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Abstract

In this preliminary work, we study the generalization properties of infinite ensembles of
infinitely-wide neural networks. Amazingly, this model family admits tractable calculations
for many information-theoretic quantities. We report analytical and empirical investiga-
tions in the search for signals that correlate with generalization.

1. Introduction

A major area of research is to understand deep neural networks’ remarkable ability to gener-
alize to unseen examples. One promising research direction is to view deep neural networks
through the lens of information theory (Tishby and Zaslavsky, 2015). Abstractly, deep con-
nections exist between the information a learning algorithm extracts and its generalization
capabilities (Bassily et al., 2017; Banerjee, 2006). Inspired by these general results, recent
papers have attempted to measure information-theoretic quantities in ordinary determinis-
tic neural networks (Shwartz-Ziv and Tishby, 2017; Achille and Soatto, 2017; Achille and
Soatto, 2019).

Both practical and theoretical problems arise in the deterministic case (Amjad and
Geiger, 2018; Saxe et al., 2018; Kolchinsky et al., 2018). These difficulties stem from the
fact that mutual information (MI) is reparameterization independent (Cover and Thomas,
2012).!  One workaround is to make a network explicitly stochastic, either in its acti-
vations (Alemi et al., 2016) or its weights (Achille and Soatto, 2017). Here we take an
alternative approach, harnessing the stochasticity in our choice of initial parameters. That
is, we consider an ensemble of neural networks, all trained with the same training procedure
and data. This will generate an ensemble of predictions. Characterizing the generalization
properties of the ensemble should characterize the generalization of individual draws from
this ensemble.

Infinitely-wide neural networks behave as if they are linear in their parameters (Lee et al.,
2019). Their evolution is fully described by the neural tangent kernel (NTK). The NTK is

* Work done while an intern at Google Research.
1. This implies that if we send a random variable through an invertible function, its MI with respect to
any other variable remains unchanged.
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constant in time and can be tractably computed (Anonymous, 2020). For our purposes, it
can be considered to be a function of the network’s architecture, e.g. the number and the
structure of layers, nonlinearity, initial parameters’ distributions, etc.

All told, the output of an infinite ensemble of infinitely-wide neural networks initialized
with Gaussian weights and biases and trained with gradient flow to minimize a square loss
is simply a conditional Gaussian distribution:

p(Z|.%') NN(M(va)aE(:EvT))7 (1)

where z is the output of the network and x is its input. The mean u(z,7) and covariance
Y (z, 7) functions can be computed (Anonymous, 2020). For more background on the NTK
and NNGP as well as full forms of y and X3, see appendix A.

This simple form allows us to bound several interesting information-theoretic quantities
including: the MI between the representation and the targets (I(Z;Y), appendix C.2), the
MI between the representation and the inputs after training (I(Z; X|D), appendix C.3),
and the MI between the representations and the training set, conditioned on the input
(I(Z; D|X), appendix C.4), We are also able to compute in closed form: the Fisher infor-
mation metric (appendix C.5), the distance the parameters move (appendix C.6), and the
MI between the parameters and the data (I(©; D), appendix C.7). Because infinitely-wide
neural networks are linear in their parameters, their information geometry in parameter
space is very simple. The Fisher information metric is constant and flat, so the trace of the
Fisher does not evolve as in Achille and Soatto (2019). While the Euclidean distance the
parameters move is small (Lee et al., 2019), the distance they move according to the Fisher
metric is finite. Finally, the MI between the data and the parameters tends to infinity,
rendering PAC Bayes style bounds on generalization vacuous (Achille and Soatto, 2017;
Banerjee, 2006; Bassily et al., 2017).

2. Experiments

For jointly Gaussian data (inputs X and targets Y'), the Gaussian Information Bottle-
neck (Chechik et al., 2005) gives an exact characterization of the optimal tradeoff between
I(Z; X) and I(Z;Y), where Z is a stochastic representation, p(z|z), of the input. Below we
fit infinite ensembles of infinitely-wide neural networks to jointly Gaussian data and mea-
sure estimates of these mutual informations. This allows us to assess how close to optimal
these networks perform.

The Gaussian dataset we created (for a details, see appendix B) has | X| =30 and |Y| =
1. We trained a three-layer FC network with both RELU and ERF activation functions.

Figure 1 shows the test set loss as a function of time for different choices of initial
weight variance (02). For both the RELU and ERF networks, at the highest o, shown
(darkest purple), the networks underfit. For lower initial weight variances, they all show
signs of overfitting in the sense that the networks would benefit from early stopping. This
overfitting is worse for the ERF non-linearity where we see a divergence in the final test set
loss as o, decreases. For all of these networks the training loss goes to zero.

In fig. 2 we show the performance of these networks on the information plane. The
z-axis shows a variational lower bound on the complexity of the learned representation:
I(Z; X|D). The y-axis shows a variational lower bound on learned relevant information:
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Figure 1: Loss as function of time for different initial weights’ variances on the Gaussian
dataset.

I(Y;Z). For details on the calculation of the MI estimates see appendix C. The curves
show trajectorites of the networks’ representation as time varies from 7 = 1072 to 7 = 10'°
for different weight variances (the bias variance in all networks was fixed to 0.01). The red
line is the optimal theoretical IB bound.

There are several features worth highlighting. First, we emphasize the somewhat surpris-
ing result that, as time goes to infinity, the MI between an infinite ensemble of infinitely-wide
neural networks output and their input is finite and quite small. Even though every indi-
vidual network provides a seemingly rich deterministic representation of the input, when
we marginalize over the random initialization, the ensemble compresses the input quite
strongly. The networks overfit at late times. For ERF networks, the more complex rep-
resentations (I(Z; X|D)) overfit more. With optimal early stopping, over a wide range,
these models achieve a near optimal trade-off in prediction versus compression. Varying the
initial weight variance controls the amount of information the ensemble extracts.
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Figure 2: Trajectories of the (bounds on) MI between the representation Z and the input X
versus time. Curves differ only in their initial weight variance. The red line is the optimal
IB as predicted by theory. Our estimate for I(Z;X) is upper bounded by the log of the
batch size ( log 1000 = 6.9.)
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Next, we repeat the result of the previous section on the MNIST dataset (LeCun and
Cortes, 2010). Unlike the normal setup we turn MNIST into a binary regression task for the
parity of the digit (even or odd). The network this time is a standard two-layer convolutional
neural network with 5 x 5 filters and either RELU or ERF activation functions.

Figure 3 shows the results. Unlike in the jointly Gaussian dataset case, here both
networks show some region of initial weight variances that do not overfit in the sense of
demonstrating any advantage from early stopping. The ERF network at higher variances
does show overfitting at low initial weight variances, but the REL U network does not. Notice
that in the information plane, the ERF network shows overfitting at higher representational
complexities (I(Z; X) large), while the RELU network does not.
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Figure 3: Loss as function of time and information plan trajectories for different initial
weights’ variances on MNIST.

3. Conclusion

Infinite ensembles of infinitely-wide neural networks provide an interesting model family.
Being linear in their parameters they permit a high number of tractable calculations of
information-theoretic quantities and their bounds. Despite their simplicity, they still can
achieve good generalization performance (Arora et al., 2019). This challenges existing claims
for the purported connections between information theory and generalization in deep neural
networks. In this preliminary work, we laid the ground work for a larger-scale empirical and
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theoretical study of generalization in this simple model family. Given that real networks
approach this family in their infinite width limit, we believe a better understanding of
generalization in the NTK limit will shed light on generalization in deep neural networks.
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Appendix A. Background on the NTK

Infinitely-wide neural networks behave as though they were linear in their parameters (Lee

et al., 2019):

+ %(9 — 90) zo(x) = Z(l’, 90) (2)

This makes them particularly analytically tractable. An infinitely-wide neural network,
trained by gradient flow to minimize squared loss admits a closed form expression for evo-
lution of its predictions as a function of time:

z(x,7) = 2zo(x) — O(z, X)@fl (I — 6776) (z20(X) = Y). (3)

z(x,0) = zo(x)

Here z denotes the output of our neural network acting on the input x. 7 is a dimensionless
representation of the time of our training process. X denotes the whole training set of
examples, with their targets ). zo(z) = z(x,7 = 0) denotes the neural networks output
at initialization. The evolution is governed by the neural tangent kernel (NTK) © (Jacot
et al., 2018). For a finite width network, the NTK corresponds to JJT, the gram matrix
of neural network gradients. As the width of a network increases to infinity, this kernel
converges in probability to a fixed value. There exist tractable ways to calculate the exact
infinite-width kernel for wide classes of neural networks (Anonymous, 2020). The shorthand
© denotes the kernel function evaluated on the train data (6 = ©(X, X)).

Notice that the behavior of infinitely-wide neural networks trained with gradient flow
and squared loss is just a time-dependent affine transformation of their initial predictions.
As such, if we now imagine forming an infinite ensemble of such networks as we vary their
initial weight configurations, if those weights are sampled from a Gaussian distribution, the
law of large numbers enforces that the distribution of outputs of the ensemble of networks
at initialization is Gaussian, conditioned on its input. Since the evolution is an affine
transformation of the initial predictions, the predictions remain Gaussian at all times. For
more details see Lee et al. (2019).

p(zlz) ~ N(pu(z, ), X(x, 7)) (4)
p(z,7) =60z, X)0" (I —e™®) Y (5)
S(2,7) = K(z,2) + (2, X)07! (I —e77®) (KO (I — ™) O(X,2) — 2K(X,2)). (6)
Here, K denotes yet another kernel, the neural network gaussian process kernel (NNGP).
For a finite width network, the NNGP corresponds to the expected gram matrix of the
outputs: E [zzT]. In the infinite width limit, this concentrates on a fixed value. Just as

for the NTK, the NNGP can be tractably computed (Anonymous, 2020), and should be
considered just a function of the neural network architecture.

Appendix B. Gaussian Dataset

For our experiments we used a jointly Gaussian dataset, for which there is an analytic
solution for the optimal representation (Chechik et al., 2005).

Imagine a jointly Gaussian dataset, where we have x;; = L;?kefk with € ~ N(0,1). Make
y just an affine projection of x with added noise.

Yij = Li e + Ajpaie = L€ + Ajk Ly €. (7)
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Both z and y will be mean zero. We can compute their covariances.
Yk = (@igrik) = (Ljm€imLri€it) = LjmLri0mi = LjmLgm
Next look at the covariance of y.
X5, = (YijYik)
= (LYl + ALineh, ) (Llely + ArmLigeh))
= Lglenéln + AlelxmAknLno(smo
= L?nLZn + AﬂEankn

For the cross covariance:

Eﬁ{ = (TijYir)
= <L§m€?m (LZnE;z,/n + AknL£06%0)>

— L A L O
— L AL, = 52 A,

So we have for our entropy of z:

H(X)= % log(2me) 4+ ny log o,

HY|X)= % log(2me) + ny log o,

as for the marginal entropy, we will assume the SVD decomposition A = USVT

1
HY)= % log(2me) + % log !aZI + UﬁAAT‘ = % log(2me) + 3 Z log (O'Z +02%7)

So, solving for the mutual information between z and y we obtain:

0252
106Y) = B~ B0 = St (14 %22

Appendix C. Information Metrics

Having a tractable form for the representation of the ensemble of infinitely-wide networks

enables us to compute several information-theoretic quantities of interest.

This already

sheds some light on previous attempts to explain generalization in neural networks, and gives
us candidates for an empirical investigation into quantities that can predict generalization.
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C.1. Loss

In order to compute the expected loss of our ensemble, we need to marginalize out the
stochasticity in the output of the network. Training with squared loss is equivalent to
assuming a Gaussian observation model p(y|z) ~ N(0,1). We can marginalize out our
representation to obtain

a(lz) = / dz q(y]2)p(2lz) ~ N (. 7), T + Sz, 7). (9)

The expected log loss has contributions both from the square loss of the mean prediction,
as well as a term which couples to the trace of the covariance:

Elloga(y]2)] = 3B [(y — 2w, 7)”] = gy — (e, 7)) + 3 TS, ) — S logan (10)

here k is the dimensionality of y.

C.2. 1(Z;Y)

While the MI between the network’s output and the targets is intractable in general, we
can obtain a tractable variational lower bound: (Poole et al., 2019)

1ZY) —E [log ’f@))} <E [1og %] — H(Y) + E[log q(y]2)] (1)

C.3. I(Z; X|D)

The MI between the input (X) and output (Z) of our network, conditioned on the dataset
(D) is:

(12)

1(Z;X|D) =E [log M] .

p(z|D)
This requires knowledge of the marginal distribution p(z|D). Without knowledge of p(z),

this is in general intractable, but there exist simple tractable multi sample upper and lower
bounds (Poole et al., 2019):

1 p(zilzi, D) 1 p(zilzi, D)
— ) log <I(Z;X|D) < —)» log . (13)
N Z ~ > p(zilzj, D) N Z N1 2 P(zil T, D)

% 1

In this work, we show the minibatch lower bound estimates, which are upper bounded
themselves by the log of the batch size.

C.4. I(Z;D|X)
We can also estimate a variational upper bound on the MI between the representation of
our networks and the training dataset.

1(Z;D|X)=E [log W] <E {log p(zlz, D) (14)

p(z|z)



INFORMATION IN INFINITE NETS

Here, the MI we extract from the dataset involves the expected log ratio of our posterior
distribution of outputs to the marginal over all possible datasets. Not knowing the data
distribution, this is intractable in general, but we can variationally upper bound it with an
approximate marginal. A natural candidate is the prior distribution of outputs, for which
we have a tractable estimate.

C.5. Fisher

Infinitely-wide networks behave as though they were linear in their parameters with a fixed
Jacobian. This leads to a trivially flat information geometry. For squared loss the true
Fisher can be computed simply as F = J7.J (Kunstner et al., 2019). While the trace of
the Fisher information has recently been proposed as an important quantity for controlling
generalization in neural networks (Achille and Soatto, 2019), for infinitely wide networks
we can see that the trace of the fisher is the same as the trace of the NTK, which is a
constant and does not evolve with time (Tr F = Tr JTJ = Tr JJT = Tr©). In so much as
infinite ensembles of infinitely-wide neural networks generalize, the degree to which they do
or do not cannot be explained by the time evolution of the trace of the Fisher given that
the trace of the Fisher does not evolve.

C.6. Parameter Distance

How much do the parameters of an infinitely-wide network change? Other work (Lee et al.,
2019) emphasizes that the relative Frobenius norm change of the parameters over the course
of training vanishes in the limit of infinite width. This is in fact a justification for the lin-
earization becoming more accurate as the network becomes wider. But is it thus fair to say
the parameters are not changing? Instead of looking at the Frobenius norm we can investi-
gate the length of the parameters path over the course of training. This reparameterization
independent notion of distance utilizes the information geometric metric provided by the
Fisher information:

L(r) = /OT ds = /OT dr \/éa(T)gaﬁéﬁ(T) = /OT dr H@e_Te(zo(X) - y)H (15)

The length of the trajectory in parameter space is the integral of a norm of our residual
at initialization projected along ©e~™®. This integral is both positive and finite even as
t — oo. To get additional understanding into the structure of this term, we can consider
its expectation over the ensemble, where we can use Jensen’s inequality to bound the ex-
pectation of trajectory lengths. Since we know that at initialization zo(X) ~ N (0,K) we
obtain further simplifications:

E[L(7)]* < E[L*(1)] = /OT drE [(20(X) = )"'0% 770 (2(X) - V)] (16)
— LB [(a0() - )70 (1 = 727) () — )] (1)
_ % [Tr (KO (1 - e72)) + Y70 (1 - e270) )] (18)

10
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C.7. 1(6; D)

The MI between the parameters and the dataset I(6; D) has been shown to control for over-
fitting (Bassily et al., 2017). We can generate a variational upperbound on this quantity by
consider the KL divergence between the posterior distribution of our parameters and the
prior distribution Dkr, [p(6|D)||po(6)] a quantity that itself has been shown to provide gen-
eralization bounds in PAC Bayes frameworks (Achille and Soatto, 2017). For our networks,
the prior distribution is known and simple, but the posterior distribution can be quite rich.
However, we can use the instantaneous change of variables formula (Chen et al., 2018)

logp(6,) = logp(6) — [ T (gg) (19)

which gives us a value for the log likelihood the parameters of a trained model at any
point in time in terms of its initial log likelihood and the integral of the trace of the kernel
governing its time evolution. For our infinitely-wide neural networks this is tractable:

I(0; D) > Ey,) [log p(0-) — log po(07)] (20)
[ T Bl
= E,(9y) |logp(60) — log po(6r) —/ dr Tr (aa)] (21)
0
= Ep0,) [logp(@o) —logpo(fp + Ab;) + 7 Tr O] (22)
= Ep(Go) *90 + = (90 + A0 ) :| +7TrOe (23)
= Ep00) [aTAe +(A0:)*] + 7 Tr© (24)
=E, (1) [9 Af ] +7TrO (25)
= Ep9,) [(20 )T - e 207 (2(X) = V)] +TTr O (26)
=Tr (KO~ ( - —79) )+ YT NI —e ™) Y+ rTrO. (27)

This tends to infinity as the time goes to infinity. This renders the usual PAC-Bayes
style generalization bounds trivially vacuous for the generalization of infinitely wide neural
networks at late times. Yet, infinite networks can generalize well (Arora et al., 2019).

Appendix D. Additional Empirical Results

Figure 4 shows I(X; Z|D), I(6; D), d](e D) and the loss as function of time for a fixed initial
weight’s variance (o, = 0.25). (in log log scale, notice that y-axes are different for each
measure). For both the RELU and ERF networks, we see clear features in each plot near
the optimal test loss.

11
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Figure 4: I(X;Z|D), 1(0; D), % and the loss as function of time on our Gaussian

dataset.
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