
Under review as a conference paper at ICLR 2020

GOING DEEPER WITH LEAN POINT NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

In this work we train deeper and more accurate networks by introducing three
point processing blocks that improve accuracy and memory consumption: a
convolution-type block for point sets that blends neighborhood information in a
memory-efficient manner; a multi-resolution point cloud processing block; and a
crosslink block that efficiently shares information across low- and high-resolution
processing branches. By combining these blocks, we design significantly wider
and deeper architectures. We extensively evaluate the proposed architectures
on multiple point segmentation benchmarks (ShapeNet-Part, ScanNet, PartNet).
We report systematic accuracy and memory consumption improvements by us-
ing our generic modules in conjunction with multiple architectures (PointNet++,
DGCNN, SpiderNet, PointCNN). All of our code will become publicly available.

2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

250

300

350

400

450

500

Memory consumption (Gb)

I
n
f
e
r
e
n
c
e

T
i
m
e

(
m
s
)

mRes
mResX

PN++

convPN
deepConvPN

Memory consumption (Gb)

250

500

450

400

350

300In
fe

re
nc

e
tim

e
(m

s)

2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.57.0

+1.0

+3.0

+2.6

+1.2

+3.0

+3.4

P
e
r
f
o
r
m
a
n
c
e

(
I
o
U
)

c
o
m
p
a
r
e
d

t
o

t
h
e

b
a
s
e
l
i
n
e

Pe
rf

or
m

an
ce

 Io
U

+1.0 +1.2

82.9 24

+3.0 +3.0

35.2

+2.6

+3.4

ShapeNet-Part ScanNet PartNet
Dataset Complexity

PN++ convPN deepConvPN

Figure 1: (Left) Memory footprint and inference speed of network variations: our multi-
resolution (mRes), and crosslink (X) blocks decrease the memory footprint, while our convolution-
type block (conv) decreases both memory consumption (-67%) and inference time (-41%) com-
pared to the PointNet++ (PN++) baseline. (Right) Improvements in accuracy for three segmentation
benchmarks of increasing complexity. On the –most complex– PartNet dataset our deep network
outperforms the shallow PointNet++ baseline by 3.4%(spread of +0.6), yielding a 9.7% (spread of
+3.4) relative increase.

1 INTRODUCTION

Geometry processing has recently started profiting from applying deep learning to graphics and 3D
shape analysis (Qi et al., 2017b; Wang et al., 2018b; Dai et al., 2017; Chang et al., 2017) with net-
works that guarantee desirable properties of point cloud processing, such as permutation-invariance
and quantization-free representation (Su et al., 2015; Wang et al., 2017; 2018a). Despite these ad-
vances, several differences still impede the breakthroughs made in computer vision.

The different nature of 3D data dictates re-inventing for geometry processing the functionality of ba-
sic image processing blocks, such as multi-resolution processing or convolution operations. When
operating with unstructured point clouds, one has to resort to elementary local pooling operations
that group information within a neighborhood based on Euclidean distance. Exemplary methods
such as the PointNet/PointNet++ architectures (Qi et al., 2017a;b) make design choices that poten-
tially compromise performance.

In particular, the computation and memory demands of point network blocks can affect both train-
ing speed and, more crucially, inference time. One of the main bottlenecks for point networks is

1

Under review as a conference paper at ICLR 2020

their memory-intensive nature: as detailed in Sec. 3.1, the PointNet++ architecture and its variants
replicate point neighborhood information, letting every node carry in its feature vector information
about all of its neighborhood. This results in significant memory overhead, and limits the number of
layers, features and feature compositions one can compute.

In this work, we enhance point processing networks by introducing a set of modules that improve
memory footprint and accuracy, without compromising on inference speed. We call the result ar-
chitectures Lean Point Networks, to highlight their lightweight memory budget. We build on the
decreased memory budget to go deeper with point networks. As has been witnessed repeatedly in
the image domain (He et al., 2016; Huang et al., 2016; Zagoruyko & Komodakis, 2016), we show
that going deep also increases the prediction accuracy of point networks.

We start in Sec. 3.2 by replacing the grouping operation used in point cloud processing networks
with a low-memory alternative that is the point cloud processing counterpart of efficient image
processing implementations of convolution. The resulting ‘point convolution block’ is 67% more
memory-efficient and 41% faster than its PointNet++ counterpart, while exhibiting favorable train-
ing properties due to more effective mixing of information across neighborhoods.

We then turn in Sec. 3.3 to improving the information flow across layers and scales within point
networks through three techniques: a multi-resolution variant for multi-scale network which still
delivers the multi-scale context but at a reduced memory and computational cost, residual links,
and a new cross-link block that broadcasts multi-scale information across the network branches. By
combining these advances we are able to successfully train deeper point networks that allow us to
leverage upon larger, recently introduced datasets.

In Sec. 4 we thoroughly validate our contributions on the ShapeNet-Part, ScanNet and PartNet seg-
mentation benchmarks, reporting systematic improvements over the PointNet++ baseline. As shown
in Fig. 1, when combined these contributions deliver multifold reductions in memory consumption
while improving performance, allowing us in a second stage to train increasingly wide and deep
networks. On PartNet, the most complex dataset, our deep architecture achieves a 9.7% relative
increase in IoU while decreasing memory footprint by 57% and inference time by 47%.

Having thoroughly ablated our design choices on the PartNet++ baseline, in Sec. 4.3 we turn to con-
firming the generic nature of our blocks. We extend the scope of our experiments to three additional
networks, (i) DGCNN (Wang et al., 2018b), (ii) SpiderCNN (Xu et al., 2018) and (iii) PointCNN (Li
et al., 2018b) and report systematic improvements in memory efficiency and performance.

2 RELATED WORK

Learning in Point Clouds. Learning-based approaches have recently attracted significant attention
in the context of Geometric Data Analysis, with several methods proposed specifically to handle
point cloud data, including PointNet (Qi et al., 2017a) and several extensions such as PointNet++ (Qi
et al., 2017b) and Dynamic Graph CNNs (Wang et al., 2018b) for shape segmentation and classifica-
tion, PCPNet (Guerrero et al., 2018) for normal and curvature estimation, P2P-Net (Yin et al., 2018)
and PU-Net (Yu et al., 2018b) for cross-domain point cloud transformation. Although many alter-
natives to PointNet have been proposed (Su et al., 2018; Li et al., 2018a;b; Hermosilla et al., 2018;
Zaheer et al., 2017) to achieve higher performance, the simplicity and effectiveness of PointNet and
its extension PointNet++ make it popular for many other tasks (Yu et al., 2018a).

Taking PointNet++ as our starting point, our work facilitates the transfer of network design tech-
niques developed in computer vision to point cloud processing. In particular, significant accuracy
improvements have been obtained with respect to the original AlexNet network (Krizhevsky et al.,
2013) by engineering the scale of the filtering operations (Zeiler & Fergus, 2014; Simonyan & Zis-
serman, 2015), the structure of the computational blocks (Szegedy et al., 2014; Xie et al., 2016),
and the network’s width and depth (He et al., 2016; Zagoruyko & Komodakis, 2016). A catalyst
for experimenting with a larger space of network architecture, however, is the reduction of memory
consumption - this motivated us to design lean alternatives to point processing networks. Notably,
Zhang et al. (2019) introduce a new operator to improve point cloud network efficiency, but only
focus on increasing the convergence speed by tuning the receptive field. Li et al. (2019) has in-
vestigated how residual/dense connections and dilated convolution could help mitigate vanishing
gradient observed for deep graph convolution networks but without solving memory limitations. By

2

Under review as a conference paper at ICLR 2020

contrast our work explicitly tackles the memory problem with the objective of training deeper/wider
networks and shows that there are clear improvements over strong baselines.

Memory-Efficient Networks. The memory complexity of the standard back-propagation imple-
mentation grows linearly with network’s depth as backprop requires retaining in memory all of the
intermediate activations computed during the forward pass, since they are required for the gradient
computation in the backward pass.

Several methods bypass this problem by trading off speed with memory. Checkpointing techniques
(Chen et al., 2016; Gruslys et al., 2016) use anchor points to free up intermediate computation re-
sults, and re-compute them in the backward pass. This is 1.5x slower during training, since one
performs effectively two forward passes rather than just one. More importantly, applying this tech-
nique is easy for chain-structured graphs, e.g., recursive networks (Gruslys et al., 2016) but is not as
easy for general Directed Acyclic Graphs, such as U-Nets, or multi-scale networks like PointNet++.
One needs to manually identify the graph components, making it cumbersome to experiment with
diverse variations of architectures.

Reversible Residual Networks (RevNets) (Gomez et al., 2017) limit the computational block to
come in a particular, invertible form of residual network. This is also 1.5x slower during training,
but alleviates the need for anchor points altogether. Unfortunately, it is unclear what is the point
cloud counterpart of invertible blocks.

We propose generic blocks to reduce the memory footprint inspired from multi-resolution processing
and efficient implementations of the convolution operation in computer vision. As we show in
Sec. 4.3, our blocks can be used as drop-in replacements in generic point processing architectures
(PointNet++, DGCNN, SpiderNet, PointCNN) without any additional network design effort.

3 METHOD

This Section introduces a set of modular blocks, shown in Fig. 2, that can be applied to most state-of-
the-art point networks. We start with a brief introduction of the PointNet++ network, which serves
as an example point network baseline. We then introduce our modules and explain how their design
decreases memory footprint and improves information flow.

3.1 POINTNET AND POINTNET++ ARCHITECTURES

PointNet++ (Qi et al., 2017b) builds on top of PointNet. First, each point pi looks up its k-nearest
neighbors and stacks them to get a point set, say P i

Nk
. Then, PointNet is applied to each such

point set P i
Nk

and the resultant feature vector is assigned back to the corresponding point pi. While
demonstrated to be extremely effective, PointNet++ has two main shortcomings: first, because of
explictly carrying around k-nearest neighbor information for each point, the network layers are
memory intensive; and second, being reliant on PointNet, it also delays transmission of global in-
formation until the last stage.

3.2 MEMORY EFFICIENT NEIGHBORHOOD CONVOLUTION

As shown in Fig. 2(a), the existing PointNet++ grouping operation exposes the neighborhood of
any point i by concatenating all of its K neighboring D-dimensional vectors v[i,k] to form a tensor:
T = [v v[.,1] . . . v[.,K]] of size N ×D × (K + 1).

Every vector of this matrix is processed separately by a Multi-Layer-Perceptron that implements a
function MLP : RD → RD

′

, while at a later point a max-pooling operation over the K neighbors
of every point delivers a slim, N ×D′

matrix.

When training a network every layer constructs and retains such a matrix in memory, so that it can
be used in the backward pass to update the MLP parameters, and send gradients to earlier layers.

The counterpart for a standard 2D image convolution amounts to forming a K2 tensor in memory
when performing K × K filtering and then implementing a convolution as matrix multiplication.
This amounts to the im2col operation used for example in the caffe library to implement convo-

3

Under review as a conference paper at ICLR 2020

kNN
PN

PN

PN

(a) PointNet++ (PN++) (b) mRes (c) mResX

U

D

kNN

kNN

kNN

SLP

SLP

SLP

pool

pool

pool

U

D

kNN

kNN

kNN

SLP

SLP

SLP

SLP

SLP

SLP

xLink

pool

pool

pool

U

D

(e) deepConvPN

U

D

kNN

kNN

kNN

SLP

SLP

SLP

pool

pool

pool

(d) convPN

Network Layers

co
nv

PN

co
nv

PN

co
nv

PN

co
nv

PN

Figure 2: The standard PN++ layer in (a) amounts to the composition of a neighborhood-based
lookup and a PointNet element. In (b) we propose to combine parallel PointNet++ blocks in a multi-
resolution architecture, and in (c) allow information to flow across branches of different resolutions
through a cross-link element. In (d) we propose to turn the lookup-SLP-pooling cascade into a
low-memory counterpart by removing the kNN elements from memory once computed; we also
introduce residual links, improving the gradient flow. In (e) we stack the block in (d) to grow in
depth and build our deep architecture. Each of these tweaks to the original architecture allows for
systematic gains in memory and computational efficiency. The green box indicates that the block
can be grown in depth by stacking those green units.

lutions with General Matrix-Matrix Multiplication (GEMM) (Jia, 2014). In point clouds the nearest
neighbor information provides us with the counterpart to theK×K neighborhood. Based on this ob-
servation we propose to use the same strategy as the one used in memory-efficient implementations
of image convolutions for deep learning.

In particular we free the memory as soon as the forward pass computes its output, rather than main-
taining the matrix in memory. In the backward pass we reconstruct the matrix on the fly from the
outputs of the previous layer. We perform the required gradient computations and then return the
GPU memory resources (we refer to Algorithm 1 and Algorithm 2 in Appendix B for a detailed
description).

Using the on-the-fly re-computation of the tensor T has a positive impact on both the forward and
backward pass. Instead of applying the SLP on the neighbourhood feature matrix, we can first
apply the SLP on the flat feature matrix and then reconstruct the neighbourhood just before the
max-pooling layer. The same can be used for the backward pass. In our unoptimized code, our
convolution-type architecture shortens the time spent for the forward pass and the backward pass by
41% and 68% respectively on average.

For a network with L layers, the memory consumption of the baseline PointNet++ layer grows as
L×(N×D×K), while in our case memory consumption grows asL×(N×D)+(N×D×K), where
the term, L × (N × D) accounts for the memory required to store the layer activations, while the
second termN×D×K is the per-layer memory consumption of a single neighborhood convolution
layer. As L grows larger, this results in a K-fold drop, shown on Fig. 3. This reduction opens up
the possibility of learning much deeper networks, since memory demands now grow substantially
more slowly in depth. With minor, dataset-dependent, fluctuations, the memory footprint of our
convolution type architecture is on average 67% lower than the PointNet++ baseline, while doubling
the number of layers comes with a memory overhead of 2.7%.

4

Under review as a conference paper at ICLR 2020

8 10 12 14 16 18

2

4

6

8

10

12

14

16
 Varying high-res
 Varying mid-res

Nb. layers

M
e
m
.

(
G
B
)

Mem. Budget

convPN

PN++

Number of layers
8 10 12 14 16 18

M
em

or
y

(G
b)

4

8

6

2

10
12

14

16

Mid-res

High-res

Mid-res
High-res

Figure 3: Evolution of memory con-
sumption as the number of layers in-
creases for PointNet++ and convPN
(convolution block counterpart) on
ShapeNet-Part. Doubling the num-
ber of layers for convPN results only
in an increase in memory by +2.3%
and +16.8% for mid- and high- res-
olution respectively, which favorably
compares to the +72% and +125%
increases for PointNet++.

3.3 IMPROVING INFORMATION FLOW

We now turn to methods that allow for a more efficient propagation of information through the net-
work. As has been repeatedly shown in computer vision, this can drastically impact the behavior of
the network during training. Our experiments indicate that this is also the case for point processing.
Due to lack of space, the illustrations clarifying the operation of these blocks are only available in
the Appendix.

a- Multi-Resolution vs Multi-Scale Processing. Shape features can benefit from both local, fine-
grained information and global, semantic-level context; their fusion can easily boost the discrimi-
native power of the resulting features. As presented in Sec. 3.1, PointNet++ mostly uses a neigh-
borhood of fixed radius, leaving only to the later blocks of the network the use of bigger radii and
point set sampling. Hence, at early stages of the network, the points only has access to very local
information.

We observe that this allows only very slow exchange of information among low-, mid- and coarse-
scale information. Coarse-scale information is conveyed not necessarily by all points that are con-
tained within a larger radius, but by obtaining potentially sparse measurements from a larger area.
This underlies also the common log-polar sampling mechanism in computer and biological vision
(Schwartz, 1977; Tola et al., 2010; Kokkinos & Yuille, 2008) where a constant number of measure-
ments is obtained in concentric disks of geometrically increasing radii.

We therefore propose to extract neighborhoods of fixed size in downsampled versions of the original
point cloud. In the coordinates of the original point cloud this amounts to increasing the effective
grouping area, but it now comes with a much smaller memory budget. We observe a 58% decrease
in memory footprint on average on the three tested datasets. Please refer to Fig. 4 in Appendix A.1.2
for an illustration of the difference between both types of processing.

b- Residual Links. We use the standard Residual Network architecture (He et al., 2016), which
helps to train deep networks reliably. Residual networks change the network’s connectivity to im-
prove gradient flow during training: identity connections provide early network layers with access
to undistorted versions of the loss gradient, effectively mitigating the vanishing gradient problem.
As our results in Sec. 4 show, this allows us to train deeper networks.

c- Cross Links. We further introduce Cross-Resolution Links in order to better propagate informa-
tion in the network during training. We draw inspiration from the Multi-Grid Networks (Ke et al.,
2016) and the Multiresolution Tree Networks (Gadelha et al., 2018) and allow layers that reside in
different resolution branches to communicate with each other, thereby exchanging low-, mid-, and
high-resolution information throughout the network processing, rather than fusing multi-resolution
information at the end of each block.

Cross-links broadcast information across resolutions as shown in Fig. 5 in Appendix A.1: unlike
Gadelha et al. (2018), an MLP transforms the output of one branch to the right output dimensionality
so that it can be combined with the output of another branch. Each resolution branch can focus on its
own representation and the MLPs will be in charge of making the translation between them. Taking
in particular the case of a high-resolution branch communicating its outputs to a mid-resolution
branch, we have N × DH feature vectors at the output of a lookup-SLP-pooling block cascade,
which need to be communicated to the N/2 × DM vectors of the mid-resolution branch. We first
downsample the points, going from N to N/2 points, and then use an MLP that transforms the

5

Under review as a conference paper at ICLR 2020

vectors to the target dimensionality. Conversely, when going from low- to higher dimensions we
first transform the points to the right dimensionality and then upsample them. We have experimented
with both concatenating and summing multi-resolution features and have observed that summation
behaves systematically better in terms of both training speed and test performance.

4 EVALUATION

Dataset and evaluation measures. We evaluate our modules on the point cloud segmentation task
on three different datasets. The datasets consist of either 3D CAD models or real-world scans.
We quantify the complexity of each dataset based on (i) the number of training samples, (ii) the
homogeneity of the samples and (iii) the granularity of the segmentation task. Note that a network
trained on a bigger and diverse dataset would be less prone to overfitting - as such we can draw
more informative conclusions from more complex datasets. We order the datasets by increasing
complexity: ShapeNet-Part (Chang et al., 2015), ScanNet (Dai et al., 2017) and PartNet (Mo et al.,
2018) for fine-grained segmentation. By its size (24,506 samples) and its granularity (251 labeled
parts), PartNet is the most complex dataset we have experimented on. In order to stay consistent
with reported benchmarks on each dataset, we use two different metrics to report the Intersection
over Union (IoU): (i) the mean Intersection over Union (mIoU) and (ii) the part Intersection over
Union (pIoU). Please refer to Appendix C.2 for further explanation about both metrics.

4.1 EFFECT OF IMPROVED INFORMATION FLOW

We report the performance of our variations for PointNet++ on the Shapenet-Part, ScanNet and Part-
Net datasets (Table 1). Our lean and deep architectures can be easily deployed on large and complex
datasets. Hence, for PartNet, we choose to train on the full dataset all at once on a segmentation task
across the 17 classes instead of having to train a separate network for each category in contrast to
the original paper (Mo et al., 2018).

Our architectures substantially improve the memory efficiency of the PointNet++ baseline while also
delivering an increase in performance for more complex datasets (see Fig. 1). Indeed, as the data
complexity grows, having efficient information flow has a larger influence on the network perfor-
mance. On PartNet, the spread between our architectures and the vanilla PointNet++ becomes sig-
nificantly high: our multiresolution (mRes) network increases relative performance by +5.7% over
PointNet++ and this gain reaches +6.5% with cross-links (mResX). Our convolution-type network
(convPN) outperforms other architectures when dataset complexity increases (+12.5% on ScanNet
and +7.4% on PartNet) by more efficiently mixing information across neighbours.

Table 1: Performance of our modules compared to PointNet++ baseline. The impact of our modules
becomes most prominent as the dataset complexity grows. On PartNet our deepConvPN network
increases pIoU by 9.7% over PointNet++, outperforming its shallow counterpart by +2.1%.

ShapeNet-Part ScanNet PartNet
(13,998 samp.) (1,201 samp.) (17,119 samp.)

mIoU (%) Accuracy (%) pIoU (%) pIoU (%)
PN++ 82.9 (+0.0%) 79 (+0.0%) 24 (+0.0%) 35.2 (+0.0%)
mRes 83.9 (+1.2%) 76 (-3.8%) 22 (-8.3%) 37.2 (+5.7%)

mResX 83.8 (+1.1%) 76 (-3.8%) 22 (-8.3%) 37.5 (+6.5%)
convPN 83.9 (+1.2%) 81 (+2.5%) 27 (+12.5%) 37.8 (+7.4%)

deepConvPN 84.1 (+1.4%) 80 (+1.3%) 27 (+12.5%) 38.6 (+9.7%)

4.2 IMPROVEMENT OF ACCURACY BY GOING DEEPER

The aforementioned memory savings give the opportunity to design significantly deeper networks.
Naively increasing network depth can harm performance He et al. (2016); instead, we use residual
connections to improve convergence for our deep network. The exact design of this architecture
is more thoroughly detailed in Appendix A.1.4 but consists in doubling the number of layers in
the encoding part. While keeping the impact on efficiency very small (+6.3% on inference time
on average and +3.6% on memory consumption at most compared to the shallow convPN), the
performance is improved by a significant margin as shown in Table 1. On PartNet, this margin
reaches +2.1% over the shallow convPN and +9.7% over the vanilla PointNet++. We underline the
extremely low growth of memory as a function of depth, shown in Fig. 3.

6

Under review as a conference paper at ICLR 2020

In Table 2 we compare against Deep GCN (Li et al., 2019) in terms of the overall accuracy and
the mean IoU on S3DIS dataset (Armeni et al., 2016). We attain similar performance to the current
state-of-the-art, while relying on our generic memory-efficient network blocks and while based on a
weaker baseline compared to Deep GCN (i.e. DGCNN); as we show in the following section, these
blocks comes with the advantage of being applicable to many SOTA point processing networks.

Table 2: Performance of our deepConPN network compared to other SOTA methods on S3DIS.
The difference in performance observed on each class can be explained by the different approaches
networks have for point convolution. Our deep network clearly outperforms PointNet++ baseline by
a spread of +6.8% for mIoU. We achieve similar performance compared to Deep GCN while relying
on a weaker baseline (PointNet++ against DGCNN)

Method OA mIOU ceiling floor wall beam column window door table chair sofa bookcase board clutter
MS+CU 79.2 47.8 88.6 95.8 67.3 36.9 24.9 48.6 52.3 51.9 45.1 10.6 36.8 24.7 37.5
G+RCU 81.1 49.7 90.3 92.1 67.9 44.7 24.2 52.3 51.2 58.1 47.4 6.9 39.0 30.0 41.9

3DRNN+CF 86.9 56.3 92.9 93.8 73.1 42.5 25.9 47.6 59.2 60.4 66.7 24.8 57.0 36.7 51.6
DGCNN 84.1 56.1 - - - - - - - - - - - - -

ResGCN-28 85.9 60.0 93.1 95.3 78.2 33.9 37.4 56.1 68.2 64.9 61.0 34.6 51.5 51.1 54.4
PointNet 78.5 47.6 88.0 88.7 69.3 42.4 23.1 47.5 51.6 54.1 42.0 9.6 38.2 29.4 35.2

PointNet++ - 53.2 90.2 91.7 73.1 42.7 21.2 49.7 42.3 62.7 59.0 19.6 45.8 48.2 45.6
DeepConvPN 85.7 60.0 91.0 95.6 76.1 50.3 25.9 55.1 56.8 66.3 74.3 25.8 54.0 52.3 55.3

4.3 EVALUATION ON MORE ARCHITECTURES

We have introduced building blocks for point processing networks based on two key ideas, (i) a
memory efficient convolution and (ii) a multi-resolution approach. Our blocks make it really effi-
cient to capture, process and diffuse information in a point neighbourhood. Diffusing information
across neighborhood is the main behavior that most networks, if not all, share. We validate the gen-
erality of the proposed modular blocks in the context of other state-of-the-art point-based learning
setups, as shown in Table 3. Each of our macro-blocks can be stacked together, extended into a
deeper block by duplicating the green boxes (see Figure 2) or even be modified by changing one of
its components by another. We test our framework on three additional networks among the latest
state-of-the-art approaches, (i) Dynamic Graph CNN (Wang et al., 2018b), (ii) PointCNN (Li et al.,
2018b) and (iii) SpiderCNN (Xu et al., 2018). The efficiency of our modules for the KPConv net-
work (Thomas et al., 2019) is explored in Appendix C.4. These networks involve a diverse set of
point convolution approaches and thus allows us to assess the generic nature of our modular blocks.

All three of the networks make extensive use of memory which is a bottleneck to depth. We implant
our modules directly in the original networks, making, when needed, some approximations from the
initial architecture. We report the performance of each network with our lean counterpart on two
metrics: (i) memory footprint and (ii) IoU in Table 3. Our lean counterparts consistently improve
both the IoU (from +1.0% up to +8.0%) and the memory consumption (from -19% up to -69%).

Table 3: Performance of our blocks on three different architectures (DGCNN, PointCNN and Spi-
derCNN) on three datasets using two different metrics: (i) memory consumption and (ii) IoU. Our
lean counterparts improve significantly both the IoU (up to +8.0%) and the memory consumption
(up to -69%).

DGCNN PointCNN SCNN
ShapeNet-P ScanNet PartNet ShapeNet-P ScanNet PartNet ShapeNet-P ScanNet PartNet

Mem. (Gb)
Vanilla 2.62 (+0%) 7.03 (+0%) 9.50 (+0%) 4.54 (+0%) 5.18 (+0%) 6.83 (+0%) 1.09 (+0%) 4.33 (+0%) 5.21 (+0%)

Efficient 0.81 (-69%) 3.99 (-43%) 5.77 (-39%) 1.98 (-56%) 3.93 (-24%) 5.55 (-19%) 0.79 (-28%) 3.25 (-25%) 3.33 (-36%)

Perf. (%)
Vanilla 79.8 (+0.0%) 70 (+0.0%) 20.5 (+0.0%) 82 (+0.0%) 73 (+0.0%) 25.0 (+0.0%) 78.0 (+0.0%) 69 (+0.0%) 17.9 (+0.0%)

Efficient 81.3 (+1.9%) 71 (+1.4%) 21.9 (+6.8%) 82.8 (+1.0%) 76 (+4.1%) 27.0 (+8.0%) 79.6 (+2.1%) 71 (+2.9%) 18.4 (+2.8%)

Our modular blocks can thus be applied to a wide range of state-of-the-art networks and improve
significantly their memory consumption while having a positive impact on performance.

4.4 ABLATION STUDY

In this section, we report our extensive experiments to assess the importance of each block of our
network architectures. Our lean structure allows us to adjust the network architectures by increasing
its complexity, either by (i) adding extra connections or by (ii) increasing the depth. We analyze our
networks along four axes: (i) the performance measured in IoU (Table 1), (ii) the memory footprint,
(iii) the inference time and (iv) the length of the backward pass. Our main experimental findings

7

Under review as a conference paper at ICLR 2020

regarding network efficiency are reported in Table 4 and ablate the impact of our proposed design
choices for point processing networks.

Table 4: Efficiency of our network architectures measured with a batch size of 8 samples on a Nvidia
GTX 2080Ti GPU. All of our lean architectures allow to save a substantial amount of memory on
GPU wrt. the PointNet++ baseline from 58% with mRes to a 67% decrease with convPN. This latter
convolution-type architecture wins on all counts, decreasing both inference time (-41%) and the
length of backward pass (-68%) by a large spread. Starting form this architecture, the marginal cost
of going deep is extremely low: doubling the number of layers in the encoding part of the network
increases inference time by 6.3% on average and the memory consumption by only 3.6% at most
compared to convPN. Please refer to Appendix C.3 for absolute values.

Parameters (M) Memory Footprint (Gb) Inference Time (ms) Length Backward pass (ms)
ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet

PointNet++ +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0% +0.0%
mRes -17.0% -17.6% -16.6% -69.3% -56.5% -47.6% +14.8% +59.2% -19.4% -68.8% -53.8% -63.2%

mResX -10.6% -10.7% -10.1% -65.0% -53.2% -46.3% +28.2% +60.9% -12.5% -29.5% +0.0% -25.4%
convPN +13.8% +13.4% +12.6% -75.7% -66.6% -57.9% -45.6% -30.3% -47.9% -82.7% -42.3% -78.9%

deepConvPN +54.3% +54.0% +50.8% -79.1% -65.4% -57.0% -40.4% -25.6% -46.5% -78.6% -11.5% -72.4%

Multi-Resolution: Processing different resolutions at the same stage of a network has been shown
to perform well in shallow networks. Indeed, mixing information at different resolutions helps
to capture complex features early in the network. We adopt that approach to design our mRes
architecture. Switching from a PointNet++ architecture to a multi-resolution setting increases the
IoU by 1.2% on ShapeNet-Part and 5.7% on PartNet. More crucially, this increase in performance
come with more efficiency. Although the inference time is longer (18% longer on average) due to
the extra downsampling and upsampling operations, the architecture is much leaner and reduces by
58% the memory footprint. The training time is quicker due to a 62% faster backward pass.

Cross-links: Information streams at different resolutions are processed separately and can be seen as
complementary. To leverage this synergy, the network is provided with additional links connecting
neighborhood resolutions. We experiment on the impact of those cross-resolution links to check
their impact on the optimization. At the price of a small impact on memory efficiency (+8% wrt.
mRes) and speed (+7% on inference time wrt. mRes), the performance can be improved on PartNet,
the most complex dataset, with these extra-links by 0.8%.

Memory-efficient Convolutions: As described in Sec. 3.2, our leanest architeture is equivalent to
constraining each PointNet unit to be composed of a single layer network, and turning its operation
into a memory-efficient block by removing intermediate activations from memory. In order to get
a network of similar size, multiple such units are stacked to reach the same number of layers as
the original network. Our convolution-type network wins on all counts, both on performance and
efficiency. Indeed, the IoU is increased by 12.5% on ScanNet and 7.4% on PartNet compared
to PointNet++ baseline. Regarding its efficiency, the memory footprint is decreased by 67% on
average while decreasing both inference time (-41%) and the length of the backward pass (-68%).
These improvements in speed can be seen as the consequence of processing most computations on
flatten tensors and thus reducing drastically the complexity compared to PointNet++ baseline.

5 CONCLUSION

In this work we have introduced new generic building blocks for point processing networks, that
exhibit favorable memory, computation, and optimization properties when compared to the current
counterparts of state-of-the-art point processing networks. When based on PointNet++, our lean
architecture convPN wins on all counts, memory efficiency (-67% wrt. PointNet++) and speed (-
41% and -68% on inference time and length of backward pass). Its deep counterpart has a marginal
cost in terms of efficiency and achieves the best IoU on PartNet (+9.7% over PointNet++). Those
generic and modular blocks exhibit similar performance on all of the additional tested architectures
with a significant decrease in memory (up to -69%) and increase in IoU (up to +8.0%). From the
promising results on PartNet and the extremely low cost of depth in our architectures, we anticipate
that adding these components to the armament of the deep geometry processing community will
allow researchers to train the next generation of point processing networks by leveraging upon the
advent of larger shape datasets (Mo et al., 2018; Koch et al., 2018).

8

Under review as a conference paper at ICLR 2020

REFERENCES

Iro Armeni, Ozan Sener, Amir R. Zamir, Helen Jiang, Ioannis Brilakis, Martin Fischer, and Silvio
Savarese. 3d semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision and Pattern Recognition, 2016.

Angel Chang, Angela Dai, Thomas Funkhouser, Maciej Halber, Matthias Niener, Manolis Savva,
Shuran Song, Andy Zeng, and Yinda Zhang. Matterport3d: Learning from rgb-d data in indoor
environments. 09 2017.

Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang, Zimo Li,
Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, Jianxiong Xiao, Li Yi, and Fisher Yu.
ShapeNet: An Information-Rich 3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University — Toyota Technological Institute at
Chicago, 2015.

Tianqi Chen, Bing Xu, Chiyuan Zhang, and Carlos Guestrin. Training deep nets with sublinear mem-
ory cost. CoRR, abs/1604.06174, 2016. URL http://arxiv.org/abs/1604.06174.

Angela Dai, Angel X. Chang, Manolis Savva, Maciej Halber, Thomas Funkhouser, and Matthias
Nießner. Scannet: Richly-annotated 3d reconstructions of indoor scenes. In Proc. Computer
Vision and Pattern Recognition (CVPR), IEEE, 2017.

Matheus Gadelha, Rui Wang, and Subhransu Maji. Multiresolution tree networks for 3d point cloud
processing. In Proceedings of the European Conference on Computer Vision (ECCV), pp. 103–
118, 2018.

Aidan N. Gomez, Mengye Ren, Raquel Urtasun, and Roger B. Grosse. The reversible residual
network: Backpropagation without storing activations. CoRR, abs/1707.04585, 2017. URL
http://arxiv.org/abs/1707.04585.

Audrunas Gruslys, Remi Munos, Ivo Danihelka, Marc Lanctot, and Alex Graves. Memory-
efficient backpropagation through time. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett (eds.), Advances in Neural Information Processing Systems 29, pp.
4125–4133. Curran Associates, Inc., 2016. URL http://papers.nips.cc/paper/
6221-memory-efficient-backpropagation-through-time.pdf.

Paul Guerrero, Yanir Kleiman, Maks Ovsjanikov, and Niloy J. Mitra. PCPNet: Learning local shape
properties from raw point clouds. CGF, 37(2):75–85, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. 2016.

P. Hermosilla, T. Ritschel, P-P Vazquez, A. Vinacua, and T. Ropinski. Monte carlo convolution for
learning on non-uniformly sampled point clouds. ACM Transactions on Graphics (Proceedings
of SIGGRAPH Asia 2018), 37(6), 2018. doi: 10.1145/3272127.3275110.

Gao Huang, Zhuang Liu, and Kilian Q. Weinberger. Densely connected convolutional networks.
CoRR, abs/1608.06993, 2016. URL http://arxiv.org/abs/1608.06993.

Yangqing Jia. Learning Semantic Image Representations at a Large Scale. PhD thesis, University
of California, Berkeley, USA, 2014. URL http://www.escholarship.org/uc/item/
64c2v6sn.

Tsung-Wei Ke, Michael Maire, and Stella X. Yu. Neural multigrid. CoRR, abs/1611.07661, 2016.
URL http://arxiv.org/abs/1611.07661.

Sebastian Koch, Albert Matveev, Zhongshi Jiang, Francis Williams, Alexey Artemov, Evgeny Bur-
naev, Marc Alexa, Denis Zorin, and Daniele Panozzo. ABC: A big CAD model dataset for
geometric deep learning. CoRR, abs/1812.06216, 2018.

I. Kokkinos and A. Yuille. Scale invariance without scale selection. In 2008 IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1–8, 2008.

9

http://arxiv.org/abs/1604.06174
http://arxiv.org/abs/1707.04585
http://papers.nips.cc/paper/6221-memory-efficient-backpropagation-through-time.pdf
http://papers.nips.cc/paper/6221-memory-efficient-backpropagation-through-time.pdf
http://arxiv.org/abs/1608.06993
http://www.escholarship.org/uc/item/64c2v6sn
http://www.escholarship.org/uc/item/64c2v6sn
http://arxiv.org/abs/1611.07661

Under review as a conference paper at ICLR 2020

A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. In NIPS, 2013.

Guohao Li, Matthias Mller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as
cnns?, 2019.

Jiaxin Li, Ben M Chen, and Gim Hee Lee. So-net: Self-organizing network for point cloud analysis.
pp. 9397–9406, 2018a.

Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolu-
tion on x-transformed points. 2018b.

Kaichun Mo, Shilin Zhu, Angel X. Chang, Li Yi, Subarna Tripathi, Leonidas J. Guibas, and Hao
Su. Partnet: A large-scale benchmark for fine-grained and hierarchical part-level 3d object under-
standing. CoRR, abs/1812.02713, 2018. URL http://arxiv.org/abs/1812.02713.

Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets
for 3d classification and segmentation. CVPR, 1(2):4, 2017a.

Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical
feature learning on point sets in a metric space. In NIPS, pp. 5099–5108, 2017b.

E. L. Schwartz. Spatial mapping in the primate sensory projection: Analytic structure and relevance
to perception. Biological Cybernetics, 1977.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. 2015.

Hang Su, Subhransu Maji, Evangelos Kalogerakis, and Erik G. Learned-Miller. Multi-view convo-
lutional neural networks for 3d shape recognition. In Proc. ICCV, 2015.

Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji, Evangelos Kalogerakis, Ming-Hsuan Yang,
and Jan Kautz. Splatnet: Sparse lattice networks for point cloud processing. pp. 2530–2539,
2018.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott E. Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions.
CoRR, abs/1409.4842, 2014. URL http://arxiv.org/abs/1409.4842.

Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette,
and Leonidas J. Guibas. Kpconv: Flexible and deformable convolution for point clouds. arXiv
preprint arXiv:1904.08889, 2019.

E. Tola, V. Lepetit, and P. Fua. Daisy: An efficient dense descriptor applied to wide-baseline stereo.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(5):815–830, 2010.

Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun, and Xin Tong. O-CNN: Octree-based
Convolutional Neural Networks for 3D Shape Analysis. ACM Transactions on Graphics (SIG-
GRAPH), 36(4), 2017.

Peng-Shuai Wang, Chun-Yu Sun, Yang Liu, and Xin Tong. Adaptive O-CNN: A Patch-based Deep
Representation of 3D Shapes. ACM Transactions on Graphics (SIGGRAPH Asia), 37(6), 2018a.

Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon.
Dynamic graph cnn for learning on point clouds. arXiv preprint arXiv:1801.07829, 2018b.

Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual
transformations for deep neural networks. CoRR, abs/1611.05431, 2016.

Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao. Spidercnn: Deep learning on point
sets with parameterized convolutional filters. In Proceedings of the European Conference on
Computer Vision (ECCV), pp. 87–102, 2018.

Kangxue Yin, Hui Huang, Daniel Cohen-Or, and Hao Zhang. P2p-net: Bidirectional point displace-
ment net for shape transform. ACM TOG, 37(4):152:1–152:13, July 2018. ISSN 0730-0301.

10

http://arxiv.org/abs/1812.02713
http://arxiv.org/abs/1409.4842

Under review as a conference paper at ICLR 2020

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Ec-net: an edge-
aware point set consolidation network. pp. 386–402, 2018a.

Lequan Yu, Xianzhi Li, Chi-Wing Fu, Daniel Cohen-Or, and Pheng-Ann Heng. Pu-net: Point cloud
upsampling network. In CVPR, 2018b.

Sergey Zagoruyko and Nikos Komodakis. Wide residual networks. CoRR, abs/1605.07146, 2016.
URL http://arxiv.org/abs/1605.07146.

Manzil Zaheer, Satwik Kottur, Siamak Ravanbakhsh, Barnabas Poczos, Ruslan R Salakhutdinov,
and Alexander J Smola. Deep sets. 2017.

Matthew D. Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. 2014.

Zhiyuan Zhang, Binh-Son Hua, and Sai-Kit Yeung. Shellnet: Efficient point cloud convolutional
neural networks using concentric shells statistics. In International Conference on Computer Vi-
sion (ICCV), 2019.

11

http://arxiv.org/abs/1605.07146

Under review as a conference paper at ICLR 2020

A DESIGN OF OUR ARCHITECTURES

In this section, we provide more details about how we design our lean architectures to ensure re-
producible results for all tested architectures, (i) PointNet++(Qi et al., 2017b), (ii) Dynamic Graph
CNN (Wang et al., 2018b), (iii) SpiderCNN (Xu et al., 2018) and (iv) PointCNN (Li et al., 2018b).
We implement each networks in Pytorch following the original code in Tensorflow and implant our
blocks.

A.1 POINTNET++ BASED ARCHITECTURES

To keep things simple and concise in this section, we adopt the following notations:

• S(n): Sampling layer of n points;
• rNN(r): query-ball of radius r;
• MaxP: Max Pooling along the neighbourhood axis;
•
⊕

: Multi-resolution combination;
• Lin(s): Linear unit of s neurons;
• Drop(p): Dropout layer with a probability p to zero a neuron

Inside our architectures, every downsampling module is itself based on FPS to decrease the reso-
lution of the input point cloud. To get back to the original resolution, upsampling layers proceed
to linear interpolation in the spatial space using the Ku closest neighbours. To generate multiple
resolutions of the same input point cloud, a downsampling ratio of 2 is used for every additional
resolution (see Fig. 5).

A.1.1 POINTNET++

In all our experiments, we choose to report the performance of the multi-scale PointNet++ (MSG
PN++) as it is reported to beat its alternative versions in the original paper on all tasks. We implement
our own implementation of PointNet++ in Pytorch and choose the same parameters as in the original
code.

For segmentation task, the architecture is designed as follow:

Encoding1:

S(512)→

[rNN(.1)→ mLP([32, 32, 64])→ MaxP
rNN(.2)→ mLP([64, 64, 128])→ MaxP
rNN(.4)→ mLP([64, 96, 128])→ MaxP

]⊕
Encoding2:

S(128)→

[rNN(.2)→ mLP([64, 64, 128])→ MaxP
rNN(.4)→ mLP([128, 128, 256])→ MaxP
rNN(.8)→ mLP([128, 128, 256])→ MaxP

]⊕
Encoding3:
S(1)→ mLP([256, 512, 1024])→MaxP
Decoding1: Interp(3)→ mLP([256, 256])
Decoding2: Interp(3)→ mLP([256, 128])
Decoding3: Interp(3)→ mLP([128, 128])
Classification: Lin(512)→ Drop(.7)→ Lin(nbclasses)
We omit here skiplinks for sake of clarity: they connect encoding and decoding modules at the same
scale level.

A.1.2 MRES

The mRes architecture consists in changing the way the sampling is done in the network to get a
multiresolution approach (Fig. 4). We provide the details only for the encoding part of the network
as we keep the decoding part unchanged from PointNet++.
Encoding1:

12

Under review as a conference paper at ICLR 2020

Figure 4: Comparison of multiscale processing (top) with
multiresolution processing (down): multi-resolution process-
ing allows us to process larger-scale areas while not increas-
ing memory use, making it easier to elicit global context
information.

[
S(512)→ rNN(.1)→ mLP([32, 32, 64])→ MaxP
S(256)→ rNN(.2)→ mLP([64, 64, 128])→ MaxP
S(128)→ rNN(.4)→ mLP([64, 96, 128])→ MaxP

]⊕
Encoding2:[
S(128)→ rNN(.2)→ mLP([64, 64, 128])→ MaxP
S(96)→ rNN(.4)→ mLP([128, 128, 256])→ MaxP
S(64)→ rNN(.8)→ mLP([128, 128, 256]→ MaxP

]⊕
Encoding3:
S(1)→ mLP([256, 512, 1024])→MaxP

Starting from this architecture, we add Xlinks connection between each layer of mLPs to get our
mResX architecture. A Xlink connection connects two neighbouring resolutions to merge infor-
mation at different granularity. On each link, we use a sampling module (either downsampling or
upsampling) to match the input to the target resolution. We use two alternatives for feature combi-
nation: (a) concatenation, (b) summation. In the later case, we add an additional sLP on each Xlink
to map the input feature dimension to the target. To keep this process as lean as possible, we posi-
tion the SLP at the coarser resolution, i.e. before the upsampling module or after the downsampling
module.

A.1.3 CONVPN

To simplify the writing, we adopt the additional notations:

• Sampling block S([s1, s2, .., sn]T) where we make a sampling of si points on each reso-
lution i. When only one resolution is available as input, the block S([., s1, s2, ..., sn−1]T)
will sequentially downsample the input point cloud by s1, s2, .. points to create the desired
number of resolutions.

• Convolution block C([r1, r2, ..., rn]T) is composed itself of three operations for each reso-
lution i: neighborhood lookup to select the riNN for each points, an sLP layer of the same
size as its input and a max-pooling.

• Transition block T ([t1, t2, ..., tn]T) whose main role is to change the channel dimension of
the input to one of the convolution block. An sLP of ouput dimension ti will be apply to
the resolution i.

Residual connections are noted as *.
Encoding1:

S

[
.

512
256

]
→ T

[
32
64
64

]
→ C∗

[
.1
.2
.4

]
→ T

[
32
64
96

]
→ C∗

[
.1
.2
.4

]
→ T

[
64
128
128

]
→ C∗

[
.1
.2
.4

]
→ S

[
512
256
128

]
→⊕

Encoding2:

S

[
.

128
96

]
→ T

[
64
128
128

]
→ C∗

[
.2
.4
.8

]
→ C∗

[
.2
.4
.8

]
→ T

[
128
256
256

]
→ C∗

[
.2
.4
.8

]
→ S

[
128
96
64

]
→

⊕
Encoding3:
S(1)→ mLP([256, 512, 1024])→MaxP

Note here that there is no Transition block between the first two C blocks in the Encoding2 part.
This is because those two Convolution blocks work on the same feature dimension.

13

Under review as a conference paper at ICLR 2020

SLP

shared MLP

max
pool

+

+

+

XL
XL

XL
XL

pooling

k-neighbors

PN

pointNet

SLP

single layer
perceptron

kNN

neighborhood
lookup

pool

pooling

xLink

cross link

D

downsample

U

upsampleBuilding Blocks

Figure 5: Elementary building blocks for point processing and network layers obtained from their
composition. Apart from standard pooling and SLP layers, we introduce cross-link layers across
scales, and propose multi-resolution up/down sampling blocks for point processing.

We also add Xlinks inside each of the C blocks. In this architecture, the features are combined by
summation and the links follow the same design as for mResX.

A.1.4 DEEPCONVPN

Our deep architecture builds on convPN to design a deeper architecture. For our experiments, we
double the size of the encoding part by repeating each convolution block twice. For each encoding
segment, we position the sampling block after the third convolution block, so that the first half of
the convolution blocks are processing a higher resolution point cloud and the other half a coarsen
version.

A.2 DGCNN BASED ARCHITECTURE

Starting from the authors’ exact implementation, we swap each edge-conv layer, implemented as an
MLP, by a sequence of single resolution convPN blocks. The set of convPN blocks replicates the
succession of SLP used in the original implementation (to build their MLPs).

To allow the use of residual links, a transition block is placed before each edge-conv layer to match
the input dimension of our convPN blocks to their output dimension.

A.3 SPIDERCNN BASED ARCHITECTURE

A SpiderConv block can be seen as a bilinear operator on the input features and on a non-linear
transformation of the input points. This non-linear transformation consists of changing the space
where the points live.

In the original architecture, an SLP is first applied to the transformed points to compute the points’
Taylor expansion. Then, each output vector is multiplied by its corresponding feature. Finally a
convolution is applied on the product. Therefore, the neighbourhood features can be built on-the-fly
within the block and deleted once the outputs are obtained. We thus modify the backward pass to
reconstruct the needed tensors for gradient computation.

A.4 POINTCNN BASED ARCHITECTURE

For PointCNN, we modify the χ-conv operator to avoid having to store the neighbourhood features
for the backward pass. To do so, we make several approximations from the original architecture.

We replace the first MLP used to lift the points by a sequence of convPN blocks. Thus, instead of
learning a feature representation per neighbour, we retain only a global feature vector per represen-
tative point.

We change as well the first fully connected layer used to learn the χ-transformation matrix. This
new layer now reconstructs the neighbourhood features on-the-fly from its inputs and deletes it from

14

Under review as a conference paper at ICLR 2020

memory as soon as its output is computed. During the backward pass, the neighbourhood features
tensor is easily rebuilt to get the required gradients.

We implement the same trick for the convolution operator applied to the transformed features. We
further augment this layer with the task of applying the χ-transformation to the neighbourhood
features once grouped.

Finally, we place transition blocks between each χ-conv operation to enable residual links.

A.5 IMPLEMENTATION DETAILS

In all our experiments, we process the dataset to have the same number of pointsN for each sample.
To reach a given number of points, input pointclouds are downsampled using the furthest point
sampling (FPS) algorithm or randomly upsampled.

We keep the exact same parameters as the original networks regarding most of parameters.

To regularize the network, we interleave a dropout layer between the last fully connected layers and
parameterize it to zero 70% of the input neurons. Finally, we add a weight decay of 5e-4 to the loss
for all our experiments.

All networks are trained using the Adam optimizer to minimize the cross-entropy loss. The running
average coefficients for Adam are set to 0.9 and 0.999 for the gradient and its square, respectively.

B DETAILS ON OUR MEMORY-EFFICIENT BLOCK

The 2D counterpart of convolution operates in three steps: (i) neighbourhood exposure, (ii) matrix
multiplication and (iii) pooling through a sum operator. Our convPN block follows the same steps
but it can be seen as non-standard convolution as each weight matrix is constrained to be identical
for all neighbours.

To expose the neighbourhood, an intermediate tensor needs to be built to store neighborhood fea-
tures. This tensor can be then used to gather and refine local information for each patch. This
process has been used for image processing as the so-called im2col operation to rearrange discrete
image blocks in a two-dimensional tensor. Exposing the neighbourhood simplifies the convolution
to a simple matrix multiplication and thus fastens the convolution operation but does have a critical
memory footprint if not handled properly. Indeed, neighborhood features as any other activations
will be saved into memory to allow gradients to flow downward the graph. We design our memory
efficient block to build the neighborhood matrix on-the-fly (see Algorithm 1 and 2) without the need
to store neighborhood features.

Algorithm 1: Low-memory grouping - Forward pass
Data: Input features tensor Tf (N ×RD), input spatial tensor Ts (N ×R3) and indices of each point’s

neighborhood for lookup operation L (N ×K)

Result: Output feature tensor T o
f (N ×RD

′
)

1 begin
/* Lifting each point/feature to RD

′

*/
2 Tf ′ ←− SLPf (Tf)
3 Ts′ ←− SLPs(Ts)

/* Neighbourhood features (N ×RD
′
→ N ×RD

′
× (K + 1)) */

4 T K
f ′ ←− IndexLookup(Tf ′ , Ts′ ,L)

/* Neighbourhood pooling (N ×RD
′
× (K + 1)→ N ×RD

′
) */

5 T o
f
′ ←− MaxPooling(T K

f
′)

6 FreeMemory(Ts′ , Tf ′ , T K
f
′)

7 return T o
f
′

8 end

15

Under review as a conference paper at ICLR 2020

Algorithm 2: Low-memory grouping - Backward pass
Data: Input features tensor Tf (N ×RD), input spatial tensor Ts (N ×R3), gradient of the output Gout and

indices of each point’s neighborhood for lookup operation L (N ×K)
Result: Gradient of the input Gin and gradient of the weights Gw

1 begin
/* Gradient Max Pooling (N ×RD

′
→ N ×RD

′
× (K + 1)) */

2 Gmp
out ←− BackwardMaxPooling(Gout)

/* Flattening features (N ×RD
′
× (K + 1)→ N ×RD

′
) */

3 Gflout ←− InverseIndexLookup(Gmp
out,L)

/* Gradient wrt. input/weight */

4 Gw,Gin ←− BackwardSLP(Tf , Ts,Gflout)

5 FreeMemory(Tf , Ts,Gout,Gmp
out,G

fl
out)

6 return (Gin,Gw)
7 end

C DETAILS AND ADDITIONAL EVALUATION RESULTS

C.1 DATASETS

We evaluate our network on the point cloud segmentation task on three different datasets, ordered
by increasing complexity:

• ShapeNet-Part (Chang et al., 2015): CAD models of 16 different object categories com-
posed of 50 labeled parts. The dataset provides 13, 998 samples for training and 2, 874
samples for evaluation. Point segmentation performance is assessed using the mean point
Intersection over Union (mIoU).

• ScanNet (Dai et al., 2017): Scans of real 3D scenes (scanned and reconstructed indoor
scenes) composed of 21 semantic parts. The dataset provides 1, 201 samples for training
and 312 samples for evaluation. We follow the same protocol as in Qi et al. (2017a) and
report both the accuracy and the part Intersection over Union (pIoU).

• PartNet (Mo et al., 2018): Large collection of CAD models of 17 object categories com-
posed of 251 labeled parts. The dataset provides 17, 119 samples for training, 2, 492 for
validation and 4, 895 for evaluation. The dataset provides a benchmark for three differ-
ent tasks: fine-grained semantic segmentation, hierarchical semantic segmentation and
instance segmentation. We report on the first task to evaluate our networks on a more
challenging segmentation task using the same part Intersection over Union (pIoU) as in
ScanNet.

C.2 EVALUATION METRICS

To report our results, we use two versions of the Intersection over Union metric:

• mIoU: To get the per sample mean-IoU, the IoU is first computed for each part belonging
to the given object category, whether or not the part is in the sample. Then, those values
are averaged across the parts. If a part is neither predicted nor in the ground truth, the IoU
of the part is set to 1 to avoid this indefinite form. The mIoU obtained for each sample is
then averaged to get the final score as,

mIoU =
1

nsamples

∑
s∈samples

1

ncat(s)
parts

∑
pi∈Pcat(s)

IoUs(p
i)

with nsamples the number of samples in the dataset, cat(s), ncat(s)
parts and Pcat(s) the object cate-

gory where s belongs, the number of parts in this category and the sets of its parts respec-
tively. IoUs(p

i) is the IoU of part pi in sample s.

16

Under review as a conference paper at ICLR 2020

• pIoU: The part-IoU is computed differently. The IoU per part is first computed over the
whole dataset and then, the values obtained are averaged across the parts as,

pIoU =
1

nparts

∑
p∈parts

∑
s∈samples Is(pi)∑
s∈samples Us(pi)

with nparts the number of parts in the dataset, Is(pi) and Us(p
i) the intersection and union

for samples s on part pi respectively.

To take into account the randomness of point cloud sampling when performing coarsening, we use
the average of ‘N’ forward passes to decide on the final segmentation during evaluation.

C.3 DETAILED RESULTS

The following section provides more details on the evaluation experiments introduced in the paper.
We present the per-class IoU on both ShapeNet-Part (Table 5) and PartNet (Table 6) datasets for each
of the PointNet++ based architecture. Due to the high number of points per sample and the level
of details of the segmentation, PartNet can be seen as a much more complex than ShapeNet-Part.
As additional reference, we provide on Table 8 the performance of our lean blocks applied to three
architectures when training one network per-object category on PartNet (on Chairs and Tables that
represents 60% of the dataset).

On PartNet, the spread between an architecture with an improved information flow and a vanilla one
becomes significant. Our PointNet++ based networks perform consistently better than the original
architecture on each of the PartNet classes.

Increasing the depth of the network allows to achieve a higher accuracy on the most complex classes
such as Chairs or Lamps composed of 38 and 40 different part categories respectively. As shown
on Fig. 6, our deep architecture is able to better capture the boundaries between parts and thus to
predict the right labels very close from part edges. When a sample is itself composed of many parts,
having a deep architecture is a significant advantage.

For reference, we provide as well the absolute values for the efficiency of each of those networks
measured by three different metrics on Table 7: (i) memory footprint, (ii) inference time and (iii)
length of backward pass.

Table 5: Performance on ShapeNet-Part. The table reports the mIoU performance based on a train-
ing on the whole dataset all at once. Although the number of samples in the dataset is quite high,
learning the segmentation on Shapenet-Part does not necessarily need deep networks because of the
simplicity of the shapes and the low number of object part categories. All of our network archi-
tectures outperform PointNet++ baseline by at least +1.2%. Our deep architecture still improve the
performance of its shallower counterpart by a small margin of +0.2%.

Tot./Av. Aero Bag Cap Car Chair Ear Guitar Knife Lamp Laptop Motor Mug Pistol Rocket Skate Table
No. Samples 13998 2349 62 44 740 3053 55 628 312 1261 367 151 146 234 54 121 4421

PN++ 82.9 80.8 76.8 84.4 77.7 88.9 70.1 90.5 86.3 76.2 96.0 70.9 94.3 80.5 62.8 76.3 80.2
mRes 83.9 81.9 77.5 85.7 78.8 89.5 73.4 91.6 88.2 78.4 95.6 73.9 95.2 81.4 59.7 76.3 81.1

mResX 83.8 81.5 76.7 85.2 78.5 89.4 67.0 91.5 87.9 78.1 95.8 73.3 95.4 82.4 57.1 77.1 81.3
convPN 83.9 81.6 76.6 87.2 79.2 89.7 71.9 90.6 88.2 78.1 95.7 73.8 95.4 83.2 60.9 76.4 80.9

deepConvPN 84.1 81.1 79.8 81.6 79.8 89.5 75.1 91.6 88.1 79.0 95.4 71.9 95.3 83.2 61.9 77.2 81.5

C.4 ADDITIONAL RESULTS WITH KPCONV

We provide on Table 9 some additional experiments with KPConv network (Thomas et al., 2019), a
kernel point convolution approach. We report the efficiency with and without our modules, evaluated
both in terms of memory consumption and forward/backward speed. Our modules successfully
help to reduce the memory by up to 52.5% while having no impact on the speed of the forward or
backward pass.

17

Under review as a conference paper at ICLR 2020

Table 6: Performance on PartNet. The table reports the Part IoU performance based on a training
on the whole dataset all at once in contrast with Mo et al. (2018). The fine details of the segmen-
tation and the high number of points to process make the training much more complex than any
former datasets. PointNet++, here, fails to capture enough features to segment the objects properly.
Our different architectures outperform PointNet++ with a spread of at least 2.0% (+5.7% increase).
With this more complex dataset, deeper networks become significantly better: our deepConvPN
network achieves to increase pIoU by +9.7% over PointNet++ baseline, outperforming its shallow
counterpart by +2.1%.

Tot./Av. Bed Bott Chair Clock Dish Disp Door Ear Fauc Knife Lamp Micro Frid Storage Table Trash Vase
No. samples 17119 133 315 4489 406 111 633 149 147 435 221 1554 133 136 1588 5707 221 741

PN++ 35.2 30.1 32.0 39.5 30.3 29.1 81.4 31.4 35.4 46.6 37.1 25.1 31.5 32.6 40.5 34.9 33.0 56.3
mRes 37.2 29.6 32.7 40.0 34.3 29.9 80.2 35.0 50.0 56.5 41.0 26.5 33.9 35.1 41.0 35.4 35.3 57.7

mResX 37.5 32.0 37.9 40.4 30.2 31.8 80.9 34.0 43.0 54.3 42.6 26.8 33.1 31.8 41.2 36.5 40.8 57.2
convPN 37.8 33.2 40.7 40.8 35.8 31.9 81.2 33.6 48.4 54.3 41.8 26.8 31.0 32.2 40.6 35.4 41.1 57.2

deepConvPN 38.6 29.5 42.1 41.8 34.7 33.2 81.6 34.8 49.6 53.0 44.8 28.4 33.5 32.3 41.1 36.3 43.1 57.8

Table 7: Efficiency of our network architectures measured with a batch size of 8 samples on a Nvidia
GTX 2080Ti GPU. All of our lean architectures allow to save a substantial amount of memory on
GPU wrt. the PointNet++ baseline from 58% with mRes to a 67% decrease with convPN. This latter
convolution-type architecture wins on all counts, decreasing both inference time (-41%) and the
length of backward pass (-68%) by a large spread. Starting form this architecture, the marginal cost
of going deep is extremely low: doubling the number of layers in the encoding part of the network
increases inference time by 6.3% on average and the memory consumption by only 3.6% at most
compared to convPN)

Parameters (M) Memory Footprint (Gb) Inference Time (ms) Length Backward pass (ms)
ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet ShapeNet-Part ScanNet PartNet

PointNet++ 1.88 1.87 1.99 6.80 6.73 7.69 344 238 666 173 26 185
mRes 1.56 1.54 1.66 2.09 2.93 4.03 395 379 537 54 12 68

mResX 1.68 1.67 1.79 2.38 3.15 4.13 441 383 583 122 26 138
convPN 2.14 2.12 2.24 1.65 2.25 3.24 187 166 347 30 15 39

deepConvPN 2.90 2.88 3.00 1.42 2.33 3.31 205 177 356 37 23 51

������������ ���������� ���������� ������������ ���������� ����������

�����

��

�
�	��

����

Figure 6: Segmentation prediction on the test set for both PointNet++ and our deepConvPN net-
work compared to the ground truth. While PointNet++ struggles to detect accurately the boundaries
between different parts, our deep architecture performs a much finer segmentation in those frontier
areas.

Table 8: Per-class IoU on PartNet when training a separate network for each category, evaluated
for three different architectures for Chairs and Tables (60% of the whole dataset). Our efficient
networks achieve here similar performance as their vanilla counterpart while delivering significant
savings in memory.

DGCNN PointCNN SpiderCNN
Vanilla Efficient Vanilla Effiicent Vanilla Efficient

Chair 29.2 (+0.0%) 24.2 (-17.1%) 40.4 (+0.0%) 41.4 (+2.5%) 30.8 (+0.0%) 31.1 (+1.0%)
Table 22.5 (+0.0%) 28.9 (+28.4%) 32.1 (+0.0%) 33.1 (+3.1%) 21.3 (+0.0%) 21.2 (-0.5%)

Table 9: Efficiency of our memory efficient blocks applied to a KPConv backbone. Our blocks allow
to decrease significantly the memory footprint by up to 52.5% with no impact both on inference and
backward speed.

Network Dataset Version Memory (Gb) Forward pass Time (ms) Backward pass Time (ms)

KPConv
ShapeNet-Part

Vanilla 7.38 (0%) 51 (+0%) 171 (+0%)
Efficient 3.89 (-47%) 51 (+0%) 166 (-3%)

PartNet
Vanilla 4.48 (+0.0%) 42 (+0.0%) 240 (+0.0%)

Efficient 2.13 (-52.5%) 43 (+2.4%) 236 (-1.7%)

18

	Introduction
	Related Work
	Method
	PointNet and PointNet++ Architectures
	Memory efficient Neighborhood Convolution
	Improving Information Flow

	Evaluation
	Effect of improved information flow
	Improvement of accuracy by going deeper
	Evaluation on more architectures
	Ablation study

	Conclusion
	Design of our architectures
	PointNet++ based architectures
	PointNet++
	mRes
	convPN
	deepConvPN

	DGCNN based architecture
	SpiderCNN based architecture
	PointCNN based architecture
	Implementation details

	Details on our memory-efficient block
	Details and additional evaluation results
	Datasets
	Evaluation metrics
	Detailed results
	Additional results with KPConv

