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Abstract

Data exhibited with multiple modalities are ubiquitous in real-world clustering
tasks. Most existing methods, however, pose a strong assumption that the pairing
information for modalities is available for all instances. In this paper, we consider
a more challenging task where each instance is represented in only one modality,
which we call mixed-modal data. Without any extra pairing supervision across
modalities, it is difficult to find a universal semantic space for all of them. To tackle
this problem, we present an adversarial learning framework for clustering with
mixed-modal data. Instead of transforming all the samples into a joint modality-
independent space, our framework learns the mappings across individual modality
spaces by virtue of cycle-consistency. Through these mappings, we could easily
unify all the samples into a single modality space and perform the clustering.
Evaluations on several real-world mixed-modal datasets could demonstrate the
superiority of our proposed framework.

1 Introduction

Recently supervised classification tasks have achieved impressive performance with the development
of deep learning. However, such improvement often relies on a large number of manual annotations
which are very expensive and laborious. On the contrary, unsupervised clustering remains an
appealing direction for deep learning since it works in the absence of data labels.

Various efforts have been devoted to addressing the problem of partitioning data in a single modal
form [32, 14, 17, 18]. Yet real-world data are often characterized by multiple modalities. For example,
a data object (say a web page or a node in the social network) can be exhibited by both visual images
and text tags/captions. Learning with multiple modalities offers us a chance to reach a thorough
comprehension on the data by means of integrating modality-specific information coming from
each modality. Therefore, clustering multi-modal data has become an active research area in recent
years [5, 12, 7]. The key problem of this task is how to learn a joint representation for each sample
against the semantic gap across modalities. Most existing work tries to find a solution under an ideal
assumption that each modality is available for all the samples. This, however, requires gross human
efforts on data collection since real-world data often suffer from some missing information for each
modality. In the worst case, when the semantic connection across modalities is completely missing,
we come to find our samples represented in one modality, e.g., a twitter post may only include either
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an image or a text. How to deploy clustering in this case is still a puzzle to our community. In this
paper, we focus on the clustering problem with such worse case where each sample only consists
of one of several modalities, i.e., mixed-modal data. We assume that there exists an underlying
relationship among the modalities and then seek an algorithm by exploiting such a relationship. At
first glance, one might resort to learning a joint space for the features extracted for each modality.
Actually, this is the solution widely adopted in traditional multi-modal clustering methods, when
the pairing information across modalities for each sample is available. However, this is no longer
suitable for the mixed-modal setting. Without any form of supervision including pairing information,
it is hard to find the correlation across different modalities, let alone the alignment. In such a case,
transforming all the samples into a joint semantic space is almost impossible.

Meanwhile, Generative Adversarial Network (GAN), especially CycleGAN [39], has become an
effective means of dealing with unsupervised learning for data across multiple modalities or domains.
In CycleGAN, a cycle-consistency constraint is proposed to enforce the connection across domains,
where translating a sample from domain A to B and then reconstructing it back to A should result in
the original sample representation. This framework has shown a great power to build the mappings
for unpaired data [16, 23, 33]. Inspired by this, we turn to learn the translation across different
modalities, by which we can unify the representations into one modality and perform the clustering.

Specifically, we propose an adversarial learning framework to tackle the unified representation
learning for mixed-modal clustering task. The key idea of our framework lies in that cross-modal
generators are implemented to learn the bidirectional mappings between modalities via the cycle
consistency constraint, while modality-specific discriminators try to distinguish between data in
a specific modality and transformed from other modalities. To do this, we first reconstruct data
using the corresponding modality-specific auto-encoders to obtain the latent representations. Then
a cycle-consistent mini-max game is performed on the discriminators and the mappings between
modalities. Equipped with the unified representations, a common clustering algorithm is performed to
get the final results. Experimental results on real-world mixed-modal datasets show that the proposed
cycle-consistent framework obtains better performance than the competitors.

This paper is organized as follows. First, we briefly review the recent development for the related
areas in Section 2. Next, we detail the formulation for the mixed-modal setting and our proposed
method in Section 3. Then we evaluate our performance on several real-world mixed-modal datasets
in Section 4. Finally, in Section 5, we give the concluding remarks regarding the mixed-modal
clustering problem.

2 Related work

Multi-modal/view clustering. Traditional multi-modal/view clustering aims at grouping objects
which have different representations in different modalities/views. A typical strategy to bridge the
disjoint feature spaces is to co-regularize the representations/structures for all the modalities/views.
For example, Canonical Correlation Analysis projects all the samples onto a latent shared subspace
by maximizing the correlations among instances in different feature spaces [7, 6]; multi-view spectral
clustering constructs a common transition probability matrix [38, 5, 40]; multi-view subspace
clustering aggregates the subspace structure [12, 21, 35, 34]; multi-view Non-negative Matrix
Factorization calculates a consensus coefficient matrix [13, 41]. Although these approaches achieve
very promising performance, they require that all the samples are exhibited in all the modalities/views.
Considering the lack of pairing information, partial multi-view clustering is proposed for the condition
where some views are missing for a part of instances [20]. However, such methods still rely on
samples with complete view information to perform the feature alignment. For unpaired multi-view
data, constrained multi-view clustering is presented as a solution with ‘must link’ or ‘cannot link’
constraints on instance pairs [36]. Yet the constraint itself is a kind of extra pairing information.
Meanwhile, other pairwise constraints such as co-occurrence frequency are also adopted to guide the
clustering [11, 22]. Different from these studies, we seek a clustering algorithm for those unpaired
multi-modal data in this paper without any extra prior knowledge.

Adversarial learning for unpaired data. To overcome the situation that paired data are often
difficult to collect, some task-specific adversarial networks are developed to learn common repre-
sentations across different domains [28, 27]. Meanwhile, a general solution, cycle consistency, is
adopted in CycleGAN [39] to regularize the structured data. The key idea lies in that the instinct
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Figure 1: Overview of the proposed method. (a) Our adversarial network architecture for the unified
representation learning. (b) Cycle consistency across modality-specific latent spaces illustrated on
some samples. The cross-modal mappings help unify all the samples into a space.

transitivity that mapping the data from one domain to another and then back to the original domain
facilitates the reconstruction of the original data. As an extension, Augmented CycleGAN [1] learns
the many-to-many cross-modal mappings based on this property. The cycle consistency constraint is
widely used in cross-domain tasks like domain adaptation [16], hand tracking [23], image dehazing
[33], together with cross-modal tasks such as hashing [31], visual-audio mutual generation [15]
and cross-modal image synthesis [37]. In these applications, there often exists other supervising
information like identities or positions to help align the domains or modalities in the adversarial
learning. Therefore, none of these approaches are directly available for the mixed-modal clustering
task. Since we do not rely on information of this kind on our task, we merely adopt the cycle
consistency as the regularizer for constructing the cross-modal translations in our framework.

3 Methodology

In this section, we first introduce the setting of mixed-modal clustering. After clarifying the difficulty,
we present how to tackle this problem with the detailed description of our proposed framework. For
convenience, we discuss the problem of clustering for data in two mixed modalities. In fact, it is easy
to extend the proposed method to deal with data in several mixed modalities.

3.1 Problem setting

Figure 2: Comparison between multi-modal
and mixed-modal data with two modalities.

Given a set of n mixed-modal samples D = {xi}ni=1,
where each sample is from either modality A or B,
our objective is to learn unified representations for the
two modalities and then group the samples into k cat-
egories. Obviously D can be divided into two single-
modal sets DA = {x(a)

i }
na
i=1 and DB = {x(b)

i }
nb
i=1,

where n = na + nb. As depicted in Figure 2, in
traditional multi-modal/view clustering tasks, x(a)

i

and x(b)
i both characterize the same instance. In con-

trast, x(a)
i and x(b)

i represent different instances in the
mixed-modal setting. Namely, we do not have paired
samples from both modalities to uncover the correla-
tion across modalities. Such a setting may occur in the
case that, we want to find how many groups of topics
the images and texts extracted from correlated web
pages, which naturally form a mixed-modal dataset,
could fall into.

3.2 Deep Mixed-Modal Clustering

The key problem of mixed-modal clustering is to unify the representations for mixed-modal data
in the absence of pairing information. Motivated by the way that CycleGAN deals with unpaired
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data, we implement an adversarial network to learn the unified representations for mixed-modal
clustering. The network architecture is illustrated in Figure 1(a). First, the divided single-modal
data are transformed onto latent spaces and then recovered to the original spaces by corresponding
auto-encoders. In the latent spaces, data are then mapped between the modality spaces via two
cross-modal mappings. Meanwhile, two classifiers are adopted to identify whether a representation is
mapped to or originally lies in the specific modality space. In the following, we describe the roles for
these modules in our method.

Latent representations. Before modeling the correlation across modalities, we first learn latent
representations for each modality individually. In an unsupervised manner, it is easy to obtain the
latent embeddings via two modality-specific auto-encoders:

LA
rec(ΘAEA

) = ‖x(a)
i −DecA(EncA(x

(a)
i ))‖22,

LB
rec(ΘAEB

) = ‖x(b)
i −DecB(EncB(x

(b)
i ))‖22,

(1)

where Enc∗ and Dec∗ denote the encoder and decoder for one modality respectively, and ΘAEA

and ΘAEB
are the parameter sets for each auto-encoder.

Unpaired cross-modal mappings. Since no pairing information could be used to align the repre-
sentations in both modalities, we then turn to build the bidirectional mappings across A and B, i.e.,
GAB : XA 7→ XB and GBA : XB 7→ XA. Though it is hard to directly constrain the individual
modality mappings, we notice that the learned mapping functions should obey a cycle-consistent
rule that, mapping samples lying in one modality space to another and then back to the original
space should produce the original samples. This property intuitively provides us with a means of
jointly constraining these cross-modal mappings to preserve correct modal information for samples
via closed-loop reconstructions. In other words, with the learned latent codes za = EncA(x

(a))
and zb = EncB(x

(b)), we build the mapping functions by pursuing GBA(GAB(za)) ≈ za and
GAB(GBA(zb)) ≈ zb, as shown in Figure 1(b). Let ΘGAB

and ΘGBA
be the parameters of GAB

and GBA, respectively. Using the `1 norm as the penalty, the cycle-consistency can be expressed as
follows:

LA
cyc(ΘGAB

,ΘGBA
) = Eza∼XA

[‖za −GBA(GAB(za))‖1] ,
LB

cyc(ΘGAB
,ΘGBA

) = Ezb∼XB
[‖zb −GAB(GBA(zb))‖1] .

(2)

In another respect, the mapping functions could be interpreted as a special inter-modal auto-encoder.
For modality A, this auto-encoder transforms the data points into another modality space B via the
encoder GAB and reconstructs the data in A via the decoder GBA. Meanwhile, the roles of encoder
and decoder exchange in terms of modality B. Unlike traditional auto-encoders, this network utilizes
the `1 norm to pursue a sparse reconstruction error. The cycle consistency property requires this
inter-modal auto-encoder to build reasonable translations across the two modality spaces. When
LA

cyc → 0, LB
cyc → 0, we could recover the condition that GAB ◦GBA(·) = GBA ◦GAB(·) = I(·).

Adversarial learning. To further improve the quality of mapping functions, we introduce the
adversarial learning scheme into our framework. In this scheme, the mapping functions GBA and
GAB are naturally viewed as generators producing fake samples that are transformed from other
modalities rather than originally lying in a specific modality space. Meanwhile, we implement
two discriminators DA and DB as their adversaries respectively to distinguish whether a sample
is mapped from other modality spaces. Specifically, for modality A, the generator GBA and the
discriminator DA play a mini-max game that, DA attempts to discriminate the real samples za from
fake samples GBA(zb), while GBA aims at fooling DA by minimizing the difference between real
and fake samples. Analogously, there is a similar gaming process between DB and GAB . When
the games reach the equilibrium, it is expected that both mappings could fit the distribution of real
samples so that discriminators are confused. The resulted transformations, uncovering the correlation
across two modalities, enable us to build unified representations for samples. Here we adopt the
popular Wasserstein adversarial loss [3] as the objective function:

LA
adv(ΘGBA

,ΘDA
) = Eza∼XA

[DA(za)]− Ezb∼XB
[DA(GBA(zb))],

LB
adv(ΘGAB

,ΘDB
) = Ezb∼XB

[DB(zb)]− Eza∼XA
[DB(GAB(za))].

(3)

As a requirement in this loss, DA and DB should be 1-Lipschitz continuous. Therefore an 1-
Lipschitz constraint is also enforced on them following ‖DA(x1)−DA(x2)‖2 ≤ ‖x1 − x2‖2 and
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Algorithm 1 Deep mixed-modal clustering algorithm
Input: Mixed-modal dataset D = {xi}ni=1, learning rate α, weight range c, hyper-parameter λ1, λ2
Output: Parameter set Θ, clustering labels y = [y1, · · · , yn]

1: Pre-train auto-encoders ΘAEA
and ΘAEB

with corresponding single-modal data
2: while ΘGAB

and ΘGBA
not converged do

3: Sample a batch of data from DA and a batch of data from DB

4: Update auto-encoders ΘAEA
and ΘAEB

with Eq. (2) . Auto-encoders
5: for t← 1 to n_critics do
6: Sample a batch of data from XA and a batch of data from XB

7: ΘDA
← RMSprop(ΘDA

,−∇ΘDA
LA

adv, α) . Discriminators
8: ΘDB

← RMSprop(ΘDB
,−∇ΘDB

LB
adv, α)

9: ΘDA
← clip(ΘDA

,−c, c)
10: ΘDB

← clip(ΘDB
,−c, c)

11: end for
12: Sample a batch of data from XA and a batch of data from XB

13: ΘGAB
← RMSprop(ΘGAB

,∇ΘGAB
(LA

adv + λ1LA
cyc + λ1LB

cyc), α) . Generators
14: ΘGBA

← RMSprop(ΘGBA
,∇ΘGBA

(LB
adv + λ1LA

cyc + λ1LB
cyc), α)

15: end while
16: Transform all the data into a modality space as embedding Z
17: y ← Clustering(Z)

‖DB(x1)−DB(x2)‖2 ≤ ‖x1 − x2‖2. Following the strategy in [3], we adopt weight clipping for
the discriminators to enforce this property.

Overall objective. With all these modules defined, we denote the whole parameter set as Θ =
{ΘGAB

,ΘGBA
,ΘDA

,ΘDB
,ΘAEA

,ΘAEB
}. Putting all these together, our final objective function

can be formulated as:

L(Θ) = LA
adv + LB

adv + λ1(LA
cyc + LB

cyc) + λ2(LA
rec + LB

rec) (4)

where λ1 and λ2 are the trade-off hyperparameters for cycle consistency and data reconstruction,
respectively.

This corresponds to the following optimization problem:

min
ΘGAB

,ΘGBA
ΘAEA

,ΘAEB

max
ΘDA

,ΘDB

L(Θ) (5)

The learning procedure for our proposed framework is presented in Algorithm 1. First, we pretrain
the auto-encoders individually to transform single-modal data onto the modality-specific latent spaces
(line 1). Then in the loop, we alternatingly update the auto-encoders (line 4), the discriminators
(line 7–10) and generators (line 13–14) using RMSprop [29] to play the mini-max game. After
the adversarial learning, we transform all the data points onto a modality space via the learned
cross-modal mappings (line 16), e.g., mapping the data in modality B onto A. See Figure 1(b). Then
the unified latent representations are fed into a common clustering algorithm like k-means [4], by
which we could obtain the final clustering results (line 17).

Connection to optimal transport. The Wasserstein loss is derived from the dual form of
Wasserstein-1 distance through the Kantorovich-Rubinstein duality [26]. The Wasserstein-1 distance
for two distributions Pr and Pg is defined as:

W1(Pr,Pg) = inf
γ∈

∏
(Pr,Pg)

E(x,y)∼γ [‖x− y‖2] (6)

where
∏
(Pr,Pg) is the set of all joint distributions with marginals Pr and Pg . In fact, this is a special

case of the minimal cost of an optimal transport problem [26], which aims at finding a plan γ(x,y)
to transport the mass from Pr to Pg at minimal cost. Here the cost moving one unit of mass from
location x to location y is measured by the `2 distance between the two points. And the transport plan
γ(x,y) could be intuitively interpreted as the mass that must be transported from location x to y in
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Table 1: Dataset statistics.

Dataset Modality1 Modality2 Training samples Test samples Categories

Wikipedia image text (article) 1910 256 10
NUS-WIDE-10K image text (tag) 7500 2500 10

order to transform the distribution from Pr to Pg . In our method, the mini-max game for LA
adv could

be viewed as solving the optimal transport problem between the distribution XA and the distribution
of GBA(zb) with zb a random variable with density XB . That is, the target of this game is to find
an optimal transport map from XB to XA, which is precisely the generator GBA : XB 7→ XA in
this problem. Likewise, the mini-max game for LB

adv could learn the optimal transportation plan
GAB : XA 7→ XB .

4 Experiments

In this section, we provide the empirical evaluation on two real-world mixed-modal dataset, Wikipedia
and NUS-WIDE-10K.

Competitors. We compare our framework with the following clustering methods including a
classical model and several recent deep methods:

(1) k-means [4]: As a classical clustering algorithm, k-means proceeds by alternating between the
cluster assignment and the centroid update steps.

(2) DCN [32]: The network integrates k-means module into an auto-encoder, thus could jointly
learning clustering and representations.

(3) DKM [9]: Unlike DCN which alternatively updates network and clustering parameters, DKM
reformulates the problem so that the whole framework could be jointly optimized by gradient-
based solvers.

(4) IDEC [14]: IDEC also incorporates an auto-encoder with a clustering loss in the latent space,
which guides the learning of centroids via measuring the difference between teacher and target
distributions.

(5) IMSAT [17]: This method learns discrete data representations and performs clustering in an end-
to-end fashion through combining self-augmented training and information-theoretic dependency
maximizing between learned codes and original data.

Evaluation metrics. In the experiment, we measure the performance using five classic clustering
metrics [2]: Clustering Accuracy, Adjusted Rand Index (ARI), Normalized Mutual Information
(NMI), F-score, and Purity. They measure the quality of clustering from different perspective. For the
predicted and ground-truth labels, ARI measures their similarity through pairwise comparisons; NMI
measures their agreement by considering the disorder of clusters; Purity calculates how they matched
based on the predicted label frequency. F-score is the harmonic mean of clustering precision and
recall. Note that all these metrics ignore the permutations of cluster labels except for accuracy, thus a
best mapping using Hungarian algorithm [19] should be computed between cluster and ground-truth
labels before calculating the accuracy. For all the metrics, the value 1 means a perfect clustering.

Settings. All the experiments are performed on Ubuntu 16.04 with a NVIDIA GTX 1080 Ti GPU.
Our proposed method is implemented using PyTorch 1.0 [24]. For the competitors, we feed the
methods with extracted features, on which we perform PCA for all the modalities to reduce them into
the same dimension so that the mixed-modal data could be learned in one model. For the clustering
process of the proposed method, we choose the modality whose data are more informative as the final
modality to be transformed into. Unfortunately, on both datasets used in our paper, deep features are
available for image modality (A), while the text modality (B) only contains binary features. In this
way, the latent representations learned for B obviously have less representability than those for A. As
a result, we transform all the data points into modality A in our experiments.
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Figure 3: Mixed-modal examples on Wikipedia dataset. In each row, the text and images belong to
the same semantic category. From top to bottom, the three categories are warfare, sport and biology,
respectively.

4.1 Wikipedia dataset

Dataset description. The Wikipedia dataset2 [25] contains 2,866 image-text pairs selected from
the Wikipedia’s “featured articles” collection. The text in each pair is a paragraph describing the
content of the corresponding image. According to the collection, these pairs are divided into 10
semantic categories. For each pair, we select the image or the text as the sample uniformly at random
and discard the other modality, leading to a dataset with mixed modalities. Then we choose 30% of
the samples as test set. Consequently, there are 1910/956 samples in train/test set. The statistics of
this dataset are shown in Table 1. Meanwhile, we present some examples on the resulted dataset in
Figure 3. In the real-world scenario, we will frequently face such data, in which data with multiple
modalities are mixed up during the collection process.

Implementation details. Instead of implementing neural networks to learn latent representations
for the raw data, we simply reconstruct extracted features to better focus on the unsupervised learning
for the cross-modal mappings. Therefore, we use the 4096d vector extracted by the second last layer
of VGG-Net as the initial image representation and 5000d bag-of-words vector as the initial text
representation, which are both provided in [30]. Then we adopt two deep auto-encoders with the
following fully-connected structure: 1024→ 256→ 128→ 256→ 1024. The generators are built
with 128→ 256→ 128 and the discriminators are 32→ 1. For the auto-encoders and generators,
each fully-connected layer is followed with a batch normalization layer and a LeakyReLU layer
with the negative slope 0.2. According to the architecture, we empirically set the learning rates for
the auto-encoders, generators and discriminators to 1e-3, 1e-4, 5e-5, respectively. Meanwhile, the
trade-off coefficient λ1 is set to 1 and λ2 is set to 2 for the objective function. For the weight clipping,
the clipping range is fixed at 0.05.

Table 2: Performance comparisons on Wikipedia dataset. The larger the better.

Algorithm Accuracy ARI NMI F-score Purity

k-means 0.2291 0.0166 0.1003 0.1857 0.2301
DKM 0.2173 0.0108 0.1170 0.1729 0.2429
DCN 0.2215 0.0137 0.1172 0.1688 0.2465
IDEC 0.2153 0.0375 0.0849 0.1654 0.2606
IMSAT 0.2521 0.0573 0.1093 0.1738 0.2720
Ours 0.2720 0.0558 0.1543 0.1878 0.3075

2http://www.svcl.ucsd.edu/projects/crossmodal/
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Results. The experimental results for all the involved models are depicted in Table 2. It is shown
that our method outperforms the competitors over Accuracy, NMI, F-score and Purity, and achieves
the second highest performance in terms of ARI and Precision at a slight disadvantage. Specifically,
our model outperforms the second best method by 0.0199, 0.0371, 0.0355 over Accuracy, NMI,
and Purity. These results show the effectiveness of our proposed method in tackling mixed-modal
clustering problem. Besides, we could make comprehensive observations as follows. (1) We see
that k-means and the derived deep clustering methods DKM, DCN obtain similar clustering results,
and k-means even achieves higher values on most metrics. This indicates that in the mixed-modal
setting, introducing of non-linearity via deep neural networks into clustering models could not simply
improve the performance. It is the most important to learn a unified representation for samples as we
do in our proposed method. (2) Moreover, k-means, DKM and DCN all get much lower ARI values
than others. These methods may perform like random label assignment in this setting. (3) Though
IMSAT benefits from the information-theoretical regularization and thus obtains a good performance
compared with other competitors, the proposed method still outperforms it over 5 metrics. This again
justifies our method and the importance of unifying the modality-specific representations.

4.2 NUS-WIDE-10K

Dataset description. The NUS-WIDE-10K dataset3 [10] consists of 10,000 image-text pairs evenly
selected from the 10 largest semantic categories of NUS-WIDE dataset [8]. Namely, there are 1,000
pairs for each class. In this dataset, tags serve as the text modality. Likewise, we randomly select
either the image or the text as our sample for each pair, then split the whole dataset into training set
with 7500 samples and test set with 2500 samples. The statistics are displayed in Table 1.

Implementation details. Similar to Wikipedia dataset, we build auto-encoders for the 4096d
image features extracted by VGG-Net and the 1000d bag-of-words text features provided in [30],
respectively. The structure of the auto-encoders is: 512 → 256 → 128 → 256 → 512. The
generators are build with 128→ 128 and the discriminators are 32→ 1. The learning rates for the
auto-encoders, generators and discriminators are empirically set to 5e-4, 5e-5, 5e-5, respectively. λ1
and λ2 are both set to 1 to balance the loss. Moreover, the weight clipping range is fixed at 0.05
which is the same as in Wikipedia.

Results. All the quantitative results are summarized in Table 3. On this dataset, our method
achieves better performance against the baselines on most. It is worth mentioning that the results
of the proposed method are higher than the second best’s with 0.0220, 0.0566, 0.0439, 0.0196
with regard to Accuracy, ARI, NMI, and Purity. Different from the results on Wikipedia, all the
competitors achieve quite low ARI or NMI values, and even some of them are very close to 0. Such
performance degradation may come from two aspects. One is that PCA performed on the image
features may result in some loss of information. The other is that features extracted from tags are
much simple, and the semantic gap between image and text modality space is much larger than on
Wikipedia. However, our method still obtains a relatively much higher ARI and NMI values than
these models. This again demonstrates the effectiveness of our unified representation learning via
cycle-consistent mappings.

Table 3: Performance comparisons on NUS-WIDE-10K dataset. The larger the better.

Algorithm Accuracy ARI NMI F-score Purity

k-means 0.2744 0.0044 0.0469 0.3008 0.5208
DKM 0.2932 0.0130 0.0116 0.2901 0.5036
DCN 0.3036 0.0144 0.0512 0.2959 0.5296
IDEC 0.3045 0.0006 0.0082 0.3048 0.5036
IMSAT 0.3080 0.0038 0.0064 0.3422 0.5036

Ours 0.3300 0.0710 0.0951 0.3043 0.5492

3https://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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4.3 Ablation Study

To see how much the adversarial training and modality unification contribute to our model, we further
conduct the ablation experiments on both datasets. As the ablated variants, latent modality-specific
representations obtained before/after the adversarial training are fed into k-means for evaluation. The
results are recorded in Table 4. We can observe that the performance of our model is largely improved
by the final cross-modal transformations. Without utilizing the transformations, our model could
only obtain a similar performance as k-means. This indicates that the unification of modality-specific
representations could reduce the semantic gap between the modalities.

Table 4: Ablation study on Wikipedia and NUS-WIDE-10K. adv. denotes the adversarial learning,
and uni. means the final modality unification using the learned cross-modal translation.

Dataset adv. uni. Accuracy ARI NMI F-score Purity

Wikipedia
0.2301 0.0340 0.1069 0.1730 0.2563

X 0.2395 0.0290 0.1311 0.1696 0.2699
X X 0.2720 0.0558 0.1543 0.1878 0.3075

NUS-WIDE-10K
0.2696 0.0321 0.0719 0.2323 0.5332

X 0.2884 0.0359 0.0672 0.2542 0.5336
X X 0.3300 0.0710 0.0951 0.3043 0.5492

5 Conclusion

In this paper, we make an early attempt to tackle the clustering task for mixed-modal data, where
each sample is only characterized by one of several modalities. Inspired by CycleGAN, our proposed
method unifies the modality-specific representations through learning the cycle-consistent mappings
across modalities in an adversarial manner. Subsequently, our method performs a common clustering
with the unified representations. We experimentally validate our model on two real-world datasets,
where our model consistently outperforms the classical and deep clustering approaches over most
metrics. The results also demonstrate the importance to adopt the cross-modal mappings for the
mixed-modal setting. In the future, we plan to incorporate the optimal transport theory to solve this
problem with theoretical guarantee and reach a better performance.
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