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Abstract

We introduce a scalable approach to Gaussian process inference that combines
spatio-temporal filtering with natural gradient variational inference, resulting in a
non-conjugate GP method for multivariate data that scales linearly with respect
to time. Our natural gradient approach enables application of parallel filtering
and smoothing, further reducing the temporal span complexity to be logarithmic
in the number of time steps. We derive a sparse approximation that constructs a
state-space model over a reduced set of spatial inducing points, and show that for
separable Markov kernels the full and sparse cases exactly recover the standard
variational GP, whilst exhibiting favourable computational properties. To further
improve the spatial scaling we propose a mean-field assumption of independence
between spatial locations which, when coupled with sparsity and parallelisation,
leads to an efficient and accurate method for large spatio-temporal problems.

1 Introduction

Most real-world processes occur across space and time, exhibit complex dependencies, and are
observed through noisy irregular samples. Take, for example, the task of modelling air pollution
across a city. Such a task involves large amounts of noisy, partially-observed data with strong seasonal
effects governed by weather, traffic, human movement, etc. This setting motivates a probabilistic
perspective, allowing for the incorporation of prior knowledge and the quantification of uncertainty.

Gaussian processes (GPS, [38]) provide such a probabilistic modelling paradigm, but their inherent
cubic computational scaling in the number of data, N , limits their applicability to spatio-temporal
tasks. Arguably the most successful methods to address this issue are sparse GPS [37], which
summarise the true GP posterior through a reduced set of M inducing points and have dominant
computational scaling O(NM2), and spatio-temporal GPS [43], which rewrite the GP prior as a
state-space model and use filtering to perform inference in O(Nd3), where d is the dimensionality
of the state-space. Sparse GPS and spatio-temporal GPS have been combined by constructing a
Markovian system in which a set of spatial inducing points are tracked over time [24, 51].

However, existing methods for spatio-temporal GPS make approximations to the prior conditional
model [24] or do not exploit natural gradients [45], meaning they do not provide the same inference
and learning results as state-of-the-art variational GPS [26] in the presence of non-conjugate like-
lihoods or sparsity, which has hindered their widespread adoption. We introduce spatio-temporal
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Figure 1: A demonstration of the spatio-temporal sparse variational GP (ST-SVGP) applied to crime
count data in New York. ST-SVGP tracks spatial points over time via spatio-temporal filtering. The
colourmap is the posterior mean, and the red dots are spatial inducing points. The diagram shows the
difference between how inducing points are treated in ST-SVGP and SVGP.

variational GPS (ST-VGP), which provide the exact same results as standard variational GPS, whilst
reducing the computational scaling in the temporal dimension from cubic to linear. ST-VGP is
derived using a natural gradient variational inference approach based on filtering and smoothing. We
also derive this method’s sparse variant, and demonstrate how it enables the use of significantly more
inducing points than the standard approach, leading to improved predictive performance.

We then show how the spatio-temporal structure can be exploited even further to improve both the
temporal and spatial scaling. We demonstrate for the first time how to apply parallel filtering and
smoothing [41] to non-conjugate GPS to reduce the temporal (span) complexity to be logarithmic. We
then reformulate the model to enable an efficient mean-field approximation across space, improving
the complexity with respect to the number of spatial points. We analyse the practical performance
and scalability of our proposed methods, demonstrating how they make it possible to apply GPS to
large-scale spatio-temporal scenarios without sacrificing inference quality.

1.1 Related Work

GPS are commonly used for spatio-temporal modelling in both machine learning and spatial statistics
[38, 22, 14, 6]. Many approaches to overcome their computational burden have been proposed, from
nearest neighbours [17] to parallel algorithms on GPUs [48]. Within machine learning, the sparse GP
approach is perhaps the most popular [37, 46], and is typically combined with mini-batching to allow
training on massive datasets [26]. However, it fails in practical cases where the number of inducing
points must grow with the size of the data, such as for time series [49].

When the data lie on a grid, separable kernels exhibit Kronecker structure which can be exploited
for efficient inference [39]. This approach has been generalised to the partial grid setting [53], and
to structured kernel interpolation (SKI, [52]) which requires only that inducing points be on a grid.
Generally, these approaches are limited to the conjugate case, although Laplace-based extensions
exist [19]. Bruinsma et al. [10] present an approach to spatio-temporal modelling that performs an
orthogonal projection of the data to enforce independence between the latent processes.

It has been shown that variational GPS can be computed in linear time either by exploiting sparse
precision structure [18] or via filtering and smoothing [11]. Other inference schemes such as Laplace
and expectation propagation have also been proposed [35, 51]. In the spatio-temporal case, sparsity
has been used in the spatial dimension [24, 43]. These methods historically suffered from the fact
that i) filtering was not amenable to fast automatic differentiation due to its recursive nature, and ii)
state-of-the-art inference schemes had not been developed to make them directly comparable to other
methods. The first is no longer an issue since many machine learning frameworks are now capable
of efficiently differentiating recursive models [11]. We address the second point with this paper. A
similar algorithm to ours that is also sparse in the temporal dimension has been developed [50, 2],
and relevant properties of the spatio-temporal model presented here are also analysed in [45]. Fourier
features [28] are an alternative approach to scalable GPS, but are not suited to very long time series
with high variability due to the need for impractically many inducing features.
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2 Background

We consider data lying on a spatio-temporal grid comprising input–output pairs, {X(st) ∈
R

Nt×Ns×D,Y(st) ∈ R
Nt×Ns}, where Nt is the number of temporal points, Ns the number of

spatial points, and D = 1 + Ds the input dimensionality (with Ds being the number of spatial
dimensions). We use t and s to represent time and space respectively. The assumption of the grid
structure is relaxed via the introduction of sparse methods in Sec. 3, and by the natural handling of
missing data.

For consistency with the GP literature we let X = vec(X(st)) ∈ R
N×D, Y = vec(Y(st)) ∈ R

N×1,
where N = NtNs is the total number of data points. We use the operator vec(·) to simply convert
data from a spatio-temporal grid into vector form, whilst keeping observations ordered by time and
then space. For notational convenience we define Xn,k = X

(st)
n,k , Yn,k = Y

(st)
n,k , which indexes

data at time index n and spatial index k. We use tn to denote the n’th time point, S ∈ R
Ns×Ds to

denote all spatial grid points and Sk the k’th one. Let f : RD → R to be a random function with a
zero-mean GP prior, then for a given likelihood p(Y | f(X)) the generative model is,

f(x) ∼ GP(0, κ(x, x′)), Y | f ∼
∏Nt

n=1

∏Ns

k=1 p(Yn,k | fn,k), (1)

where fn,k = f(Xn,k), and we let fn be the function values of all spatial points at time tn. When the
kernel κ is evaluated at given inputs we write the corresponding gram matrix as KXX′ = κ(X,X′).
To make it explicit that f takes spatio-temporal inputs we also abuse the notation slightly to write
f(x) = f(t, s) and κ(x, x′) = κ(t, s, t′, s′). A summary of all notation used is provided in App. A.
For Gaussian likelihoods the posterior, p(f |Y), is available in closed form, otherwise approximations
must be used. In either case, inference typically comes at a cubic cost of O(N3

t N
3
s ).

2.1 State Space Spatio-Temporal Gaussian Processes

One method for handling the cubic scaling of GPS is to reformulate the prior in Eq. (1) as a state
space model, reducing the computational scaling to linear in the number of time points [43]. The
enabling assumption is that the kernel is both Markovian and separable between time and space:
κ(t, s, t′, s′) = κt(t, t

′)κs(s, s
′). We use the term Markovian kernel to refer to a kernel which can

be re-written in state-space form (see [44] for an overview). First, we write down the GP prior as a
stochastic partial differential equation (SPDE, see [15]) ∂tf̄(t, s) = As f̄(t, s) + Ls w(t, s), where
w(t, s) is a (spatio-temporal) white noise process and As a suitable (pseudo-)differential operator
[see 42]. By appropriately defining the model matrices and the white noise spectral density function,
SPDEs of this form can represent a large class of separable and non-separable GP models.

When the kernel is separable, this SPDE can be simplified to a finite-dimensional SDE [24] by
marginalising to a finite set of spatial locations, S ∈ R

Ns×Ds , giving, df̄(t) = F f̄(t) dt+ L dβ(t),
where f̄(t) is the Gaussian distributed state at the spatial points S at time t, with dimensionality
d = Nsdt, where dt is the dimensionality of the state-space model induced by κt(·, ·). dβ(t) has
spectral density Qc, and the matrix H extracts the function value from the state: fn = Hf̄(tn). F
and L are the feedback and noise effect matrices [42]. This simplification to an SDE is possible due
to the independence between spatial points at time t and all other time steps, given the current state
[45]. This follows from the fact that for any separable kernel, f(t, s) and f(t′, s′) are independent
given f(t′, s) [36]. For a step size ∆n = tn+1 − tn, the discrete-time model matrices are,

An = Φ(F∆n), Qn =
∫∆n

0
Φ(∆n − τ)LQc L

⊤Φ(∆n − τ)⊤ dτ, (2)

where Φ(·) is the matrix exponential. The resulting discrete model is,

f̄(tn+1) = An f̄(tn) + qn, Yn | f̄(tn) ∼ p(Yn |H f̄(tn)), (3)

where qn ∼ N(0,Qn). If p(Yn |H f̄(tn)) is Gaussian then Kalman smoothing algorithms can be
employed to perform inference in Eq. (3) in O(Ntd

3) = O(NtN
3
s d

3
t ).

Markovian GPs with Spatial Sparsity Sparse GPS re-define the GP prior over a smaller set of M
inducing points: let u = f(Z) ∈ R

M×1 be the inducing variables at inducing locations Z ∈ R
M×D,

then the augmented prior is p(f ,u) = p(f |u)p(u), where p(u) = N(u |0,KZZ), and with Gaussian
conditional p(f |u). If the inducing points are placed on a spatio-temporal grid, with Zs ∈ R

Ms×Ds

being the spatial inducing locations, the conditional p(f |u) can be simplified to (see App. D):

p(f |u) = N
(
f |

[
I⊗ (K

(s)
SS
⊗K

−(s)
ZsZs

)
]
u,K

(t)
tt
⊗ Q̃s

)
, (4)
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where Q̃s = K
(s)
SS
− K

(s)
SZs

K
−(s)
ZsZs

K
(s)
ZsS

(see App. A for notational details). The fully indepen-
dent training conditional (FITC) method [37] approximates the full conditional covariance with
its diagonal, leading to the following convenient property: qFITC(f |u) =

∏Nt

n=1 qFITC(fn |u) =∏Nt

n=1 qFITC(fn |un), where the last equality holds because I⊗ (K
(s)
SS
⊗K

−(s)
ZsZs

) is block diagonal.
This factorisation across time allows the model to be cast into the state-space form of Eq. (3), but
where the state f̄(t) is defined over the reduced set of spatial inducing points [24]. Inference can be
performed in O(NtM

3
s d

3
t ).

2.2 Sparse Variational GPs

To perform approximate inference in the presence of sparsity or non-Gaussian likelihoods, variational
methods cast inference as optimisation through minimisation of the Kullback–Leibler divergence
(KLD) from the true posterior to the approximate posterior [8]. Although direct computation of the
KLD is intractable, it can be rewritten as the maximisation of the evidence lower bound (ELBO).

Unlike FITC, the sparse variational GP (SVGP, [46]) does not approximate the conditional p(f |u),
but instead approximates the posterior as q(f ,u) = p(f |u) q(u), where q(u) = N(u |m,P) is a
Gaussian whose parameters are to be optimised. The SVGP ELBO is:

LSVGP = Eq(u)

[
Eq(f |u) [log p(Y | f)]

]
−KL [q(u) ‖ p(u)] , (5)

which can be computed in O(NM2 + M3). SVGP has many benefits over methods such as
FITC, including: non-Gaussian likelihoods can be handled through quadrature or Monte-Carlo
approximations [27, 33], it is applicable to big data through stochastic VI and mini-batching [26],
and the inducing locations are ‘variationally protected’ and hence prevent overfitting [7].

Natural Gradients Natural gradient descent calculates gradients in distribution space rather than
parameter space, and has been shown to improve inference time and quality for variational GPS
[26, 40]. A natural descent direction is obtained by scaling the standard gradient by the inverse of
the Fisher information matrix, Eq(·)

[
∇2 log q(·)

]
[5]. For a Gaussian approximate posterior, the

natural gradient of target L with respect to the natural parameters λ can be calculated without directly
forming the Hessian, since it can be shown to be equivalent to the gradient with respect to the mean
parameters µ = [m,mm⊤ +P] [25]. The natural parameter update, with learning rate β, becomes,

λ← λ+ β
∂L

∂µ
. (6)

To update the approximation posterior, λ can be simply transformed to the moment parameterisation
[m,P]. A table of mappings between the various parametrisations is given in App. G.

CVI and the Approximate Likelihood Khan and Lin [31] show that when the prior and approx-
imate posterior are conjugate (as in the GP case), further elegant properties of exponential family
distributions mean that Eq. (6) is equivalent to a two step Bayesian update:

λ̃← (1− β) λ̃+ β
∂ Eq(f)[log p(Y | f)]

∂µ
, λ← η + λ̃ , (7)

where η are the natural parameters of the prior and λ̃ are the natural parameters of the likelihood
contribution. Letting g(·) =

∂Eq [log p(Y | f)]
∂· , the gradients can be computed in terms of the mean

and covariance via the chain rule: g(µ) =
[
g(m)− 2g(P)m, g(P)

]
. Eq. (7) shows that, since the

prior parameters η are known, natural gradient variational inference is completely characterised by
updates to an approximate likelihood, which we denote N(Ỹ | f , Ṽ), parameterised by covariance
Ṽ = (−2λ̃(2))−1 and mean Ỹ = Ṽλ̃(1) (see App. A). The approximate posterior then has the form,

q(f) =
N(Ỹ | f , Ṽ) p(f)

∫
N(Ỹ | f , Ṽ) p(f) df

. (8)

Computing q(f) amounts to performing conjugate GP regression with the model prior and the
approximation likelihood. This approach is called conjugate-computation variational inference (CVI,
[31]). To re-emphasise that the CVI updates compute the exact same quantity as Eq. (6), we provide
an alternative derivation in App. H by directly applying the chain rule to Eq. (6).
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3 Spatio-Temporal Variational Gaussian Processes

In this section we introduce a spatio-temporal VGP that has linear complexity with respect to time
whilst obtaining the identical variational posterior as the standard VGP. We will then go on to derive
this method’s sparse variant, which gives the same posterior as SVGP when the inducing points are
set similarly (i.e., on a spatio-temporal grid), but is capable of scaling to much larger values of M .

3.1 The Spatio-Temporal VGP ELBO

We first derive our proposed spatio-temporal VGP ELBO. We do this by exploiting the form of the
approximate posterior after a natural gradient step in order to write the ELBO as a sum of three terms,
each of which can be efficiently computed through filtering and smoothing. As shown in Sec. 2.2,
after a natural gradient step, the approximate posterior q(f) ∝ N(Ỹ | f , Ṽ) p(f) decomposes as a
Bayesian update applied to the model prior with an approximate likelihood. Following Chang et al.
[11] we substitute Eq. (8) into the VGP ELBO:

LVGP = Eq(f)

[
log

p(Y | f) p(f)

q(f)

]
= Eq(f)

[
log

p(Y | f)✟✟p(f)
∫
N(Ỹ | f , Ṽ) p(f) df

N(Ỹ | f , Ṽ)✟✟p(f)

]
(9)

=

Nt∑

n=1

Ns∑

k=1

Eq(fn,k)

[
log p(Yn,k | fn,k)

]
− Eq(f)

[
log N(Ỹ | f , Ṽ)

]
+ logEp(f)

[
N(Ỹ | f , Ṽ)

]
.

The first term is the expected log likelihood, the second is the expected log approximate likeli-

hood, and the final term is the log marginal likelihood of the approximation posterior, log p(Ỹ) =

logEp(f)

[
N(Ỹ | f , Ṽ)

]
. Naïvely evaluating LVGP requires O(N3) computation for both the update

to q(f) and the marginal likelihood. We now show how to compute this with linear scaling in Nt.

We observe that after a natural gradient update, Ṽ, the approximate likelihood covariance, has the
same form as the gradient g(P) because, as seen in Eq. (7), λ̃ is only additively updated by g(µ).
Since the expected likelihood, Eq(f)[log p(Y | f)], factorises across observations, g(P) is diagonal

and hence so is Ṽ. The approximate likelihood therefore factorises in the same way as the true one:

log N(Ỹ | f , Ṽ) =

Nt∑

n=1

Ns∑

k=1

log N(Ỹn,k | fn,k, Ṽn,k). (10)

We now turn our attention to computing the posterior and the marginal likelihood. Recall that if the
kernel is separable between time and space, κ(t, s, t′, s′) = κt(t, t

′)κs(s, s
′), then the GP prior can

be re-written as Eq. (3). This separability property further results in the state-space model matrices
having a convenient Kronecker structure,

f̄(tn+1) =
[
INs
⊗A(t)

n

]
f̄(tn) + qn , Ỹn | f̄(tn) ∼ p(Ỹn |H f̄(tn)), (11)

where qn ∼ N(0,K
(s)
SS
⊗Q

(t)
n ) and H = INs

⊗H(t). Here A
(t)
n ∈ R

dt×dt , Q(t)
n ∈ R

dt×dt , and
H(t) ∈ R

1×dt are the transition matrix, process noise covariance, and measurement model of the
SDE (see Sec. 2.1) induced by the kernel κt(·, ·), respectively.

Because the GP prior is Markov and the approximate likelihood factorises across time, the approx-
imate GP posterior is also Markov [45]. Hence marginals q(fn) can be computed through linear
filtering and smoothing applied to Eq. (11). Furthermore, the marginal likelihood of a linear Gaussian
state-space model, p(Ỹ) = p(Ỹ1)

∏Nt

n=2 p(Ỹn | Ỹ1:n−1), can be computed sequentially by run-
ning the forward filter, since p(Ỹn | Ỹ1:n−1) =

∫
p(Ỹn |Hf̄(tn)) p(f̄(tn) | Ỹ1:n−1) df̄(tn), where

p(f̄(tn) | Ỹ1:n−1) is the predictive filtering distribution. By combining all of the above properties we
can now write the ELBO as,

LST-VGP =

Nt∑

n=1

Ns∑

k=1

Eq(fn,k)

[
log p(Yn,k | fn,k)

]
−

Nt∑

n=1

Ns∑

k=1

Eq(fn,k)

[
log N(Ỹn,k | fn,k, Ṽn,k)

]

+

Nt∑

n=1

logE
p(f̄(tn) | Ỹ1:n−1)

[
N(Ỹn |Hf̄(tn), Ṽn)

]
. (12)
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Algorithm 1 Spatio-temporal sparse VGP

Input: Data:{X,Y}, Initial params.:{Ỹ, Ṽ},
Learning rates:{β, ρ}
while ELBO (L) not converged do

⊲ CVI natural gradient step:

q(u), ℓ = Alg. 2(Ỹ, Ṽ)
E = Eq(u)[Ep(f |u)[log[p(Y | f)]]

λ̃ = (1− β)λ̃+ β ∂E
∂µ

Ṽ = (−2λ̃(2))−1, Ỹ = Ṽλ̃
(1)

⊲ Hyperparameter gradient step:

q(u), ℓ = Alg. 2(Ỹ, Ṽ)
E = Eq(u)[Ep(f |u)[log[p(Y | f)]]

L = E − Eq(u)[log N(Ỹ |u, Ṽ)] + ℓ ⊲ ELBO

θ = θ + ρ ∂L
∂θ

end while

Algorithm 2 Sparse spatio-temporal smoothing

Input: Likelihood:{Ỹ, Ṽ}, Space prior:{K(s)
ZsZs

},

Time prior:{A(t),Q(t),H(t)}

⊲ Construct model matrices:
An = IMs

⊗A
(t)
n ,

Qn = K
(s)
ZsZs

⊗Q
(t)
n ,

H = IMs
⊗H(t)

⊲ Filtering and smoothing:
if using parallel filter / smoother then

q(u), ℓ = Alg. 4(Ỹ, Ṽ,A,Q,H)
else

q(u), ℓ = Alg. 3(Ỹ, Ṽ,A,Q,H)
end if

⊲ Return posterior marginals and log likelihood:
return q(u), ℓ

This ELBO can be computed with linear scaling in Nt: O(NtN
3
s d

3
t ). We now show that the natural

gradient step for updating the parameters of N(Ỹ | f , Ṽ) can be computed with the same complexity.

3.2 Efficient Natural Gradient Updates

As discussed in Sec. 2.2, a natural gradient update to the posterior, q(f) ∝ p(f)N(Ỹ | f , Ṽ), has
superior convergence properties to gradient descent, and is completely characterised by an update to
the approximate likelihood, N(Ỹ | f , Ṽ), whose mean and covariance are the free parameters of the
model, and implicitly define the same variational parameters as VGP. Since the likelihood factorises
across the data points, these updates only require computation of the marginal distribution q(fn,k) to
obtain Eq(fn,k)[log p(Yn,k | fn,k)] and its gradients.

As we have shown, computation of the marginal posterior amounts to smoothing over the state,
f̄ ∼ N(f̄ | m̄, P̄), with the model in Eq. (11). The time marginals are given by applying the
measurement model to the state: q(fn) = N(fn |mn = Hm̄n,Pn = HP̄nH

⊤) after which
q(fn,k) =

∫
q(fn) dfn, 6=k can then be obtained by integrating out the other spatial points. Given the

marginal, Eq. (7) can be used to give the new likelihood parameters Ỹ and Ṽ. The full learning
algorithm iterates this process alternately with a hyperparameter update via gradient descent applied
to the ELBO, Eq. (12), and has computational complexity O(NtN

3
s d

3
t ). We call this method the

spatio-temporal variational GP (ST-VGP).

3.3 Spatial Sparsity: from O(NtN
3
s d

3
t ) to O(NtM

3
s d

3
t )

We now introduce spatial inducing points, Zs, in order to reduce the effective dimensionality of the
state-space model. Whilst we maintain the same notation for consistency, it should be noted that
the sparse model no longer requires the data to be on a spatio-temporal grid, only that the inducing
points are. In this case, letting q(u) = N(u |m(u),P(u)) be the sparse variational posterior, the

marginal q(fn) = N(f |mn,Pn) only depends on m
(u)
n ,P

(u)
n due to the conditional independence

property for separable kernels discussed in Sec. 2.1. We compute the posterior q(u) via filtering and
smoothing over the state f̄(t) in a similar way to ST-VGP by setting,

An = IMs
⊗A(t)

n , Qn = K
(s)
ZsZs

⊗Q(t)
n , H = IMs

⊗H(t). (13)

Alg. 2 gives the smoothing algorithm. However, the natural gradient update, Eq. (7), now becomes,

λ̃← (1− β) λ̃+ β
∂ Eq(u)

[
Ep(f |u) [log p(Y | f)]

]

∂µ(u)
, (14)

which results in λ̃
(2)
n , and hence also Ṽn, being a dense matrix (i.e., Ṽ is block-diagonal) due to the

conditional mapping, p(fn |un). Therefore the approximate likelihood for the sparse model factorises
across time, but not space (see App. J for details): log N(Ỹ |u, Ṽ) =

∑Nt

n=1 log N(Ỹn |un, Ṽn).
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Figure 2: (a) Log wall-clock time, including any startup costs, across 7 synthetic spatio-temporal
datasets with an increasing number of time steps (average across 5 runs). (b) Negative ELBO during
training for the small-scale NYC-CRIME dataset.

The Spatio-Temporal Sparse VGP ELBO Adding inducing points in space is equivalent to placing
the inducing points on a spatio-temporal grid (i.e., inducing points exist at all time steps), and hence
the variational objective directly follows from LSVGP using a similar argument to Sec. 3.1:

LST-SVGP = Eq(f ,u)

[
log

p(Y | f)✘✘✘✘p(f |u)
✟
✟✟p(u)

∫
N(Ỹ |u, Ṽ) p(u) du

N(Ỹ |u, Ṽ)✘✘✘✘p(f |u)
✟
✟✟p(u)

]

=

Nt∑

n=1

Ns∑

k=1

Eq(un)

[
Ep(fn,k |un)

[
log p(Yn,k | fn,k)

]]
−

Nt∑

n=1

Eq(un)

[
log N(Ỹn |un, Ṽn)

]

+

Nt∑

n=1

logE
p(f̄(tn) | Ỹ1:n−1)

[
N(Ỹn |Hf̄(tn), Ṽn)

]
, (15)

where the final term is given by the forward filter.

Efficient Natural Gradient Updates The marginal required to compute the ELBO and natural
gradient, q(fn,k) =

∫∫
p(f |u) q(u) du df 6=n,k =

∫∫
p(f |un) q(un) dun df 6=n,k , is the predictive

distribution at input Xn,k from the posterior q(u). Because the inducing points have only been placed
in space, this can be simplified through the Kronecker structure given by the state-space model. As
shown in App. I, the marginal mean and covariance are,

mn,k = K
(s)
SkZs

K
−(s)
ZsZs

m(u)
n ,

Pn,k = K
(s)
SkZs

K
−(s)
ZsZs

P(u)
n K

−(s)
ZsZs

K
(s)
ZsSk

+K
(t)
Xn,kXn,k

(
K

(s)
SkSk

−K
(s)
SkZs

K
−(s)
ZsZs

K
(s)
ZsSk

)
,

(16)

where m
(u)
n = Hm̄n, P(u)

n = HP̄nH
⊤ are given by filtering and smoothing. By combining the

above properties we see that all the terms required for the natural gradient updates and hyperparameter
learning can be computed efficiently in O(NtM

3
s d

3
t ). We call this approach the spatio-temporal

sparse variational GP (ST-SVGP). The full algorithm is given in Alg. 1.

4 Further Improving the Temporal and Spatial Scaling

We now propose two approaches to further improve the computational properties of ST-VGP and
ST-SVGP. First, we show how parallel filtering and smoothing can be used for non-conjugate GP
inference, which results in a theoretical span complexity of O(logNtd

3). We then present a spatial
mean-field approximation, which can be used independently, or in combination with sparsity.

4.1 Parallel Bayesian Filtering and Smoothing

The associative scan algorithm [9] uses a divide-and-conquer approach combined with parallelisation
to convert N sequential associative operations into logN sequential steps (for an operator ∗, associa-
tivity implies (a ∗ b) ∗ c = a ∗ (b ∗ c)). This algorithm has been made applicable to conjugate Markov
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Figure 3: Observations of PM10 at site HK6, showing rich short-scale structure (top). Mean and 95%
confidence of ST-SVGP trained with 30 spatial inducing points (totalling 64,770 inducing points)
and SVGP with 2000 inducing points (minibatch size 100). Both models have similar training times.
ST-SVGP captures the complex structure of the time series whereas SVGP smooths the data.

GPS by deriving a new form of the Kalman filtering and smoothing operations that are associative
[41, 13]. We give the form of these associative operators in App. E and show, for the first time, how
these methods can be adapted to the non-conjugate setting. This follows directly from the use of the
CVI approach to natural gradient VI, which requires only conjugate computations, i.e., the linear
filter and smoother. Consider the ST-SVGP ELBO:

LST-SVGP = Eq(u)

[
Ep(f |u)

[
log p(Y | f)

]]
︸ ︷︷ ︸

factorises across time and space,
compute in parallel

−Eq(u)

[
log N(Ỹ |u, Ṽ)

]
︸ ︷︷ ︸

factorises across time,
compute in parallel

+ logEp(u)

[
N(Ỹ |u, Ṽ)

]
︸ ︷︷ ︸

compute with parallel filter

.

The first two terms can be computed in parallel, since they decompose across time given the marginals
q(un). The final term can be computed via the parallel filter, and the required marginals q(un) via
the parallel smoother, which makes ST-SVGP a highly parallelisable algorithm. Alg. 4 gives the
filtering and smoothing algorithm and Alg. 2 shows how this method can be used in place of the
sequential filter when performing inference. One drawback of the parallel filter is that when the state
dimension is large, many of the available computational resources may be consumed by the arithmetic
operations involved in a single filtering step, and the logarithmic scaling may be lost. Fortunately,
the spatial mean-field approximation presented in Sec. 4.2 helps to alleviate this issue. In App. E we
provide more details on the method as well as a detailed examination of its practical properties.

4.2 Spatial Mean-Field Approximation

We reconsider the state space model for the spatio-temporal GP derived in Sec. 2.1, which has process
noise qn ∼ N(0,K

(s)
SS
⊗ Q

(t)
n ). This Kronecker structure implies Ns independent processes are

linearly mixed using spatial covariance K
(s)
SS

. The linearity of this operation makes it possible to
reformulate the model to include the mixing as part of the measurement, rather than the prior:

f̄(tn+1) = An f̄(tn) + qn, Yn | f̄(tn) ∼ p(Yn | [C
(s)
SS
⊗H(t)] f̄(tn)), (17)

where qn ∼ N(0, INs
⊗Q

(t)
n ) and C

(s)
SS

is the Cholesky factor of K(s)
SS

(see App. F for the derivation).

This has the benefit that now both An and Qn = INs
⊗Q

(t)
n , are block diagonal, such that under

the prior the latent processes are fully independent. This enables a mean-field assumption between
the Ns latent posterior processes: q(f̄(t)) ≈

∏Ns

k=1 q(f̄k(t)), where f̄k(t) is the dt-dimensional state
corresponding to spatial point Sk. This approximation enforces block-diagonal structure in the state
covariance, such that matrix operations acting on the full state can be avoided. Dependence between
the latent processes is still captured via the measurement model (likelihood), and our experiments
show that this approach still approximates the true posterior well (see Sec. 5 and App. K.6) whilst
providing significant computational gains when Ns is large.

5 Experiments

We examine the scalability and performance of ST-VGP and its variants. Throughout, we use a
Matérn-3/2 kernel and optimise the hyperparameters by maximising the ELBO using Adam [32].
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Table 1: NYC-CRIME (small) results.
ST-SVGP = SVGP when Z is fixed.

TRAIN Z MODEL RMSE NLPD

× ST-SVGP 3.02 ± 0.13 1.72 ± 0.04
× SVGP 3.02 ± 0.13 1.72 ± 0.04
X ST-SVGP 2.79 ± 0.15 1.64 ± 0.04
X SVGP 2.94 ± 0.12 1.65 ± 0.05

Table 2: Test performance on matching average run time
in seconds for the NYC-CRIME (large) count dataset.

MODEL TIME (CPU) TIME (GPU) RMSE NLPD

ST-SVGP 20.86 ± 0.46 0.61 ± 0.00 2.77 ± 0.06 1.66 ± 0.02
MF-ST-SVGP 20.69 ± 0.86 0.32 ± 0.00 2.75 ± 0.04 1.63 ± 0.02
SVGP-1500 12.67 ± 0.11 0.13 ± 0.00 3.20 ± 0.14 1.82 ± 0.05
SVGP-3000 80.80 ± 3.42 0.45 ± 0.01 3.02 ± 0.18 1.76 ± 0.05

We use learning rates of ρ = 0.01, β = 1 in the conjugate case, and ρ = 0.01, β = 0.1 in the
non-conjugate case. We use 5-fold cross-validation (i.e., 80–20 train-test split), train for 500 iterations
(except for AIR-QUALITY where we train for 300) and report RMSE, negative log predictive density
(NLPD, see App. K.1) and average per-iteration training times on CPU and GPU. When using a GPU,
the parallel filter and smoother are used.

Synthetic Experiment We construct 7 toy datasets with rich temporal structure but smooth spatial
structure (see App. K.2) and varying size: Nt = 10, 82, 155, 227, 300, 500, 1000, and construct a
500×100 grid that serves as a test set for all cases. As the dataset size increases we expect the
predictive performance of all methods to improve at the expense of run time. We compare against
SKI and SVGP (see Sec. 1.1). Fig. 2a shows that whilst SVGP becomes infeasible for more than
300 time steps, the ST-SVGP variants scale linearly with time and are faster than SKI (except for
the very small datasets, in which the model compile time in JAX dominates). In App. K we show the
test performance of all models.

NYC-CRIME – Count Dataset We model crime numbers across New York City, USA (NYC), using
daily complaint data from [1]. Crime data has seasonal trends and is spatially dependent. Accurate
modelling can lead to more efficient allocation of police resources [20, 3]. We first consider a small
subset of the data to highlight when our methods exactly recover SVGP. We bin the data from 1st to
10th of January 2014 (Nt = 10) into a spatial grid of size 30×30 and drop cells that do not intersect
with land (Ns = 447, N = 4470). We run ST-SVGP and SVGP with inducing points initialised
to the same locations. We plot the training ELBO in Fig. 2b and performance in Table 1. For fixed
inducing points, both models have the same training curve and provide the same predictions (up
to numerical differences). Optimising the inducing points improves both methods. A comparable
inference method for non-conjugate likelihoods has not yet been developed for SKI.

We next consider observations from January to July 2014, with daily binning (Nt = 182) and the
same spatial grid (Ns = 447, N = 81,354). We run ST-SVGP and its mean-field variant (MF-ST-
SVGP) with 30 spatial inducing points (equivalent to SVGP with M = 30×182 = 5460). Table 2
shows that our methods outperform SVGP (with M = 1500, M = 3000 and batch sizes 1500, 3000
respectively) because they can afford more inducing points for the same computational budget.

Regression: AIR-QUALITY Finally, we model PM10 (µg/m3) air quality across London, UK. The
measurements exhibit periodic fluctuations and highly irregular behaviour due to events like weather
and traffic jams. Using hourly data from the London air quality network [29] between January 2019
and April 2019 (Nt = 2159), we drop sensors that are not within the London boundaries or have
more than 40% of missing data (Ns = 72, N = 155,448). We run ST-SVGP and MF-ST-SVGP
with 30 inducing points in space (equivalent to SVGP with M = 30×2159 = 64,770 inducing
points). To ensure the run times are comparable on both CPU and GPU, we run SVGP with 2000,
2500, 5000, and 8000 inducing points with mini-batch sizes of 600, 800, 2000, and 3000 respectively.
We run SKI with Nt temporal inducing points and 6 inducing points in each spatial dimension.

Table 3: AIR-QUALITY regression. ST-SVGP fits the fast-varying structure well, whereas SVGP
smooths the data. Average run time and standard deviation in seconds shown for a single training
step. ST-SVGP and MF-ST-SVGP use 30 spatial inducing points, equivalent to SVGP with
30×2159 = 64,770 inducing points. Number of inducing points chosen to make run time comparable.

MODEL (BATCH SIZE) TIME (CPU) TIME (GPU) RMSE NLPD

ST-SVGP 16.79± 0.63 4.47± 0.01 9.96± 0.56 8.29± 0.80 ← full spatio-temporal model
MF-ST-SVGP 13.74± 0.49 0.85± 0.01 10.42± 0.63 8.52± 0.91 ← with mean-field assumption
SVGP-2000 (600) 20.21± 0.28 0.17± 0.00 15.46± 0.44 12.93± 0.95





baselines
SVGP-2500 (800) 40.90± 1.11 0.25± 0.00 15.53± 1.09 13.48± 1.85
SVGP-5000 (2000) — 1.19± 0.00 14.20± 0.44 12.73± 0.73
SVGP-8000 (3000) — 4.09± 0.01 13.83± 0.47 12.40± 0.75
SKI 23.36± 1.01 3.61± 0.01 12.01± 0.55 10.32± 0.79

9



Our methods significantly outperform the SVGP baselines because they can afford considerably
more inducing points. As shown in Fig. 3 the SVGP drastically smooths the data, whereas ST-SVGP
fits the short-term structure well. The mean-field approach is significantly more efficient, especially
when using the parallel algorithm, but we do observe a slight reduction in prediction quality.

6 Conclusions and Discussion

We have shown that variational inference and spatio-temporal filtering can be combined in a principled
manner, introducing an approach to GP inference for spatio-temporal data that maintains the benefits
of variational GPS, whilst exhibiting favourable scaling properties. Our experiments confirm that
ST-SVGP outperforms baseline methods because the effective number of inducing points grows
with the temporal horizon, without introducing a significant computational burden. Crucially, this
leads to improved predictive performance, because fast varying temporal information is captured by
the model. We demonstrated how to apply parallel filtering and smoothing in the non-conjugate GP
case, but our empirical analysis identified a maximum state dimension of around d ≈ 50, after which
the sub-linear temporal scaling is lost. However, our proposed spatial mean-field approach alleviates
this issue somewhat, making the combined algorithm extremely efficient even when both the number
of time steps and spatial points are large. The resemblance of our framework to the VGP approach
suggests many potential extensions, such as multi-task models [4] and deep GPs [16]. We provide
JAX code for all methods at https://github.com/AaltoML/spatio-temporal-GPs.

6.1 Limitations and Societal Impact

We believe our work takes an important step towards allowing sophisticated GP models to be run on
both resource constrained CPU machines and powerful GPUs, greatly expanding the usability of such
models whilst also reducing unnecessary consumption of resources. However, when using predictions
from such methods, the limitations of the model assumptions and potential inaccuracies when using
approximate inference should be kept in mind, especially in cases such as crime rate monitoring
where actions based on biased or incorrect predictions can have harmful societal consequences.
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