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Abstract

Stan’s Hamilton Monte Carlo (HMC) has demonstrated remarkable sampling robustness
and efficiency in a wide range of Bayesian inference problems through carefully crafted
adaption schemes to the celebrated No-U-Turn sampler (NUTS) algorithm. It is challeng-
ing to implement these adaption schemes robustly in practice, hindering wider adoption
amongst practitioners who are not directly working with the Stan modelling language.
AdvancedHMC.jl (AHMC) contributes a modular, well-tested, standalone implementation
of NUTS that recovers and extends Stan’s NUTS algorithm. AHMC is written in Julia,
a modern high-level language for scientific computing, benefiting from optional hardware
acceleration and interoperability with a wealth of existing software written in both Julia
and other languages, such as Python. Efficacy is demonstrated empirically by comparison
with Stan through a third-party Markov chain Monte Carlo benchmarking suite.

1. Introduction

Hamiltonian Monte Carlo (HMC) is an efficient Markov chain Monte Carlo (MCMC) algo-
rithm which avoids random walks by simulating Hamiltonian dynamics to make proposals
(Duane et al., 1987; Neal et al., 2011). Due to the statistical efficiency of HMC, it has
been widely applied to fields including physics (Duane et al., 1987), differential equations
(Kramer et al., 2014), social science (Jackman, 2009) and Bayesian inference (e.g. Bayesian
neural networks; Neal, 2012). The No-U-Turn Sampler (NUTS; Hoffman and Gelman, 2014)
is an extension of the HMC sampler which automatically tunes two key parameters, the
leapfrog step size and integration time (aka trajectory length), which used to require manual
adjustments through extensive preliminary runs. Together with a robust implementation in
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the Stan probabilistic programming language (PPL), NUTS has become the default choice
for HMC sampling for many probabilistic modelling practitioners (Carpenter et al., 2017).

Although the integration of NUTS in Stan makes Bayesian inference easy for domain
experts relying on the Stan language, it is desirable to have a high quality, standalone NUTS
implementation in a high-level language, e.g. for research on HMC algorithms, reproducible
comparisons and real-world approximate inference applications. To this end, we introduce
AdvancedHMC.jl (AHMC), a robust, modular and efficient implementation of Stan’s NUTS
and several other commonly used HMC variants in Julia.1

2. A modular Hamiltonian Monte Carlo implementation

AHMC supports various HMC algorithms in the set below resulted from a Cartesian product
of a set of HMC trajectories and a set of adaptors:

(StaticTrajectory ∪ DynamicTrajectory)× Adaptor.

Here StaticTrajectory refers to a set of HMC with fixed-length trajectory length, which
contains HMC with fixed step size and step numbers and HMC with fixed total trajectory
length. DynamicTrajectory is a set of HMC with adaptive trajectory length which is
defined as a Cartesian product of four sets of different HMC components:

Metric× Integrator× TrajectorySampler× TerminationCriterion,

where

Metric = {UnitEuclidean, DiagEuclidean, DenseEuclidean}
Integrator = {Leapfrog, JitteredLeapfrog, TemperedLeapfrog}

TrajectorySampler = {Slice, Multinomial}
TerminationCriterion = {ClassicNoUTurn, GeneralisedNoUTurn}

Finally, Adaptor consists of any BaseAdaptor or any composition of two or more BaseAdaptor,
where BaseAdaptor ∈ {Preconditioner, NesterovDualAveraging}. A special composi-
tion called StanHMCAdaptor is provided to compose Stan’s windowed adaptor, which has
been shown to be robust in practice (Carpenter et al., 2017).

2.1. Example code of building Stan’s NUTS using AdvancedHMC.jl

The code snippet below illustrates the use of AHMC for a given target log density function
and its gradient, logdensity f and grad f respectively.

1 using AdvancedHMC
2 n_samples, n_adapts, target = 10_000, 2_000, 0.8 # set up sampling parameters
3 q0 = randn(D) # draw a random starting point
4 ### Building up NUTS
5 metric = DiagEuclideanMetric(D) # diagonal Euclidean metric space
6 h = Hamiltonian(metric, logdensity_f, grad_f) # Hamiltonian on the target distribution
7 eps_init = find_good_eps(h, q0) # initial step size

1. Code is available at https://github.com/TuringLang/AdvancedHMC.jl.
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8 int = Leapfrog(eps_init) # leapfrog integrator
9 traj = NUTS{Multinomial,GeneralisedNoUTurn}(int) # multi. sampling with gen. no U−turn
10 adaptor = StanHMCAdaptor( # Stan’s windowed adaptor
11 n_adapts, Preconditioner(metric), NesterovDualAveraging(target, eps_init)
12 )
13 samples, stats = sample(h, traj, q0, n_samples, adaptor, n_adapts) # draw samples

Here logdensity f and grad f are functions of the target distributions’s log density and its
gradient, which are functions independent of AHMC and can be, e.g. derived from different
PPLs or defined by normalising flows (Rezende and Mohamed, 2015; Dinh et al., 2016;
Papamakarios et al., 2017). We will show an example of such models in the next section.

2.2. GPU support for AdvancedHMC.jl via CuArrays.jl

In order to run HMC on CUDA, one only needs to change Line 3 of the demo code from q0 =

randn(D) to q0 = CuArray(randn(D)), assuming logdensity f and grad f in Line 6 are
GPU friendly, which is how CuArrays.jl could be used with AdvancedHMC.jl to run HMC
on GPUs. An example using GPU accelerated AHMC to draw samples from a normalising
flow, named flow model, trained on MNIST (LeCun, 1998) is given below. The function
logpdf(m, x) is used to compute the log density for model m on data batch x.

1 logdensity_f(x) = logpdf(flow_model, reshape(x, 784, 1))[1]
2 # Define gradient function via reverse AD
3 function grad_f(x)
4 val, back = Tracker.forward(logdensity_f, x)
5 grad = back(1)
6 return (Tracker.data(val), Float32.(Tracker.data(grad[1][:,1])))
7 end

Here Tracker is an automatic differentiation (AD) library which implements reverse-
mode AD. How does it work? All arrays in AHMC are abstractly typed, meaning that the
concrete type is deduced at compile time from q0. That is to say, if q0 is defined on the
GPU, i.e. it is a CuArray, all internal arrays in HMC will be too.

3. Related work

A summary of the related work on HMC/NUTS implementations is given in Table 3. We
want to emphasis that there exists a Python API of AHMC implemented by an independent
team available at https://github.com/salilab/hmc.

4. Evaluations

To compare the NUTS implementation between AHMC and Stan, we consider five models
from MCMCBenchmarks.jl, a package for benchmarking MCMC libraries in Julia.2 The five
models are 1) a Gaussian model (Gaussian), a simple two parameter Gaussian distribution,
2) the signal detection model (SDT), a model used in psychophysics and signal processing
(Green et al., 1966), 3) a linear regression model (LR), 4) a hierarchical Poisson regres-
sion (HPR) model and 5) the linear ballistic accumulator model (LBA), a cognitive model

2. Available at https://github.com/StatisticalRethinkingJulia/MCMCBenchmarks.jl.
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Stan AHMC (ours) Pyro TFP.MCMC PyMC3 DynamicHMC

Adaption
Step-size 3 3 3 3 3 3

Mass matrix 3 3 3 3 3 3

Windowed adaption 3 3 3 7 7 3

Hamiltonian trajectory
Classic No-U-Turn 3 3 7 3 7 7

Generalised No-U-Turn 3 3 3 3 3 3

Fixed trajectory length 3 3 3 3 3 7

Trajectory sampler
Slice 3 3 3 3 7 7

Multinomial 3 3 3 3 3 3

Integrator
Leapfrog 3 3 3 3 3 3

Jittered Leapfrog 3 3 7 7 7 7

Tempered Leapfrog 7 3 7 7 7 7

GPU support partial 3 3 3 partial partial

Table 1: Comparison of different HMC/NUTS implementations. TFP.MCMC refers to
TensorFlow.Probability’s MCMC library. DynamicHMC is another high-quality
HMC implementation in Julia. Windowed adaption is a method for joint adap-
tion of leapfrog integration step-size and mass matrix. Windowed adaption was
proposed by the Stan team (Carpenter et al., 2017), and has demonstrated remark-
able robustness in a wide range of Bayesian inference problems. Partial support
for GPU means the log density function can be accelerated by GPU, but the HMC
sampler itself runs on CPU. Slice and Multinomial are two methods for sampling
from dynamic Hamiltonian trajectories, e.g. those generated by the No-U-Turn
algorithm (see e.g. Betancourt (2017) for details). Tempered leapfrog integrator
improves convergence when the target distribution has multiple modes by per-
forming tempering within Hamiltonian trajectories (Neal et al., 2011).

of perception and simple decision making (Brown and Heathcote, 2008). Please refer to
Appendix A for full descriptions of these models.

4.1. Statistical property of simulated trajectories

To compare the statistical property between Stan and AHMC, we run multiple chains of
NUTS with target acceptance rate 0.8 for 2, 000 steps with 1, 000 for adaptation, where the
warm-up samples are dropped. Each model is benchmarked with multiple data sizes N . We
compare the simulated trajectories by the distributions of step size and tree depth and the
average effective sample size (ESS) for all variables. The results for the SDT model is shown
in Figure 3. It can been seen that the distributions of step size and tree depth are similar and
the average ESS for all variables are close, indicating AHMC’s NUTS is statistically similar to
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Stan 10 413.939 266.476 381.219 423.441
AHMC 10 354.946 263.894 411.769 399.420
Stan 100 621.796 729.812 465.990 608.608
AHMC 100 473.005 734.189 606.996 621.543
Stan 1000 668.524 789.987 464.459 648.201
AHMC 1000 485.988 786.577 676.097 689.344

Figure 1: LR (50 runs). For the density plots, blue is for AHMC and orange is for Stan and
each row is for a different size N , corresponding to the table on the right.

0 Gaussian 2 SDT 3 LR 2 HPR 1 LBA 2

N seconds N seconds N seconds N seconds N seconds

Stan 10 0.8039 10 0.7759 10 0.8669 10 2.4870 10 1.9179
AHMC 10 0.3361 10 0.3285 10 1.1356 10 19.4587 10 2.6906
Stan 100 0.7561 100 0.7261 100 0.9824 20 3.5025 50 7.8471
AHMC 100 0.3303 100 0.3201 100 1.3202 20 28.2982 50 11.0270
Stan 1000 0.7614 1000 0.7089 1000 2.2600 50 5.8954 200 31.3762
AHMC 1000 0.5081 1000 0.3179 1000 3.8326 50 40.0322 200 33.6125

Table 2: Computational efficiency for five models using 1 25 runs, 2 50 runs or 3 100 runs.
For AHMC, forward-mode AD is used for computing gradient. AHMC can be used
together with different AD backends/packages, e.g. ForwardDiff.jl’s forward-
mode AD, Tracker.jl’s reverse-mode AD and Zygote.jl’s source-to-source AD.

the implementation in Stan. Conclusions from the results of the other four models remain
similar; see Appendix B for figures and tables.

4.2. Computational efficiency via running time

All the benchmark models used in this paper are implemented in Turing (Ge et al., 2018),
a universal PPL in Julia that uses AHMC as its HMC backend; see Appendix C for an ex-
ample Turing code. The average time used to run the five benchmark models for multiple
times using Stan and using AHMC via Turing are reported in Table 2. We see that AHMC has
comparable performance for all models except for HPR, which could be the result of the
difference in the implementation of the probability mass function for the Poisson distribu-
tion. Also note that AHMC scales better for LBA models while Stan scales better for the
rest of the models. This is likely due to the fact that the LBA model relies on a manually
implemented distribution which is highly optimized by Julia’s compiler.

5. Conclusion

We have introduced AdvancedHMC.jl, a new Julia package that provides robust, modular
and efficient implementations of advanced HMC algorithms. We highlight the modularity
of the package and compare the implemented NUTS with Stan, both statistically and
computationally. Overall, we hope that AHMC can serve as a robust baseline for future
research on HMC algorithms and can enable the development of new PPLs which take
advantage of the decoupling of inference algorithms from the actual modelling language.
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Appendix A. Full descriptions of models used for evaluations

Below are the full descriptions of five models used for evaluations.
Gaussian Model (Gaussian) is a simple two parameter Gaussian distribution.

µ ∼ N (0, 1)

σ ∼ T runcated(Cauchy(0, 5), 0,∞)

yn ∼ N (µ, σ) (n = 1, . . . , N)

Signal Detection Model (SDT) is a model used in psychophysics and signal pro-
cessing, which decomposes performance in terms of discriminability and bias (Green et al.,
1966).

d ∼ N (0,
1√
2

)

c ∼ N (0,
1√
2

)

x ∼ SDT(d, c)

Linear Regression Model (LR) is a linear regression with truncated Cauchy prior
on the weights.

Bd ∼ N (0, 10)

σ ∼ T runcated(Cauchy(0, 5), 0,∞)

yn ∼ N (µn, σ)

where µ = B0 +BTX, d = 1, . . . , D and n = 1, . . . , N .
Hierarchical Poisson Regression (HPR)

a0 ∼ N (0, 10)

a1 ∼ N (0, 1)

bσ ∼ T runcated(Cauchy(0, 1), 0,∞)

bd ∼ N (0, bσ)

yn ∼ Poisson(log λn)

where log λn = a0 + bzn + a1xn, d = 1, . . . , Nb and n = 1, . . . , N .
Linear Ballistic Accumulator (LBA) is a cognitive model of perception and simple

decision making (Brown and Heathcote, 2008).

τ ∼ T runcated(N (0.4, 0.1), 0,mn)

A ∼ T runcated(N (0.8, 0.4), 0,∞)

k ∼ T runcated(N (0.2, 0.3), 0,∞)

νd ∼ T runcated(N (0, 3), 0,∞)

xn ∼ LBA(ν, τ, A, k)

where mn = mini xi,2, d = 1, . . . , Nc and n = 1, . . . , N .
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Appendix B. Statistical property of simulated trajectories
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Figure 2: Gaussian (50 runs); left to right: step size, tree depth, ESS
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Figure 3: SDT (100 runs); left to right: step size, tree depth, ESS
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Figure 4: HPR (25 runs); left to right: step size, tree depth, ESS (of some variables)
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Figure 5: LBA (50 runs); left to right: step size, tree depth, ESS (of some variables)
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Appendix C. Turing code for the linear regression model

Below is the code snippet of running NUTS using Turing for the LR model.

1 @model LR(x, y, Nd, Nc) = begin
2 B ~ MvNormal(zeros(Nc), 10)
3 B0 ~ Normal(0, 10)
4 sigma ~ Truncated(Cauchy(0, 5), 0, Inf)
5 mu = B0 .+ x * B
6 y ~ MvNormal(mu, sigma)
7 end
8 x, y, Nd, Nc = ... # load data
9 chain = sample(LR(x, y, Nd, Nc), NUTS(2_000, 1_000, 0.8))

10


	Introduction
	A modular Hamiltonian Monte Carlo implementation
	Example code of building Stan's NUTS using AdvancedHMC.jl
	GPU support for AdvancedHMC.jl via CuArrays.jl

	Related work
	Evaluations
	Statistical property of simulated trajectories
	Computational efficiency via running time

	Conclusion
	Full descriptions of models used for evaluations
	Statistical property of simulated trajectories
	Turing code for the linear regression model

