
Enabling Limited Resource-Bounded Disjunction in Scheduling

Jagriti Agrawal, Wayne Chi, Steve Chien, Gregg Rabideau, Stephen Kuhn, and Dan Gaines
Jet Propulsion Laboratory

California Institute of Technology
4800 Oak Grove Drive
Pasadena, CA 91109

{firstname.lastname}@jpl.nasa.gov

Abstract
We describe three approaches to enabling an extremely com-
putationally limited embedded scheduler to consider a small
number of alternative activities based on resource availabil-
ity. We consider the case where the scheduler is so compu-
tationally limited that it cannot backtrack search. The first
two approaches precompile resource checks (called guards)
that only enable selection of a preferred alternative activity if
sufficient resources are estimated to be available to schedule
the remaining activities. The final approach mimics back-
tracking by invoking the scheduler multiple times with the
alternative activities. We present an evaluation of these tech-
niques on mission scenarios (called sol types) from NASA’s
next planetary rover where these techniques are being eval-
uated for inclusion in an onboard scheduler.

Introduction
Embedded schedulers must often operate with very limited
computational resources. Due to such limitations, it is not
always feasible to develop a scheduler with a backtracking
search algorithm. This makes it challenging to perform even
simple schedule optimization when doing so may use re-
sources needed for yet unscheduled activities.

In this paper, we present three algorithms to enable such a
scheduler to consider a very limited type of preferred ac-
tivity while still scheduling all required (hereafter called
mandatory) activities. Preferred activities are grouped into
switch groups, sets of activities, where each activity in the
set is called a switch case, and exactly one of the activities
in the set must be scheduled. They differ only by how much
time, energy, and data volume they consume and the goal is
for the scheduler to schedule the most desirable activity (co-
incidentally the most resource consuming activity) without
sacrificing any other mandatory activity.

The target scheduler is a non-backtracking scheduler to
be onboard the NASA Mars 2020 planetary rover (Rabideau
and Benowitz 2017) that schedules in priority first order and
never removes or moves an activity after it is placed during
a single run of the scheduler. Because the scheduler does
not backtrack, it is challenging to ensure that scheduling a
consumptive switch case will not use too many resources

Copyright c© 2019, California Institute of Technology. Govern-
ment Sponsorship Acknowledged.

and therefore prevent a later (in terms of scheduling order,
not necessarily time order) mandatory activity from being
scheduled.

The onboard scheduler is designed to make the rover
more robust to run-time variations by rescheduling multiple
times during execution (Gaines et al. 2016a). If an activity
ends earlier or later than expected, then rescheduling will al-
low the scheduler to consider changes in resource consump-
tion and reschedule accordingly. Our algorithms to schedule
switch groups must also be robust to varying execution du-
rations and rescheduling.

We have developed several approaches to handle schedul-
ing switch groups. The first two, called guards, involve re-
serving enough sensitive resources (time, energy, data vol-
ume) to ensure all later required activities can be scheduled.
The third approach emulates backtracking under certain con-
ditions by reinvoking the scheduler multiple times. These
three techniques are currently being considered for imple-
mentation in the Mars 2020 onboard scheduler.

Problem Definition
For the scheduling problem we adopt the definitions in (Ra-
bideau and Benowitz 2017). The scheduler is given

• a list of activities
A1〈p1, d1, R1, e1, dv1,Γ1, T1, D1〉 . . .
An〈pn, dn, Rn, en, dvn,Γn, Tn, Dn〉

• where pi is the scheduling priority of activity Ai;

• di is the nominal, or predicted, duration of activity Ai;

• Ri is the set of unit resources Ri1 . . . Rim that activity Ai

will use;

• ei and dvi are the rates at which the consumable resources
energy and data volume respectively are consumed by ac-
tivity Ai;

• Γi1 . . .Γir are non-depletable resources used such as se-
quence engines available or peak power for activity Ai;

• Ti is a set of start time windows [Tij start
, Tij preferred

,
Tij end

]. . . [Tik start
, Tik preferred

, Tik end
] for activity Ai.

1 ;

1If a preferred start time, Tij preferred is not specified for win-
dow j then it is by default Tij start



• Di is a set of activity dependency constraints for activity
Ai where Ap → Aq means Aq must execute successfully
before Ap starts.

The goal of the scheduler is to schedule all mandatory
activities and the best switch cases possible while respecting
individual and plan-wide constraints.

Each activity is assigned a scheduling priority. This prior-
ity determines the order in which the activity will be consid-
ered for addition to the schedule. The scheduler attempts to
schedule the activities in priority order, therefore: (1) higher
priority activities can block lower priority activities from
being scheduled and (2) higher priority activities are more
likely to appear in the schedule.

Mandatory Activities are activities, m1 . . .mj ⊆ A, that
must be scheduled. The presumption is that the problem as
specified is valid, that is to say that a schedule exists that in-
cludes all of the mandatory activities, respects all of the pro-
vided constraints, and does not exceed available resources.

In addition, activities can be grouped into Switch Groups.
The activities within a switch group are called switch cases
and vary by how many resources (time, energy, and data vol-
ume) they consume. It is mandatory to schedule exactly one
switch case and preferable to schedule a more resource in-
tensive one, but not at the expense of another mandatory ac-
tivity. For example, one of the Mars 2020 instruments takes
images to fill mosaics which can vary in size; for instance we
might consider 1x4, 2x4, or 4x4 mosaics. Taking larger mo-
saics might be preferable, but taking a larger mosaic takes
more time, takes more energy, and produces more data vol-
ume. These alternatives would be modeled by a switch group
that might be as follows:

SwitchGroup =


Mosaic1x4 d = 100 sec
Mosaic2x4 d = 200 sec
Mosaic4x4 d = 400 sec

(1)

The desire is for the scheduler to schedule the activ-
ity Mosaic4x4 but if it does not fit then try scheduling
Mosaic2x4, and eventually try Mosaic1x4 if the other two
fail to schedule. It is not worth scheduling a more consump-
tive switch case if doing so will prevent a future, lower pri-
ority mandatory activity from being scheduled due to lack
of resources. Because our computationally limited scheduler
cannot search or backtrack, it is a challenge to predict if a
higher level switch case will be able to fit in the schedule
without consuming resources that will cause another lower
priority mandatory activity to be forced out of the schedule.

Consider the following example in Figure 1 where the
switch group consists of activities B1, B2, and B3 and dB3

> dB2 > dB1. Each activity in this example also has one
start time window from Tistart to Tiend

.
B3 is the most resource intensive and has the highest pri-

ority so the scheduler will first try scheduling B3. As shown
in Figure 1a, scheduling B3 will prevent the scheduler from
placing activity C at a time satisfying its execution con-
straints. So, B3 should not be scheduled.

The question might arise as to why switch groups cannot
simply be scheduled last in terms of scheduling order. This is
difficult for several reasons: 1) We would like to avoid gaps

(a) Scheduling B3 first prevents activity C from
being scheduled within its start time window.

(b) B2 can be successfully scheduled without
dropping any other mandatory activities.

Figure 1: Challenge to Schedule Switch Cases.

in the schedule which is most effectively done by scheduling
primarily left to right temporally, and 2) if another activity
is dependent on an activity in a switch group, then schedul-
ing the switch group last would introduce complications to
ensure that the dependencies are satisfied.

The remainder of the paper is organized as follows. First,
we describe several plan wide energy constraints that must
be satisfied. Then, we discuss two guard approaches to
schedule preferred activities, which place conditions on the
scheduler that restrict the placement of switch cases under
certain conditions. We then discuss various versions of an
approach which emulates backtracking by reinvoking the
scheduler multiple times with the switch cases. We present
empirical results to evaluate and compare these approaches.

Energy Constraints
There are several energy constraints which must be satisfied
throughout scheduling and execution. The scheduling pro-
cess for each sol, or Mars day, begins with the assumption
that the rover is asleep for the entire time spanning the sol.
Each time the scheduler places an activity, the rover must be
awake so the energy level declines. When the rover is asleep
the energy level increases.

Two crucial energy values which must be taken into ac-
count are the Minimum State of Charge (SOC) and the Min-
imum Handover State of Charge. The state of charge, or
energy value, cannot dip below the Minimum SOC at any
point. If scheduling an activity would cause the energy value
to dip below the Minimum SOC, then that activity will not
be scheduled. In addition, the state of charge cannot be be-
low the Minimum Handover SOC at the Handover Time, in
effect when the next schedule starts (e.g., the handover SOC
of the previous plan is the expected beginning SOC for the
subsequent schedule).

In order to preserve battery life, the scheduler must also
consider the Maximum State of Charge constraint. Exceed-
ing the Maximum SOC hurts long term battery performance
and the rover will perform shunting. To prevent it from ex-
ceeding this value, the rover may be kept awake.



Guard Approaches
First we will discuss two guard methods to schedule switch
cases, the Fixed Point guard and the Sol Wide guard. Both
of these methods attempt to schedule switch cases by re-
serving enough time and energy to schedule the remaining
mandatory activities. For switch groups, this means that re-
sources will be reserved for the least resource consuming
activity since it is mandatory to schedule exactly one ac-
tivity in the switch group. The method through which both
of these guard approaches reserve enough time to schedule
future mandatory activities is the same. They differ in how
they ensure there is enough energy. While the Fixed Point
guard reserves enough energy at a single fixed time point -
the time at which the least resource consuming switch case
is scheduled to end in the nominal schedule, the Sol Wide
guard attempts to reserve sufficient energy by keeping track
of the energy balance in the entire plan, or sol.

In this discussion, we do not attempt to reserve data vol-
ume while computing the guards as it is not expected to be
as constraining of a resource as time or energy. We aim to
take data volume into account as we continue to do work on
this topic.

Both the time and energy guards are calculated offline be-
fore execution occurs using a nominal schedule. Then, while
rescheduling during execution, the constraints given by the
guards are applied to ensure that scheduling a higher level
switch case will not prevent a future mandatory activity from
being scheduled. If activities have ended sufficiently early
and freed up resources, then it may be possible to resched-
ule with a more consumptive switch case.

Guarding for Time
First, we will discuss how the Fixed Point and Sol Wide
guards ensure enough time will be reserved to schedule re-
maining mandatory activities while attempting to schedule a
more resource consuming switch case.

If a preferred time, Tij preferred
, is specified for an activ-

ity, the scheduler will try to place an activity closest to its
preferred time while obeying all other constraints. Other-
wise, the scheduler will try to place the activity as early as
possible.

Each switch group in the set of activities used to create
a nominal schedule includes only the nominal, or least re-
source consuming switch case, and all activities take their
predicted duration. First, we generate a nominal schedule
and find the time at which the nominal switch case is sched-
uled to complete, as shown in Figure 2.

Figure 2: A, B1, C, and D are all mandatory activities in
the nominal schedule. TNominal is the time at which B1 is
scheduled to end.

We then manipulate the execution time constraints of the

more resource intensive switch cases, B2 and B3 in Figure
2, so that they are constrained to complete by TNominal as
shown in Equation 2. Thus, a more (time) resource consum-
ing switch case will not use up time from any remaining
lower priority mandatory activities. If an activity has more
than one start time window, then we only alter the one which
contains TNominal and remove the others. If a prior activ-
ity ends earlier than expected during execution and frees up
some time, then it may be possible to schedule a more con-
sumptive switch case while obeying the time guard given by
the altered execution time constraints.

TBij end
= TNominal − dBi

(2)

Since we found that the above method was quite con-
servative and heavily constrained the placement of a more
resource consuming switch case, we attempted a preferred
time method to loosen the time guard. In this approach, we
set the preferred time of the nominal switch case to its lat-
est start time before generating the nominal schedule. Then,
while the nominal schedule is being generated, the sched-
uler will try to place the nominal switch case as late as
possible since the scheduler will try to place an activity as
close to its preferred time as possible. As a result, TNominal

will likely be later than what it would be if the preferred
time were not set in this way. As per Equation 2, the lat-
est start times, TBij end

, of the more resource consuming
switch cases may be later than what they would be using
the previous method where the preferred time was not al-
tered, thus allowing for wider start time windows for higher
level switch cases. This method has some risks. If the nomi-
nal switch case was placed as late as possible, it could use up
time from another mandatory activity with a tight execution
window that it would not otherwise have used up if it was
placed earlier, as shown in Figure 3.

Figure 3: Scheduling B1 at its latest start time prevents C
from being scheduled within its start time window.

Guarding for Energy
Fixed Point Minimum State of Charge Guard The
Fixed Point method attempts to ensure that scheduling a
more resource consuming switch case will not cause the en-
ergy to violate the Minimum SOC while scheduling any fu-
ture mandatory activities by reserving sufficient energy at
a single, fixed point in time, TNominal as shown in Fig-
ure 4. The guard value for the Minimum SOC is the state
of charge value at TNominal while constructing the nominal
schedule. When attempting to schedule a more resource in-
tensive switch case, a constraint is placed on the scheduler so
that the energy cannot fall below the Minimum SOC guard
value at time TNominal. If an activity ends early (and uses



fewer resources than expected) during execution, it may be
possible to satisfy this guard while scheduling a more con-
sumptive switch case.

Figure 4: A, B1, C, and D, are mandatory activities in the
nominal schedule. A constraint is placed so that the energy
cannot dip below Min SOC Guard V al at time TNominal

while trying to schedule a higher level switch case.

Fixed Point Handover State of Charge Guard The
Fixed Point method guards for the Minimum Handover SOC
by first calculating how much extra energy is left over in the
nominal schedule at handover time after scheduling all ac-
tivities, as shown in Figure 5.

Figure 5: A, B1, C, and D, are mandatory activities in the
nominal schedule. A constraint is placed so that the extra
energy a higher level switch case consumes cannot exceed
Energy Leftover.

Then, while attempting to place a more consumptive
switch case, a constraint is placed on the scheduler so that
the extra energy required by the switch case does not exceed
Energy Leftover from the nominal schedule as in Figure 5.
For example, if we have a switch group consisting of three
activities, B1, B2, and B3 and dB3 > dB2 > dB1 and each
switch case consumes e Watts of power, we must ensure that
the following inequality holds at the time the scheduler is
attempting to schedule a higher level switch case:

(dBi
× eBi

)− (dB1
× eB1

) ≥ Energy Leftover (3)

There may be more than one switch group in the sched-
ule. Each time a higher level switch case is scheduled, the
Energy Leftover value is decreased by the extra energy re-
quired to schedule it. When the scheduler tries to place a
switch case in another switch group, it will check against
the updated Energy Leftover.

Sol Wide Handover State of Charge Guard The Sol
Wide handover SOC guard only schedules a more resource
consumptive switch case if doing so will not cause the en-
ergy to dip below the Handover SOC at handover time. First,
we use the nominal schedule to calculate how much en-
ergy is needed to schedule remaining mandatory activities.

Having a Maximum SOC constraint while calculating this
value may produce an inaccurate result since any energy that
would exceed the Maximum SOC would not be taken into
account. So, in order to have an accurate prediction of the
energy balance as activities are being scheduled, this value is
calculated assuming there is no Maximum SOC constraint.
8. The Maximum SOC constraint is only removed while
computing the guard offline to gain a clear understanding
of the energy balance but during execution it is enforced

As shown in Figure 6, the energy needed to schedule the
remaining mandatory activities is the difference between the
energy level just after the nominal switch case has been
scheduled, call this E1, and after all activities have been
scheduled, call this energy level E2.

(a) E1 is the energy level of the nominal schedule with
no Maximum SOC constraint after all activities up to
and including the nominal switch case (A, D, B1) have
been scheduled.

(b) E2 is the energy level of the nominal schedule with
no Maximum SOC constraint after all activities in the
nominal schedule have been scheduled. The activities
were scheduled the following order: A, D, B1, C, E.

Figure 6: Calculating Energy Needed to Schedule Remain-
ing Mandatory Activities.

Energy Needed = E1− E2 (4)
Then, a constraint is placed on the scheduler so that the

energy value after a higher level switch case is scheduled
must be at least:

Energy Level ≥Minimum Handover SOC

+Energy Needed
(5)

By placing this energy constraint, we hope to prevent
the energy level from falling under the Minimum Handover
SOC by the time all activities have been scheduled.

Sol Wide Minimum State of Charge Guard While we
ensure that the energy will not violate the minimum Han-
dover SOC by keeping track of the energy balance, it is pos-
sible that scheduling a longer switch case will cause the en-
ergy to fall below the Minimum SOC. To limit the chance
of this happening, we run a Monte Carlo of execution of-
fline while computing the sol wide energy guard. We use
this Monte Carlo to determine if a mandatory activity was



not scheduled due to a longer switch case being scheduled
earlier. If this occurs in any of the Monte Carlos of execu-
tion, then we increase the guard constraint in Equation 5.
We first find the times at which each mandatory activity was
scheduled to finish in the nominal schedule. Then, we run
a Monte Carlo of execution with the input plan containing
the guard and all switch cases. Each Monte Carlo differs in
how long each activity takes to execute compared to its orig-
inal predicted duration in the schedule. If a mandatory activ-
ity was not executed in any of the Monte Carlo runs and a
more resource consuming switch case was executed before
the time at which that mandatory activity was scheduled to
complete in the nominal schedule, then we increase the Sol
Wide energy guard value in Equation 5 by a fixed amount.
We aim to compose a better heuristic to increase the guard
value as we continue work on this subject.

Multiple Scheduler Invocation Approach
The Multiple Scheduler Invocation (MSI) approach em-
ulates backtracking by reinvoking the scheduler multiple
times with the switch cases. MSI does not require any pre-
computation offline before execution as with the guards and
instead reinvokes the scheduler multiple times during ex-
ecution. During execution, the scheduler reschedules (e.g.,
when activities end early) with only the nominal switch case
as shown in Figure 7a until an MSI trigger is satisfied. At
this point, the scheduler is reinvoked multiple times, at most
once per switch case in each switch group. In the first MSI
invocation, the scheduler attempts to schedule the highest
level switch case as shown in Figure 7b. If the resulting
schedule does not contain all mandatory activities, then the
scheduler will attempt to schedule the next highest level
switch case, as in 7c, and so on. If none of the higher level
switch cases can be successfully scheduled then the sched-
ule is regenerated with the nominal switch case. If activities
have ended early by the time MSI is triggered and resulted
in more resources than expected, then the goal is for this
approach to generate a schedule with a more consumptive
switch case if it will fit (assuming nominal activity durations
for any activities that have not yet executed).

There are multiple factors that must be taken into consid-
eration when implementing MSI:

When to Trigger MSI There are two options to trigger
the MSI process (first invocation while trying to schedule
the switch case):

1. Time Offset. Start MSI when the current time during exe-
cution is some fixed amount of time, X , from the time at
which the nominal switch case is scheduled to start in the
current schedule (shown in Figure 8).

2. Switch Ready. Start MSI when an activity has finished ex-
ecuting and the nominal switch case activity is the next
activity scheduled to start (shown in Figure 9).

Spacing Between MSI Invocations If the highest level
switch case activity is not able to be scheduled in the first in-
vocation of MSI, then the scheduler must be invoked again.
We choose to reschedule as soon as possible after the most
recent MSI invocation. This method risks over-consumption

(a) MSI has not yet begun. Currently, the
nominal switch case, B1, is scheduled.

(b) MSI begins. Scheduling the highest
level switch case, B3, prevents D from
being scheduled. Therefore, try B2.

(c) B2 is successfully scheduled along with the
other mandatory activities so MSI is complete.

Figure 7: Order of MSI Invocations.

Figure 8: MSI Time Offset.

of the CPU if the scheduler is invoked too frequently. To
handle this, we may need to rely on a process within the
scheduler called throttling. Throttling places a constraint
which imposes a minimum time delay between invocations,
preventing the scheduler from being invoked at too high of a
rate. An alternative is to reschedule at an evenly split, fixed
cadence to avoid over-consumption of the CPU; we plan to
explore this approach in the future.

Switch Case Becomes Committed In some situations, the
nominal switch case activity in the original plan may be-
come committed before or during the MSI invocations as
shown in Figure 10. An activity is committed if its scheduled
start time is between the start and end of the commit window
(Chien et al. 2000). A committed activity cannot be resched-
uled and is committed to execute. If the nominal switch case
remains committed, the scheduler will not be able to elevate
to a higher level switch case.

There are two ways to handle this situation:

1. Commit the activity. Keep the nominal switch case activ-
ity committed and do not try to elevate to a higher level
switch case.

2. Veto the switch case. Veto the nominal switch case so that
it is no longer considered in the current schedule. When
an activity is vetoed, it is removed from the current sched-
ule and will be considered in a future invocation of the
scheduler. Therefore, by vetoing the nominal switch case,



(a) B1 is the nominal switch case. Since
an activity has not finished executing and
B1 is not the next activity, MSI cannot
begin yet.

(b) Since A finished executing early, and
B1 is the next activity, the MSI process
can begin.

Figure 9: MSI Switch Ready.

Figure 10: Switch case is committed during MSI. Tcurr is
the current time during execution. MSIstart is the time at
which MSI begins. The nominal switch case, B1, is commit-
ted when MSI begins.

it will no longer be committed and the scheduler will con-
tinue the MSI invocations in an effort to elevate the switch
case.

Handling Rescheduling After MSI Completes but before
the Switch Case is Committed After MSI completes,
there may be events that warrant rescheduling (e.g., an activ-
ity ending early) before the switch case is committed. When
the scheduler is reinvoked to account for the event, it must
know which level switch case to consider. If we successfully
elevated a switch case, we choose to reschedule with that
higher level switch case. Since the original schedule gener-
ated by MSI with the elevated switch case was in the past
and did not undergo changes from this rescheduling, it is
possible the schedule will be inconsistent and may lead to
complications while scheduling later mandatory activities.
An alternative we plan to explore in the future is to disable
rescheduling until the switch case is committed. However,
this approach would not allow the scheduler to regain time
if an activity ended early and caused rescheduling.

Empirical Analysis
In order to evaluate the performance of the above meth-
ods, we apply them to various sets of inputs comprised of
activities with their constraints and compare them against
each other. The inputs are derived from sol types. Sol types
are currently the best available data on expected Mars 2020
rover operations (Jet Propulsion Laboratory 2017a). In order
to construct a schedule and simulate plan execution, we use
the Mars 2020 surrogate scheduler - an implementation of
the same algorithm as the Mars 2020 onboard scheduler (Ra-

bideau and Benowitz 2017), but intended for a Linux work-
station environment. As such, it is expected to produce the
same schedules as the operational scheduler but runs much
faster in a workstation environment. The surrogate scheduler
is expected to assist in validating the flight scheduler imple-
mentation and also in ground operations for the mission (Chi
et al. 2018).

Each sol type contains between 20 and 40 activities. Data
from the Mars Science Laboratory Mission (Jet Propulsion
Laboratory 2017b; Gaines et al. 2016a; 2016b) indicates that
activity durations were quite conservative and completed
early by around 30%. However, there is a desire by the mis-
sion to operate with a less conservative margin to increase
productivity. In our model to determine activity execution
durations, we choose from a normal distribution where the
mean is 90% of the predicted, nominal activity duration.
The standard deviation is set so that 10 % of activity exe-
cution durations will be greater than the nominal duration.
For our analysis, if an activity’s execution duration chosen
from the distribution is longer than its nominal duration,
then the execution duration is set to be the nominal dura-
tion to avoid many complications which result from activ-
ities running long (e.g., an activity may not be scheduled
solely because another activity ran late). Detailed discussion
of this is the subject of another paper. We do not explicitly
change other activity resources such as energy and data vol-
ume since they are generally modeled as rates and changing
activity durations implicitly changes energy and data volume
as well.

We create 10 variants derived from each of 8 sol types by
adding one switch group to each set of inputs for a total of
80 variants. The switch group contains three switch cases,
Anominal, A2x, and A4x where dA4x

= 4 × dAnominal
and

dA2x = 2× dAnominal
.

In order to evaluate the effectiveness of each method, we
have developed a scoring method based on how many and
what type of activities are able to be scheduled successfully.
The score is such that the value of any single mandatory
activity being scheduled is much greater than that of any
combination of switch cases (at most one activity from each
switch group can be scheduled).

Each mandatory activity that is successfully scheduled,
including whichever switch case activity is scheduled, con-
tributes one point to the mandatory score. A successfully
scheduled switch case that is 2 times as long as the original
activity contributes 1/2 to the switch group score. A suc-
cessfully scheduled switch case that is 4 times as long as
the original, nominal switch case contributes 1 to the switch
group score. If only the nominal switch case is able to be
scheduled, it does not contribute to the switch group score
at all. There is only one switch group in each variant, so
the maximum switch group score for a variant is 1. Since
scheduling a mandatory activity is of much higher impor-
tance than scheduling any number of higher level switch
case, the mandatory activity score is weighted at a much
larger value then the switch group score. In the follow-
ing empirical results, we average the mandatory and switch
groups scores over 20 Monte Carlo runs of execution for
each variant.



We compare the different methods to schedule switch
cases over varying incoming state of charge values (how
much energy exists at the start) and determine which meth-
ods result in 1) scheduling all mandatory activities and 2)
the highest switch group scores. The upper bound for the
theoretical maximum switch group score is given by an om-
niscient scheduler- a scheduler which has prior knowledge
of the execution duration for each activity. Thus, this sched-
uler is aware of the amount of resources that will be available
to schedule higher level switch cases given how long activ-
ities take to execute compared to their predicted, nominal
duration. The input activity durations fed to this omniscient
scheduler are the actual execution durations. We run the om-
niscient scheduler at most once per switch case. First, we try
to schedule with only the highest level switch case and if
that fails to schedule all mandatory activities, then we try
with the next level switch case, and so on.

First, we determine which methods are able to success-
fully schedule all mandatory activities, indicated by the
Maximum Mandatory Score in Figure 11. Since schedul-
ing a mandatory activity is worth much more than schedul-
ing any number of higher level switch cases, we only com-
pare switch group scores between methods that successfully
schedule all mandatory activities.

Figure 11: Mandatory score vs Incoming SOC for various
Methods to Schedule Switch Cases

In order to evaluate the ability of each method to schedule
all mandatory activities, we also compare against two other
methods, one which always elevates to the highest level
switch case while the other always elevates to the medium
level switch case. We see in Figure 11 that always elevat-
ing to the highest (3rd) level performs the worst and drops
approximately 0.25 mandatory activities per sol, or 1 activ-
ity per 4 sols on average while always elevating to the sec-
ond highest level drops close to 0.07 mandatory activities
per sol, or 1 activity per 14 sols on average. For comparison,
the study described in (Gaines et al. 2016a) showed that ap-
proximately 1 mandatory activity was dropped every 90 sols,
indicating that both of these heuristics perform poorly.

We found that using preferred time to guard against time

Figure 12: Switch Group Score vs Incoming SOC for Meth-
ods which Schedule all Mandatory Activities

caused mandatory activities to drop for both the fixed point
and sol wide guard (for the reason described in the Guarding
for Time section) while using the original method to guard
against time did not. We see in Figure 11 that the preferred
time method with the fixed point guard drops on average
about 0.04 mandatory activities per sol, or 1 activity every
25 sols while the sol wide guard drops on average about
0.1 mandatory activities per sol, or 1 activity every 10 sols.
We also see that occasionally fewer mandatory activities are
scheduled with a higher incoming SOC. Since using pre-
ferred time does not properly ensure that all remaining ac-
tivities will be able to be scheduled, a higher incoming SOC
can allow a higher level switch case to be scheduled, pre-
venting future mandatory activities from being scheduled.

The MSI approaches which veto to handle the situation
where the nominal switch case becomes committed before
or during MSI drop mandatory activities. Whenever an ac-
tivity is vetoed, there is always the risk that it will not be
able to be scheduled in a future invocation, more so if the sol
type is very tightly time constrained, which is especially true
for one of our sol types. Thus, vetoing the nominal switch
case can result in dropping the activity, accounting for this
method’s inability to schedule all mandatory activities. The
MSI methods that keep the nominal switch case committed
and do not try to elevate to a higher level switch case suc-
cessfully schedule all mandatory activities, as do the guard
methods.

We see that the Fixed Point guard, Sol Wide guard, and
two of the MSI approaches are able to successfully sched-
ule all mandatory activities. As shown in Figure 12, the Sol
Wide guard and MSI approach using the options Time Offset
and Commit result in the highest switch group scores clos-
est to the upper bound for the theoretical maximum. Both
MSI approaches have increasing switch group scores with
increasing incoming SOC since a higher incoming energy
will result in more energy to schedule a consumptive switch
case during MSI. The less time there is to complete all MSI



invocations, the more likely it is for the nominal switch case
to become committed. Since we give up trying to elevate
switch cases and keep the switch case committed if this oc-
curs, fewer switch cases will be elevated. Because our time
offset value, X , in Figure 8 is quite large (15 minutes), this
situation is more likely to occur using the Switch Ready ap-
proach to choose when to start MSI, explaining why using
Switch Ready results in a lower switch score than Time Off-
set.

The Fixed Point guard results in a significantly lower
switch case score because it checks against a state of charge
constraint at a particular time regardless of what occurs dur-
ing execution. Even if a switch case is being attempted to
be scheduled at a completely different time than TNominal

in Figure 2, (e.g., because prior activities ended early), the
guard constraint will still be enforced at that particular time.
Since we simulate activities ending early, more activities
will likely complete by TNominal, causing the energy level
to fall under the Minimum SOC Guard value. Unlike the
Fixed Point guard, since the the Sol Wide guard checks if
there is sufficient energy to schedule a higher level switch
case at the time the scheduler is attempting to schedule it,
not at a set time, it is better able to consider resources re-
gained from an activity ending early.

We also see that using the Fixed Point guard begins to re-
sult in a lower switch group score with higher incoming SOC
levels after the incoming SOC is 80% of the Maximum SOC.
Energy is more likely to reach the Maximum SOC constraint
with a higher incoming SOC. The energy gained by an ac-
tivity taking less time than predicted will not be able to be
used if the resulting energy level would exceed the Maxi-
mum SOC. If this occurs, then since the extra energy cannot
be used, the energy level may dip below the guard value in
Figure 4 at time TNominal while trying to schedule a higher
level switch case even if an activity ended sufficiently early,
as shown in Figure 13.

Figure 13: Fixed Point Guard Schedules Fewer Mandatory
Activities with Higher Incoming SOC

Related Work
Just-In-Case Scheduling (Drummond, Bresina, and Swan-
son 1994) uses a nominal schedule to determine areas where
breaks in the schedule are most likely to occur and produces
a branching (tree) schedule to cover execution contingen-
cies. Our approaches all (re) schedule on the fly although the
guard methods can be vewied as forcing schedule branches
based on time and resource availability.

Kellenbrink and Helber (Kellenbrink and Helber 2015)
solve RCPSP (resource-constrained project scheduling

problem) where all activities that must be scheduled are not
known in advance and the scheduler must decide whether
or not to perform certain activities of varying resource con-
sumption. Similarly, our scheduler does not know which of
the switch cases to schedule in advance, using runtime re-
source information to drive (re) scheduling.

Integrated planning and scheduling can also be consid-
ered scheduling disjuncts (chosen based on prevailing con-
ditions (e.g., (Barták 2000))) but these methods typically
search whereas we are too computationally limited to search.

Discussion and Future Work
There are many areas for future work. Currently the time
guard heavily limits the placement of activities. As we saw,
using preferred time to address this issue resulted in drop-
ping mandatory activities. Ideally analysis of start time win-
dows and dependencies could determine where an activity
could be placed without blocking other mandatory activities.

Additionally, in computing the guard for Minimum SOC
using the Sol Wide Guard, instead of increasing the guard
value by a predetermined fixed amount which could result in
over-conservatism, binary search via Monte Carlo analysis
could more precisely determine the guard amount.

Currently we consider only a single switch group per
plan, the Mars 2020 rover mission desires support for mul-
tiple switch groups in the input instead. Additional work is
needed to extend to multiple switch groups.

Further exploration of all of the MSI variants is needed.
Study of starting MSI invocations if an activity ends early
by at least some amount and the switch case is the next ac-
tivity is planned. We would like to analyze the effects of
evenly spacing the MSI invocations in order to avoid relying
on throttling and we would like to try disabling rescheduling
after MSI is complete until the switch case has been commit-
ted and understand if this results in major drawbacks.

We have studied the effects of time and energy on switch
cases, and we would like to extend these approaches and
analysis to data volume.

Conclusion
We have presented several algorithms to allow a very com-
putationally limited, non-backtracking scheduler to consider
a schedule containing required, or mandatory, activities and
sets of activities called switch groups where each activity
in such sets differs only by its resource consumption. These
algorithms strive to schedule the most preferred, which hap-
pens to be the most consumptive, activity possible in the set
without dropping any other mandatory activity. First, we dis-
cuss two guard methods which use different approaches to
reserve enough resources to schedule remaining mandatory
activities. We then discuss a third algorithm, MSI, which
emulates backtracking by reinvoking the scheduler at most
once per level of switch case. We present empirical anal-
ysis using input sets of activities derived from data on ex-
pected planetary rover operations to show the effects of us-
ing each of these methods. These implementations and em-
pirical evaluation are currently being evaluated in the con-
text of the Mars 2020 onboard scheduler.



Acknowledgments
This work was performed at the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the
National Aeronautics and Space Administration.

References
Barták, R. 2000. Conceptual models for combined planning
and scheduling. Electronic Notes in Discrete Mathematics
4(1).
Chi, W.; Chien, S.; Agrawal, J.; Rabideau, G.; Benowitz, E.;
Gaines, D.; Fosse, E.; Kuhn, S.; and Biehl, J. 2018. Em-
bedding a scheduler in execution for a planetary rover. In
ICAPS.
Chien, S. A.; Knight, R.; Stechert, A.; Sherwood, R.; and
Rabideau, G. 2000. Using iterative repair to improve the
responsiveness of planning and scheduling. In Artificial In-
telligence Planning and Schedling, 300–307.
Drummond, M.; Bresina, J.; and Swanson, K. 1994. Just-
in-case scheduling. In AAAI, volume 94, 1098–1104.
Gaines, D.; Anderson, R.; Doran, G.; Huffman, W.; Justice,
H.; Mackey, R.; Rabideau, G.; Vasavada, A.; Verma, V.; Es-
tlin, T.; et al. 2016a. Productivity challenges for mars rover
operations. In Proceedings of 4th Workshop on Planning
and Robotics (PlanRob), 115–125. London, UK.
Gaines, D.; Doran, G.; Justice, H.; Rabideau, G.; Schaffer,
S.; Verma, V.; Wagstaff, K.; Vasavada, A.; Huffman, W.; An-
derson, R.; et al. 2016b. Productivity challenges for mars
rover operations: A case study of mars science laboratory
operations. Technical report, Technical Report D-97908, Jet
Propulsion Laboratory.
Jet Propulsion Laboratory. 2017a. Mars 2020 rover mission
https://mars.nasa.gov/mars2020/ retrieved 2017-11-13.
Jet Propulsion Laboratory. 2017b. Mars science laboratory
mission https://mars.nasa.gov/msl/ 2017-11-13.
Kellenbrink, C., and Helber, S. 2015. Scheduling resource-
constrained projects with a flexible project structure. Euro-
pean Journal of Operational Research 246(2):379–391.
Rabideau, G., and Benowitz, E. 2017. Prototyping an on-
board scheduler for the mars 2020 rover. In International
Workshop on Planning and Scheduling for Space.


