
The Adaptive Stress Testing Formulation
Mark Koren

mkoren@stanford.edu
Anthony Corso

acorso@stanford.edu
Mykel Kochenderfer
mykel@stanford.edu

Abstract—Validation is a key challenge in the search for safe
autonomy. Simulations are often either too simple to provide
robust validation, or too complex to tractably compute. There-
fore, approximate validation methods are needed to tractably
find failures without unsafe simplifications. This paper presents
the theory behind one such black-box approach: adaptive stress
testing (AST). We also provide three examples of validation
problems formulated to work with AST.

I. INTRODUCTION

An open question when robots operate autonomously in
uncertain, real-world environments is how to tractably validate
that the agent will act safely. Autonomous robotic systems
may be expected to interact with a number of other actors,
including humans, while handling uncertainty in perception,
prediction and control. Consequently, scenarios are often too
high-dimensional to tractably simulate in an exhaustive man-
ner. As such, a common approach is to simplify the scenario by
constraining the number of non-agent actors and the range of
actions they can take. However, simulating simplified scenarios
may compromise safety by eliminating the complexity needed
to find rare, but important failures. Instead, approximate
validation methods are needed to elicit agent failures while
maintaining the full complexity of the simulation.

One possible approach to approximate validation is adaptive
stress testing (AST) [7]. In AST, the validation problem is
cast as a Markov decision process (MDP). A specific reward
function structure is then used with reinforcement learning
algorithms in order to identify the most-likely failure of a
system in a scenario. Knowing the most-likely failure is useful
for two reasons: 1) all other failures are at most as-likely, so
it provides a bound on the likelihood of failures, and 2) it
uncovers possible failure modes of an autonomous system so
they can be addressed. AST is not a silver bullet: it requires
accurate models of all actors in the scenario and is suscep-
tible to local convergence. However, it allows failures to be
identified tractably in simulation for complicated autonomous
systems acting in high-dimensional spaces. This paper briefly
presents the latest methodology for using AST and includes
example validation scenarios formulated as AST problems.

II. METHODOLOGY

A. Adaptive Stress Testing

Adaptive stress testing formulates the problem of finding the
most-likely failure of a system as a Markov decision process
(MDP) [2]. Reinforcement learning (RL) algorithms can then
be applied to efficiently find a solution in simulation. The
process is shown in Figure 1. An RL-based solver outputs
Environment Actions, which are the control input to the sim-
ulator. The simulator resolves the next time-step by executing

Simulator S

Solver Reward
Function

Environment
Actions

Likelihood

Event

Reward

Fig. 1. The AST methodology. The simulator is treated as a black box. The
solver optimizes a reward based on transition likelihood and whether an event
has occurred.

the environment actions and then allowing the system-under-
test (SUT) to act. The simulator returns the likelihood of
the environment actions and whether an event of interest,
such as a failure, has occurred. The reward function, covered
in Section II-C, uses these to calculate the reward at each
time-step. The solver uses these rewards to find the most-
likely failure using reinforcement learning algorithms such as
Monte Carlo tree search (MCTS) [4] or trust region policy
optimization (TRPO) [10].

B. Problem Formulation

Finding the most-likely failure of a system is a sequential
decision-making problem. Given a simulator S and a subset of
the state space E where the events of interest (e.g. a collision)
occur, we want to find the most-likely trajectory s0, . . . , st that
ends in our subset E. Given (S, E), the formal problem is

maximize
a0,...,at

P (s0, a0, . . . , st, at)

subject to st ∈ E
where P (s0, a0, . . . , st, at) is the probability of a trajectory in
simulator S and st = f(at, st−1).

AST requires the following three functions to interact with
the simulator:
• INITIALIZE(S, s0): Resets S to a given initial state s0.
• STEP(S, E, a): Steps the simulation in time by drawing

the next state s′ after taking action a. The function returns
the probability of the transition and an indicator showing
whether s′ is in E or not.

• ISTERMINAL(S, E): Returns true if the current state of
the simulation is in E or if the horizon of the simulation
T has been reached.

C. Reward Function

In order to find the most-likely failure, the reward function
must be structured as follows:

R (s) =

 0 s ∈ E
−α− βf(s) s /∈ E, t ≥ T
−g(a)− ηh(s) s /∈ E, t < T

(1)

where the parameters are:
• α: A large number, to heavily penalize trajectories that

do not end in the target set.
• βf(s): An optional heuristic. For example, in the au-

tonomous vehicle experiment, we use the distance be-
tween the pedestrian and the car at the end of a trajectory.
Consequently, the network takes actions that move the
pedestrian close to the car early in training, allowing
collisions to be found more quickly.

• g(a): The action reward. A function recommended to
be something proportional to logP (a). Adding log-
probabilities is equivalent to multiplying probabilities
and then taking the log, so this constraint ensures that
summing the rewards from each time-step results in a
total reward that is proportional to the log-probability of
a trajectory.

• ηh(s): An optional training heuristic given at each
timestep.

Looking at Equation (1), there are three cases:
• s ∈ E: The trajectory has terminated because an event

has been found. This is the goal, so the reward at this
step is as large as possible (0).

• s /∈ E, t ≥ T : The trajectory has terminated by reaching
the horizon T without reaching an event. This is the least-
useful outcome, so the user should set a large penalty.

• s /∈ E, t < T : A time-step that was non-terminal, which
is the most common case. The reward is generally propor-
tional to the negative log-likelihood of the environment
action, which promotes likely actions.

Ignoring heuristics for now, it is clear that the reward will
be better for even a highly-unlikely trajectory that terminates
in an event compared to a trajectory that fails to find an event.
However, among trajectories that find an event, the more-likely
trajectory will have a better reward. Consequently, optimizing
to maximize reward will result in maximizing the probability
of a trajectory that terminates with an event.

III. EXAMPLES

We present three scenarios in which an autonomous system
needs to be validated. For each scenario, we provide an
example of how it could be formulated as an AST problem.
Further details available in Appendix A.

A. Cartpole with Disturbances

1) Problem: Cartpole is a classic test environment for
continuous control algorithms [1]. The system under test
(SUT) is a neural network control policy trained by TRPO.
The control policy controls the horizontal force ~F applied to
the cart, and the goal is to prevent the bar on top of the cart
from falling over.

2) Formulation: We define an event as the pole reaching
some maximum rotation or the cart reaching some maximum
horizontal distance from the start position. The environment
action is δ ~F , the disturbance force applied to the cart at
each time-step. The reward function uses α = 1× 104,
β = 1× 103, and f(s) as the normalized distance of the final

state to failure states. The choice of f(s) encourages the solver
to push the SUT closer to failure. The action reward, g(a) is
set to the log of the probability density function of the natural
disturbance force distribution. See Ma et al. [8].

B. Autonomous Vehicle at a Crosswalk

1) Problem: Autonomous vehicles must be able to safely
interact with pedestrians. Consider an autonomous vehicle
approaching a crosswalk on a neighborhood road. There is
a single pedestrian who is free to move in any direction. The
autonomous vehicle has imperfect sensors.

2) Formulation: A collision between the car and pedestrian
is the event we are looking for. The environment action vector
controls both the motion of the pedestrian as well as the scale
and direction of the sensor noise. The reward function for
this scenario uses α = −1× 105 and β = −1× 104, with
f(s) = DIST

(
pv,pp

)
as the distance between the pedestrian

and the SUT at the end of a trajectory. This heuristic encour-
ages the solver to move the pedestrian closer to the car in early
iterations, which can significantly increase training speeds.
The reward function also uses g(a) =M (a, µa | s), which is
the Mahalanobis distance function [9]. Mahalanobis distance
is a generalization of distance to the mean for multivariate
distributions. See Koren et al. [5].

C. Aircraft Collision Avoidance Software

1) Problem: The next-generation Airborne Collision
Avoidance System (ACASX) [3] gives instructions to pilots
when multiple planes are approaching each other. We want
to identify system failures in simulation to ensure the system
is robust enough to replace the Traffic Alert and Collision
Avoidance System (TCAS) [6]. We are interested in a number
of different scenarios in which two or three planes are in the
same airspace.

2) Formulation: The event will be a near mid-air collision
(NMAC), which is when two planes pass within 100 vertical
feet and 500 horizontal feet of each other. The simulator
is quite complicated, involving sensor, aircraft, and pilot
models. Instead of trying to control everything explicitly, our
environment actions will output seeds to the random number
generators in the simulator. The reward function for this
scenario uses α = ∞ and no heuristics. The reward function
also uses g(a) = logP (st | st+1), the log of the known
transition probability at each time-step. See Lee et al. [7].

IV. CONCLUSION

This paper presents the latest formulation of adaptive stress
testing, and examples of how it can be applied. AST is
an approach to validation that can tractably find failures in
autonomous systems in simulation without reducing scenario
complexity. Autonomous systems are difficult to validate be-
cause they interact with many other actors in high-dimensional
spaces according to complicated policies. However, validation
is essential for producing autonomous systems that are safe,
robust, and reliable.

REFERENCES

[1] Andrew G Barto, Richard S Sutton, and Charles W
Anderson. Neuronlike adaptive elements that can solve
difficult learning control problems. IEEE Transactions
on Systems, Man, and Cybernetics, (5):834–846, 1983.

[2] Mykel J Kochenderfer. Decision Making Under Uncer-
tainty. MIT Press, 2015.

[3] Mykel J Kochenderfer, Jessica E Holland, and James P
Chryssanthacopoulos. Next-generation airborne collision
avoidance system. Technical report, Massachusetts Insti-
tute of Technology-Lincoln Laboratory Lexington United
States, 2012.

[4] Levente Kocsis and Csaba Szepesvári. Bandit based
Monte Carlo planning. In European Conference on
Machine Learning (ECML), 2006.

[5] Mark Koren, Saud Alsaif, Ritchie Lee, and Mykel J
Kochenderfer. Adaptive stress testing for autonomous
vehicles. In IEEE Intelligent Vehicles Symposium. IEEE,
2018.

[6] JE Kuchar and Ann C Drumm. The traffic alert and
collision avoidance system. Lincoln Laboratory Journal,
16(2):277, 2007.

[7] Ritchie Lee, Mykel J Kochenderfer, Ole J Mengshoel,
Guillaume P Brat, and Michael P Owen. Adaptive stress
testing of airborne collision avoidance systems. In Digital
Avionics Systems Conference (DASC), 2015.

[8] Xiaobai Ma, Mark Koren, Anthony Corso, Katie Driggs-
Campbell, and Mykel Kochenderfer. AST toolbox: an
adaptive stress testing framework for validation of au-
tonomous systems. In IEEE/RSJ International Confer-
ence on Intelligent Robots and Systems (IROS), 2019.
Submitted for review.

[9] Prasanta Chandra Mahalanobis. On the generalised dis-
tance in statistics. Proceedings of the National Institute
of Sciences of India, 2(1):49–55, 1936.

[10] John Schulman, Sergey Levine, Pieter Abbeel, Michael
Jordan, and Philipp Moritz. Trust region policy optimiza-
tion. In International Conference on Machine Learning
(ICML), 2015.

[11] Martin Treiber, Ansgar Hennecke, and Dirk Helbing.
Congested traffic states in empirical observations and
microscopic simulations. Physics Review E, 62:1805–
1824, Aug 2000.

APPENDIX A
EXAMPLES: FURTHER DETAILS

A. Cartpole with Disturbances

The cartpole scenario from Ma et al. [8] is shown in
Figure 2. The state s = [x, ẋ, θ, θ̇] represents the cart’s
horizontal position and speed as well as the bar’s angle and
angular velocity. The control policy, a neural network trained
by TRPO, controls the horizontal force ~F applied to the
cart. The failure of the system is defined as |x| > xmax or
|θ| > θmax. The initial state is at s0 = [0, 0, 0, 0].

Fig. 2. Layout of the cartpole environment. A control policy applies
horizontal force on the cart to prevent the bar falling over.

B. Autonomous Vehicle at a Crosswalk

The autonomous vehicle scenario from Koren et al. [5] is
shown in Figure 3. The x-axis is aligned with the edge of the
road, with East being the positive x-direction. The y-axis is
aligned with the center of the cross-walk, with North being the
positive y-direction. The pedestrian is crossing from South to
North. The vehicle starts 35m from the crosswalk, with an
initial velocity of 11.20m/s East. The pedestrian starts 2m
away, with an initial velocity of 1m/s North. The autonomous
vehicle policy is a modified version of the intelligent driver
model [11].

Fig. 3. Layout of the autonomous vehicle scenario. A vehicle approaches
a cross-walk on a neighborhood road as a single pedestrian attempts to walk
across.

C. Aircraft Collision Avoidance Software

An example result from Lee et al. [7] is shown in Figure 4.
The planes need to cross paths, and the validation method was
able to find a rollout where pilot responses to the ACASX
system lead to an NMAC. AST was used to find a variety of
different failures in ACASX.

Fig. 4. An example result from Lee et al. [7], showing an NMAC identified
by AST. Note that the planes must be both vertically and horizontally near
to each other to register as an NMAC.

	Introduction
	Methodology
	Adaptive Stress Testing
	Problem Formulation
	Reward Function

	Examples
	Cartpole with Disturbances
	Problem
	Formulation

	Autonomous Vehicle at a Crosswalk
	Problem
	Formulation

	Aircraft Collision Avoidance Software
	Problem
	Formulation

	Conclusion
	Appendix A: Examples: Further Details
	Cartpole with Disturbances
	Autonomous Vehicle at a Crosswalk
	Aircraft Collision Avoidance Software

