, we manually construct a very small
dataset to mimic the scenario where quick adaptation has
to be done to a new domain with little training data. In
particular, we choose a random subset of 15k message-
response pairs from the Ubuntu Dialog Corpus (Lowe et al.,
2015), a dataset of conversations about Ubuntu. We use a
9k-3k-3k data split.

The base model is a sequence-to-sequence (Seq2Seq) neural
network (Sutskever et al., 2014) with attention from the
decoder to the encoder. We use a single-layer RNN encoder



Progressive Memory Banks for Incremental Domain Adaptation

Performance on
Training domains Fic Gov Slate Tel Travel
Fic 65.41 58.87 55.83 61.39 57.35
Fic→ Gov 67.55 70.82 61.04 65.07 61.90
Fic→ Gov→ Slate 67.04 71.55 63.29 64.66 63.53
Fic→ Gov→ Slate→ Tel 68.46 71.10 63.39 71.60 61.50
Fic→ Gov→ Slate→ Tel→ Travel 69.36 72.47 63.96 69.74 68.39

Table 3. Dynamics of the progressive memory network for IDA with 5 domains. Upper-triangular values in gray are out-of-domain
(zero-shot) performance.

# BLEU-2 on W2V-Sim on
Line Model Trained on/by S T S T

1
RNN

S 2.842⇑ 0.738⇓ 0.480⇓ 0.456⇓

2 T 0.795⇓ 1.265⇓ 0.454⇓ 0.480⇓

3

R
N

N
+

M
em

S 3.074⇑ 0.712⇓ 0.498⇓ 0.471⇓

4 T 0.920⇓ 1.287⇓ 0.462⇓ 0.487⇓

5 S+T 2.650⇑ 0.889⇓ 0.471⇓ 0.462⇓

6

R
N

N
+

M
em

S→T (F) 1.210⇓ 1.101⇓ 0.509⇓ 0.514⇓

7 S→T (F+M) 1.435⇓ 1.207⇓ 0.526 0.522
8 S→T (F+M+V) 1.637 1.652 0.522 0.525
9 S→T (F+H) 1.036⇓ 1.606↓ 0.503⇓ 0.495⇓

10 S→T (F+H+V) 1.257⇓ 1.419⇓ 0.504⇓ 0.492⇓

11 S→T (EWC) 1.397⇓ 1.382↓ 0.513⇓ 0.514⇓

12 S→T (Progressive) 1.299⇓ 1.408↓ 0.502⇓ 0.503⇓

Table 4. Results on two-domain adaptation for dialogue response
generation. F: Fine-tuning. V: Expanding vocabulary. H: Expand-
ing RNN hidden states. M: Our proposed method of expanding
memory. We also compare with previous work elastic weight
consolidation (EWC) (Kirkpatrick et al., 2017) and the progres-
sive neural network (Rusu et al., 2016). ↑, ↓: p < 0.05 and
⇑,⇓: p < 0.01 (compared with Line 8).

and a single-layer RNN decoder, each containing 1024 cells
following (Sutskever et al., 2014). We use GRUs instead
of LSTM units due to efficiency concerns. The source
and target vocabularies are 27k and 10k respectively. We
have separate memory banks for the encoder and decoder,
since they are different RNNs. Each memory slot is 1024D,
because the RNN states are 1024D. For each domain, we
progressively add 1024 slots; tuning the number of slots is
done in a manner similar to Experiment I. As before, we
use Adam with an initial learning rate of 0.0003 and other
default parameters.

Following previous work, we use BLEU-2 (Eric et al., 2017;
Madotto et al., 2018) and average Word2Vec embedding
similarity (W2V-Sim) (Serban et al., 2017; Zhang et al.,
2018a) as the evaluation metrics. BLEU-2 is the geomet-
ric mean of unigram and bigram word precision penalized
by length, and correlates with human satisfaction to some
extent (Liu et al., 2016). W2V-Sim is defined as the cosine
similarity between the averaged Word2Vec embeddings of
the model outputs and the ground truths. Intuitively, BLEU
measures hard word-level overlap between two sequences,
whereas W2V-Sim measures soft similarity in a distributed
semantic space.

1 100 200 300 400 500
65

66

67

68

# of memory slots

V
al

id
at

io
n

A
cc

.o
n

S

(a)

1 100 200 300 400 500
69.5

70

70.5

71

# of memory slots

V
al

id
at

io
n

A
cc

.o
n

T

(b)

Figure 4. Experiment I: Tuning the number of memory slots to be
added per domain. The two graphs show validation performance
of our IDA model S→T (F+M+V).

D.0.2. RESULTS

The results for dialogue response generation are shown in Ta-
ble 4. We see that BLEU-2 and W2V similarity are not nec-
essarily consistent. For example, the memory-augmented
RNN trained solely on source achieves the best source
BLEU-2, whereas the proposed progressive memory has the
highest W2V cosine similarity on S. However, our model
variants (either expanding the vocabulary or not) achieve the
best performance on most metrics (Lines 7 and 8). More-
over, it consistently outperforms all other IDA approaches.
Following Experiment I, we conduct statistical test com-
pared with Line 8. The test shows that our method is signifi-
cantly better than the other IDA methods.



Progressive Memory Banks for Incremental Domain Adaptation

Prompt Response
i’m steve. what’s your name? my name is opera
i love you man i love you too
so how’s it going with your new roomie? it should be fine
i didn’t do anything wrong did i we don’t have much experience
i just got a messed up stomach i know, you had to do some things
what are you trying to handicap me? this is not really who i am
im scared what do we do with it?
i kinda forgot the fix i tried a year ago can you try the output ?
how would i remaster the ubuntu install could you have a link both access to the network connection
my terminal is stuck what version is it?
i am rebooting now so your issue is a great work cd, sometimes i get some
i get an installation error i am getting an expert for it
what does the kernel-package do? you will need to get it to see if there is a setting
what directory should i be in? you should be able to install the grub cd at the drive

Table 5. Sample outputs of our IDA model S→T (F+M+V) from Table 5.

D.1. Case Study

Table 5 shows sample outputs of our IDA model on test
prompts from the Cornell Movie Corpus (source) and the
Ubuntu Dialogue Corpus (target). We see that casual
prompts from the movie domain result in casual responses,
whereas Ubuntu queries result in Ubuntu-related responses.
With the expansion of vocabulary, our model is able to learn
new words like “grub”; with progressive memory, it learns
Ubuntu jargon like “network connection.” This shows evi-
dence of the success of incremental domain adaptation.

In general, the evaluation of dialogue systems is noisy due
to the lack of appropriate metrics (Liu et al., 2016). Never-
theless, our experiment provides additional evidence of the
effectiveness of our approach. It also highlights our model’s
viability for both classification and generation tasks.


