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Abstract

In recent years, deep neural networks have revolutionized many application do-
mains of machine learning and are key components of many critical decision or
predictive processes such as autonomous driving or medical image analysis. In
these and many other domains it is crucial that specialists can understand and
analyze actions and predictions, even of the most complex neural network architec-
tures. Despite these arguments neural networks are often treated as black boxes
and their complex internal workings as well as the basis for their predictions are
not fully understood.
In the attempt to alleviate this shortcoming many analysis methods were proposed,
yet the lack of reference implementations often makes a systematic comparison
between the methods a major effort. In this tutorial we present the library iNNvesti-
gate which addresses the mentioned issue by providing a common interface and
out-of-the-box implementation for many analysis methods. In the first part we will
show how iNNvestigate enables users to easily compare such methods for neural
networks. The second part will demonstrate how the underlying API abstracts
common operations in neural network analysis and show how users can use them
for the development of (future) methods.

iNNvestigate and the tutorial resources are available at:
https://github.com/albermax/innvestigate

1 Introduction

In recent years deep neural networks have revolutionized many domains, e.g., image recognition,
speech recognition, speech synthesis, and knowledge discovery [Krizhevsky et al., 2012, LeCun
et al., 2012, Schmidhuber, 2015, LeCun et al., 2015, Van Den Oord et al., 2016]. Due to their
capabilities neural networks are already and will be widely used, i.a., to create compact knowledge
representations, for knowledge discovery techniques and for critical decisions processes. Thus in
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applications like, e.g., comparative studies [Alber et al., 2017], in automatic learning [Zoph et al.,
2017, Alber et al., 2018a] or chemical compound searches [Montavon et al., 2013, Schütt et al., 2017],
it would be extremely useful to know which properties help a neural network to choose appropriate
candidates. To fully leverage this potential it is essential that users can comprehend and analyze these
processes.

Despite these arguments neural networks are often treated as black boxes, because their complex
internal workings and the basis for their predictions are not fully understood. In the attempt to
alleviate this shortcoming several methods were proposed, e.g., Saliency Map [Baehrens et al., 2010,
Simonyan et al., 2013], SmoothGrad [Smilkov et al., 2017], IntegratedGradients [Sundararajan et al.,
2017], Deconvnet [Zeiler and Fergus, 2014], GuidedBackprop [Springenberg et al., 2015], PatternNet
and PatternAttribution [Kindermans et al., 2018], LRP [Bach et al., 2015, Lapuschkin et al., 2016a,b,
Montavon et al., 2018], and DeepTaylor [Montavon et al., 2017]. Theoretically it is not clear which
method solves the stated problems best, therefore an empirical comparison is required [Samek et al.,
2017, Kindermans et al., 2017].

In this tutorial we present the library iNNvestigate [Alber et al., 2018b] which provides a common
interface to a variety of analysis methods and abstractions that enable fast and clean development of
such methods. In particular, iNNvestigate contributes:

• A common interface for a growing number of analysis methods that is applicable to a broad
class of neural networks. With this instantiating a method is as uncomplicated as passing a
trained neural network to it and allows for easy qualitative comparisons of methods. For
quantitative evaluations of (image) classification task we further provide an implementation
of the method “perturbation analysis” [Samek et al., 2017].

• Support of all methods listed above—this includes the first reference implementation for
PatternNet and PatternAttribution and an extended implementation for LRP—and an open
source repository for further contributions.

• A clean and modular implementation, casting each analysis in terms of layer-wise forward
and backward computations. This limits code redundancy, takes advantage of automatic
differentiation, and eases future integration of new methods.

The tutorial itself is composed of two parts:

• The first part focuses on the application of iNNvestigate and will show how users can
compare different analysis methods (for a single network) as well as how users can compare
the prediction analyses of different neural networks (for a single method).

• The second part introduces the API of iNNvestigate. This will be done in a step-by-step
implementation of several analysis methods using the provided abstractions. This will
facilitate users to extend and develop such methods with help of iNNvestigate.

The remainder of this paper will outline and describe the library in more detail, while the resources
for this tutorial are available at the project’s repository as Jupyter notebooks: https://github.
com/albermax/innvestigate.

This manuscript is based on the following publication: Alber et al. [2018b].

2 Library

Interface The main feature is a common interface to several analysis methods. The workflow is
as simple as passing a Keras neural network model to instantiate an analyzer object for a desired
algorithm. Then, if needed, the analyzer will be fitted to the data and eventually be used to analyze
the model’s predictions. The corresponding Python code is:

1 import i n n v e s t i g a t e
2 model = c r e a t e _ a _ k e r a s _ m o d e l ( )
3 a n a l y z e r = i n n v e s t i g a t e . c r e a t e _ a n a l y z e r ( " ana lyze r_name " , model )
4 a n a l y z e r . f i t ( X _ t r a i n ) # i f needed
5 a n a l y s i s = a n a l y z e r . a n a l y z e ( X _ t e s t )
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Implemented methods At publication time the following algorithms are supported: Gradient
Saliency Map, SmoothGrad, IntegratedGradients, Deconvnet, GuidedBackprop, PatternNet and
PatternAttribution, DeepTaylor, and LRP including LRP-Z, -Epsilon, -AlphaBeta. In contrast, current
related work [Kotikalapudi et al., 2017, Ancona et al., 2018] is limited to gradient-based methods.
We intend to further extend this selection and invite the community to contribute implementations as
new methods emerge.

Documentation The library’s documentation contains several introductory scripts and example
applications. We demonstrate how the analyses can be applied to the following state-of-the-art
models: VGG16 and VGG19 [Simonyan and Zisserman, 2014], InceptionV3 [Szegedy et al., 2016],
ResNet50 [He et al., 2016], InceptionResNetV2 [Szegedy et al., 2017], DenseNet [Huang et al.,
2017], NASNet mobile, and NASNet large [Zoph et al., 2017]. Figure 1 shows the result of each
analysis on a subset of these networks.

Figure 1: Result of methods applied to various neural networks (blank, if not applicable).

2.1 Details

Modular implementation All of the methods have in common that they perform a back-
propagation from the model outputs to the inputs. The core of iNNvestigate is a set of base classes
and functions that is designed to allow for rapid and easy development of such algorithms. The
developer only needs to implement specific changes to the base algorithm and the library will take
care of the complex and error-prone handling of the propagation along the graph structure. Further
details can be found in the repositories documentation.

Training PatternNet and PatternAttribution [Kindermans et al., 2018] are two novel approaches
that condition their analysis on the data distribution. This is done by identifying the signal and noise
direction for each neuron of a neural network. Our software scales favorably, e.g., one can train
required patterns for the methods on large datasets like Imagenet [Deng et al., 2009] in less than an
hour using one GPU. We present the first reference implementation of these methods.

Quantitative evaluation Often analysis methods for neural networks are compared by qualitative
(visual) inspection of the result. This is can lead to subjective evaluations and one approach to create
a more objective and quantitative comparison of analysis algorithms is the method “perturbation
analysis” [Samek et al., 2017, also known as “PixelFlipping”]. The intuition behind this method is
that perturbing regions which are recognized as important for the classification task by the analyzing
method, will impact the classification most. This allows to assess which analysis method best
identifies regions that matter for a specific task and neural network. iNNvestigate contains an
implementation of this method.

Installation & license iNNvestigate is published as open-source software and can be downloaded
from: https://github.com/albermax/innvestigate. It is built as a Python 2 or 3 application
on top of the popular and established Keras [Chollet et al., 2015] framework. The library can be
simply installed as Python package.
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