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Abstract

The Hessian of neural networks can be decom-
posed into a sum of two matrices: (i) the positive
semidefinite generalized Gauss-Newton matrix G,
and (ii) the matrix H containing negative eigenval-
ues. We observe that for wider networks, minimiz-
ing the loss with the gradient descent optimization
maneuvers through surfaces of positive curvatures
at the start and end of training, and close to zero
curvatures in between. In other words, it seems
that during crucial parts of the training process,
the Hessian in wide networks is dominated by the
component G.

To explain this phenomenon, we show that when
initialized using common methodologies, the gra-
dients of over-parameterized networks are approx-
imately orthogonal to [, such that the curvature
of the loss surface is strictly positive in the direc-
tion of the gradient.

1. Introduction

It has frequently been observed (Choromanska et al., 2015)
that deep neural networks are relatively easy to optimize
using straightforward SGD algorithms, despite having com-
plex non-convex loss surfaces. A great body of work in
recent years has focused on the properties of SGD and its
ability to maneuver through saddle points and complex sur-
face topologies, in order to explain the relative ease of the
optimization process (Daneshmand et al., 2018). A comple-
mentary approach to analyzing the optimization process, is
to consider the trajectories of the gradients during optimiza-
tion, with the guiding intuition that while the loss surface
defined by modern neural networks might be incredibly
complex and hard to analyze, the trajectories of gradient
descent on these loss surfaces might prove rather simple.

An additional direction of research focuses on the spectrum
of the Hessian of the loss during training, as the knowledge
of the second order information about the loss surface can
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tell us quite a bit about the behavior of the optimizer, and
how we could modify our algorithms to make them converge
faster and to better solutions (Gupta et al., 2018; Martens
& Grosse, 2015). Recent works have empirically shown
that the distribution of the eigenvalues of the Hessian is
composed of a bulk, which is concentrated around zero, and
the edges which are scattered away from zero (Sagun et al.,
2016). Modern neural networks, however, contain millions
of parameters, resulting in a hefty Hessian with millions
of eigenvalues, the overwhelming majority of which are
irrelevant.

In our work, we seek to study the curvature of the Hessian
in directions corresponding to the trajectory of the gradients
during training, by focusing on the Hessian gradient product.
Specifically, we aim to empirically and theoretically analyze
the path of gradient descent algorithms by analyzing the
Hessian at initialization.

We identify and empirically demonstrate novel phenomena
relating to the trajectory of gradient descent neural networks
under certain conditions. We observe that the gradients fol-
low a convex path during training when performing SGD,
such that the curvature of the loss is seldom negative in the
direction of the gradients. This effect is more prominent
in wider networks, i.e., in CNNs with a larger number of
kernels. Furthermore, we theoretically prove that when us-
ing common initialization methods, the gradients of random
feedforward networks are indeed pointing in a direction of
positive curvature when the network is wide enough, and
the input is large enough.

1.1. Terminology

Given the output of some neural network y(x;,w;) for
input z;, with W, denoting the model weights at itera-
tion ¢, and a convex, twice differentiable loss function
L(y(z:, W), We denote the gradient on a batch of N sam-
ples by gt = ZN M, and the Hessian by

_ N I L(y( z“Wf)) :
He=« Z W oW, - A positive curvature during

training at step t is characterized by the following condition:

9! Hige >0 (1)
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Figure 1. The approximated curvature in the direction of the gradient, for networks with different width multiplier X = 1..5. (a,c) as a
function of the epoch for multiple network widths, shown for CIFAR-100, and tiny imagenet, respectively. The different plots denote
different layer width. (b,d) the test loss for the same networks trained on CIFAR-100 and tiny imagenet.

2. Observations

We approximate the Hessian gradient product g, H;g; dur-
ing the training of deep neural networks, using the following
formula:

LWy, {xl}i\il) ~ LW, {551}1121)

—0llgell? + 6%g) Hege ()
Which directly leads to:
L(W, R ]\L —L W, X ]\L
T ig = S0 (L)~ £V o))
g
- (3
S N )

where ¢ is the learning rate, and the loss £ is computed on
a minibatch {x;}¥ ;.

We track the behavior of g, H;g; across the epochs for
networks of varying widths. In our experiments, we employ
the ResNet-50 network (He et al., 2016), which has layers
with 16, 32, or 64 kernels. We make these layers wider by
multiplying the number of kernels by a factor K =1,...,5.
We halve the learning rate at epochs 40, 80, and 120. A
batch size of 100 is used with a vanilla SGD optimizer.

The results are shown in Fig. 1 for two popular datasets:
CIFAR-100 (Krizhevsky, 2009) and tiny imagenet (Le &
Yang, 2015). In both datasets, one can observe that (i)
throughout the majority of the training run, g, H;g; remains
positive; (ii) at the start of training, and when the network
converges, it obtains larger values; and (iii) typically, the
wider the network, the bigger this quantity is.

Fig. 1 also presents the test error for the same benchmarks
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Figure 2. The curvature in the direction of the gradient, decomposed to its components # 5(black), G (red) and H(blue), as a function of
epoch, for fully connected networks with layers’ width of (a) 50, (b) 200, and (c) 400, trained on random data and labels. In all cases, H 4
is mostly dominated by G4, with Hj starting closer to zero for wider networks.

and the same networks. We observe that wider networks
lead to smaller test errors, which means that their tendency
toward a convex-mimicking behavior during training does
not come at the expanse of the generalization ability.

We further conduct small scale experiments, in which one
can efficiently decompose the empirical Hessian into its
components I and G, and calculate the quantities Hy; =
G"Hg, G5 = §"Gg and H,
Specifically, we train a single output, 8 layer fully connected
network with layer width of 50, 200 and 400 on a set of
1000 predetermined random inputs sampled from a Gaussian
distribution with dimensionality matching the width of the
network, which are then normalized to have unit norm. The
network are trained to fit with a standard L2 loss random
labels sampled from a binary distribution.

= §'"Hg during training.

The results are shown in Fig. 2. As can be seen, in all cases,
the network exhibits a convex-mimicking behaviour, similar
to the results of our CNN experiments. Specifically, the
curvature observed in #H; seems to closely follow that of
G;. In addition, as predicted in our analysis, the curve of
H; starts closer to zero for wider networks.

3. Analysis

An initial analysis is performed for linear networks (no
non-linearities) at initialization, where the weights of the
networks are randomly sampled. We make very few assump-
tions on the nature of the networks’ initialization, and the
popular initialization techniques satisfy our assumptions.
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3.1. Overview

In our theoretical analysis, we focus on the Hessian of
a single output linear network with L layers, where the
output of layer | = 1,..., L is given by 3/ = W!Ty!=1
where W' € RM-1X" pn; = 14! € R™, and the input,
which is also denoted by y° is given by a fixed dataset
{zs}N |, 25 € R™. We denote by W the concatenation of
all the parameters of the network in a column vector.

As mentioned, we consider a twice differentiable convex
loss function £. We further assume that the loss has bounded
first and second derivatives. The Hessian matrix is given by:

X ey EYE @)
N A~
Zc" L)GSJrZE'(y(xS)L)HS ~G+H
s=1 s=1
4

where g, is the gradient of the network output unit for input
s with respect to the weights. The first term of the Hessian
is comprised of a sum of positive semidefinite matrices, and
is, therefore, positive semidefinite, while the second term is
not, and is dependent on the architecture. In the following,
we aim to show that under certain conditions pretaining to
the width of the network and the dimensionality of the input,
which are usually met in practice, the trajectory of GD is
influenced primarily by G. That is, denoting by index ¢ the
evaluation of a tensor at iteration ¢, it holds that:

Q;FHtgt ~ Q;FGtgt >0 )

3.2. Main Results

In our analysis, we consider the weights W* =
k .o

[wij]0<ignk70<jgnk7170<[<;SL sampled iid from a symmet-

ric distribution with moments m, such that mso, my, mg ~

—L, where m; = E ((w}.)) are the moments of the dis-
lk—1

i
tribution. Notice that this condition applies to the common
initialization scheme (He et al., 2015). We first consider the
gradient and Hessian evaluated on a single sample with unit
norm, i.e., ||y°|| = 1, and then discuss multiple samples. We
make the following notations: the derivative of the output

unit with respect to a single weight ¢ in layer k is denoted
k 8yL o 8yL 8yk
bY 955 = FuE = ByF Bur,-

we denote [ by:
32 yL

Huvl _
ijk 2 1
ow;; 0w,

(6)

where the triplets of indices ijk, uvl parameterize row and
column indices in the matrix H (note that the ranges of

ij,uv depend on the layer indices k£ and [). The next the-
orem gives the expected mean and variance of g Hg for
wide networks at initialization:

Theorem 1. E (ng{g> = 0 and for min;<r,(n;) >> L,
it holds that E (( T g)? ) ~ @(Zkmr Do i )
)

The Hessian gradient product is not necessarily indicative
of the local curvature, since we do not take into account
the norm of the gradient. As shown in (Arpit & Bengio,
2019), a constant width network ensures that the norm of the
gradient approximately equals the input. More specifically,
by having Vo<;<r, n; = nmy, we ensure that ||g|* —

Zicm =L |4/0(|2 as n gets larger. (The precise statement is

omltted for brevity). The next theorem gives a bound on the
probability of the local curvature to be above some ¢, given
the full Hessian.

nmy, and
< Zoam 002 4 ¢) >

mo

Theorem 2. Assume that Vo<i<r, n =
Prob(ZEE™ 402 — ¢ < [g]|? <

mo

1—46(e), L"(y") > a > 0,L'(y*) > B > 0 then it holds
that:
Pmb(gwg > e) > (1 (5(“%6”))(1 —5(e)
L
(1- % - ngk/mll MMy ) @)
m (W) (=== 012 — (”EH))Q

The above analysis provides a rather surprising result, which
is that the dimensionality of the input also plays a role in
determining the local curvature at initialization, in addition
to the width of the network.

We have discussed a single sample in our analysis so far. In
the case of linear neural networks, the result of Thm. 1 also
hold for the batch case since we did not assume anything
on the input. Specifically, since H = Zivzl L (y(zs) 2 H?,
and considering the gradient of sample u, and Hv evaluated
on sample v, then it holds that g7 HVg" ~ E’Wnigk”k’
The term g ' Gg can be significantly smaller in the batch
case, even when the gradient is large. Indeed, under mild
conditions, when gradients of individual samples are or-
thogonal to each other, this term can be made small while
keeping the overall gradient large, insuring a faster conver-
gence to the optimum. Precise statement and analysis are
kept for future work.

4. Discussion

The literature has already linked the width of a neural
network to the property of norm-preserving. For exam-
ple, (Arpit & Bengio, 2019) show that under different sets
of assumptions, the wider the network, the more likely the
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norm of the activations will be preserved with depth. Our
work is the first one, as far as we know, to show a link be-
tween a convex-mimicking behavior during optimization
and the network’s width.

The literature also teaches us about the properties of the
Hessian during training (Sagun et al., 2016). As far as
we know, we are unique in that we look at the Hessian in
the direction of the gradient, where it matters most to the
optimization process.

The line of research can lead to a better understanding of
the link between different architectures and their trainability.
Moreover, the signal we track can be readily used in order
to drive the optimization process. Specifically, it may be
derivable to adjust the hyperparameters (learning rate, batch
size, batch composition, etc.) such that the gradients are
large while the product of the gradient with the Hessian
implies close to zero curvature.
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A. Proof of Thm. 1

Proof. The derivative of unit j in layer k£ with respect to unit v in layer [ is denoted by ay] = alu Dropping the unit

indexes j or u means deriving the entire layer or with respect to the entire layer respectwely Dropping all superscripts
means derivative of the output unit, so that 6y L = q;,. It then holds that gfj = akiy;“_l. Finally, we denote by W’l and Wil’

the 4'th column and row vectors of W' respectwely. We have:

a;ﬂafu 1Jylv Ll<k—-1

. a2yL aklyv 6]” l=k-1
B e 0 e ®
K AluY; Ovi I=k+1
l— 171 k—1

;" Yj I>k+1

where the triplets of indices ¢jk, uvl parameterize row and column indices in the matrix H (note that the ranges of 77, uv
depend on the layer indices k and [).

The Hessian gradient product is given by:

> i(az)? yvy_] FOju + szk>2(a’k’b)2a;cu 1jygy;€ ! l=
Zj a2uali(y?)25m + Z (a3l) yv 5]“ + Zz]k>3(akl)2a§u Uyll)yf ' =
Zijk>l+1(aki) afu lqul) 1y;€ ! + Zz]k<l 1 aluagﬁ A (yf 1)
ZHZ;’;’ng = + Zi(al_HZ) yl- jéju + ZJ alual—lz(yj )251,1 L—-1>1>2 9)
ik Zj(aLjyy{fiQijil(sju + 20 aL 1uaL 22(ij73)2§“
+ D ijk<r—2 aLfluakiam (yf h)2 l=L-1
>ij 0Luar—1i(Y; )26, + dijk<L—1 ALuariay; 1”(1/;-6_1)2 =1

The claim E (gTﬁ g) = 0 is trivially true, since each term in the Hessian gradient products will contain odd moments of
the weights, which zero out for symmetric distributions. For deep networks, we have that:

]E(( THg) OO0 b HS G | ~E( (] > g HE ) (10)

wvl ijk uv,L—1>1>24j,k#[l—1,1+1]
and so:
§ § l wvl k E 2 k—1j5 2 k 1 § : 2 1— 11) 2 -1
guUHz]k gz] - (a‘ki) alualu ( + Cllu a]m l(y] ) yv (11)
i uvijk>l+1 uvijk<l—1

uv, ij,
L=1>1>2 p£(1-1,141)

E((oTH9?) ~E (Y (a)abaly VWb T D () el eyl )

uvigk>l+1 uvigk<l—1

k— k' — — I
~E | ( Z Z (aki)2(ak"') Ay QY Gy, 11@;/ & (yi 1)2(yl )ny 12/;c !
wvijk>l+1 uw'v'i' j k' > +1

~E Z (ar)(awir 2 arwarway, Vay, 1 (W2 (b )ny lyf (12

uwviju'v’'i’ j

where we assumed in the last transition that min;~r,(n;) >> L. Applying expectation on the last weight layer T, it holds
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that:

E > (k) (awi) araiw

uviju' v’ j

1 - - 1T L— 1T L— 1T -
~ — E( Z (lag P las Paf  Taft + (apt Tag )2l al

uviju'v’'i’j

L—1T L—1y L'—1T L—1 L-1T L'—1 L—1T L—1y L'—1T L'—1 L-1T L-1
+ay; gy )agy . ayy ap (e ags )agy apyag; a, )) (13)

Plugging each term in Eq. 12 yields the same asymptotic behaviour. For the sake of brevity, we will show this with the
first term. Without loss of generality, we assume k& > k' + 1 > [+ 2 > I’ + 3, we now recursively apply expectations over
WL .WF, while noticing that the following hold for fixed vectors v ...vg:

3
T T TUAT Ty 0 T T Ty ) i T T T
E<v1W Whogus W' Wrogvg W Wv6>~3vl U2U3 V4V5 Vg
iy
ToAT oo T T Ty 0 T T T noTorooT
~ U
]E(’Ul W, Wvaug W' Wiogug W Wv6>~ngvl UaU3 V4V5 Vg
-1
n2
E(WIJ-TlelleTlegv; W”le4)z sv] vavg vy (14)
; ; n
-1

N 1 . X k—1i k' —14 _ ’_ _ ’_
E((gTHgf)zngE( > (lafallPllafs Pal afwap, Mays () 6Py )

uviju'v’i’ j

Q

1 k— E—1T k—1 k—1j k—1 _k'—1j5"/ 1— - K —
3 E( Z (e Pagy, s ag, y; Lag T () Wy 1)2yj’ )
k—1 uviju’v'i’ j

1 k— k—2T k-2 k—2T, k-2 k'—1j5"/ |— U — k' —
: E( D (el lPar, el Par Tyt Pap Y POl )as)

Ne—1N
k=170 —2 uviju'v’'i’j

Recursively going through [ = k — 2...1 we have:

0116 / l
E THN?) ~ "] NN 11Ny -1y NNy 16
(g g) ~ 3 - 3 3 (16)
M1l 1A AUy S M= T 1T T T T ng
Summing over k, k':
T2\ Doy TR
E((g7 fg)?) ~ ST a7
L

B. Proof of Thm. 2
Proof. We have:

Prob (gTHg > e) > Prob (gTGg > ze) Pmb<gTHg < e)

= PTOb(E"HgH2 > 26)Prob<|£’||gTﬁ§| < e> > P7’0b<o¢|||g||2 > 26>Prob(|ﬂ||§TH§| < e) (18)
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Pmb<|gTﬁg| < e>

1 1 1 T4 ZZL:I 02
> Prob| —¢ < 5 < =7 Prob| |g' Hg| < e(Z==—|¥"|I”—¢) | (19)
ity 012 + € lgll ity 012 — € mo
mo mo
- L MMy’ . . .
From The. 1, we have that var(g' Hg) = ’YZ’“"'”:# for some v > 0. Using Chebyshev’s inequality:
0
TF Zlel My 02 1 72161«:1 MEE
Prob{ |g" Hg| < €( 1y —e) ) >1 -~ ST (20)
o " mie? (==L [0))2 — €)?
and so: L
T Ay Ly ) =1 Mk
Prob(gTHg < e) > (1-46(e))(1 — P Efk mll "~ S (1)
mie? (== ly0? —€)
Finally:
~ ~ 2e 1 ’}/ZL r—q MEMy
Prob(gT’Hg > e> > (175(m))(1 =8N — - ——— ST ) (22)
mo(w) (%”y I? - (Hﬁ\l))



