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Abstract State of the art foundation models such as GPT-4 perform surprisingly well at in-context

learning (ICL), a variant of meta-learning concerning the learned ability to solve tasks

during a neural network forward pass, exploiting contextual information provided as input

to the model. This useful ability emerges as a side product of the foundation model’s

massive pretraining. While transformer models are currently the state of the art in ICL, this

work provides empirical evidence that Mamba, a newly proposed state space model which

scales better than transformers w.r.t. the input sequence length, has similar ICL capabilities.

We evaluated Mamba on tasks involving simple function approximation as well as more

complex natural language processing problems. Our results demonstrate that, across both

categories of tasks, Mamba closely matches the performance of transformer models for ICL.

Further analysis reveals that, like transformers, Mamba appears to solve ICL problems by

incrementally optimizing its internal representations. Overall, our work suggests thatMamba

can be an efficient alternative to transformers for ICL tasks involving long input sequences.

This is an exciting finding in meta-learning and may enable generalizations of in-context

learned AutoML algorithms (like TabPFN or Optformer) to long input sequences. The code

to reproduce our experiments is available at github.com/automl/is_mamba_capable_of_icl.

1 Introduction

Recent advancements in large-scale neural language modeling (Brown et al., 2020) have demon-

strated that Transformer models (Vaswani et al., 2017) exhibit in-context learning (ICL) capabilities:

after (self-supervised) pre-training, they can infer how to perform tasks only from input exam-

ples without the need for explicit training nor fine-tuning. This ability represents a departure

from established in-weights learning of traditional machine learning and has sparked consider-

able academic interest as a new type of meta-learning. In contrast to standard meta-learning

approaches (Hospedales et al., 2021), ICL emerges in transformer models from pre-training: without

explicit training on a distribution of tasks, without bi-level optimization, and without any specific

inductive bias. Recent studies advanced the understanding of how transformers can implement

and learn in-context gradient-based methods when trained on distributions of simple supervised

learning tasks, e.g., on linear regression tasks (Von Oswald et al., 2023; Ahn et al., 2023; Bai et al.,

2023). Despite such results, whether pre-trained transformers perform in-context gradient methods

on more complex tasks remains an ongoing discussion (Shen et al., 2023).

Orthogonal to these investigations into the transformer architecture, recent work proposed

deep state space models to overcome limitations of transformers in processing long sequences (Tay

et al., 2021), such as S4 (Gu et al., 2021a) or H3 (Gu et al., 2021b). These models merge elements

from recurrent and convolutional networks with state space approaches (Kalman, 1960). However,

their success on NLP tasks was limited due to problems handling dense information tasks. A key

feature of state space models is that they can run the forward pass in two modes with different

complexity w.r.t. the input sequence length: a parallel mode, ideal for training but with superlinear

time complexity and a recurrent mode with linear time complexity and more suited for inference.
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In contrast, the forward pass of transformer models has quadratic time complexity and hence it is

less efficient.

This work conducts an investigation into the ICL capabilities of the recently proposed Mamba

architecture (Gu and Dao, 2023), a successor to S4 and H3. Mamba has already shown its potential

in different applications beyond NLP, such as visual representation learning (Zhu et al., 2024) or

image segmentation (Ma et al., 2024). Concurrent to our work, the ICL capabilities of Mamba were

investigated on synthetic language learning tasks by Akyürek et al. (2024) and on other tasks,

including simple function classes, by Park et al. (2024). Differently from those works, we study the

performance of the pre-trained Mamba model on NLP tasks, conduct a probing analysis on the

representations at intermediate layers to better understand Mamba’s ICL solution mechanisms,

and measuring the models’ ability to extrapolate beyond the context length used for training on

simple function classes.

Models capable of ICL have shown good AutoML performance. A remarkable example are

Prior-data Fitted Networks (PFNs) (Müller et al., 2022), which are (usually transformer) models

pretrained on a range of synthetic tasks generated from a prior distribution, to approximate the

posterior predictive distribution. Interestingly, by harnessing ICL and with a rich enough prior,

PFNs, specifically TabPFN (Hollmann et al., 2023), exhibit strong generalization performance on

real tabular data, enabling predictions on new data without the need for explicit specification

and optimization of a table-specific model. Other applications of ICL relevant to AutoML are in

Black-Box Optimization (Müller et al., 2023; Yang et al., 2023a; Chen et al., 2022), Learning-Curve

Extrapolation (Adriaensen et al., 2024), and Time-Series Forecasting (Dooley et al., 2024). Our

experimental setup for simple function classes, which closely follows the one in (Garg et al., 2022),

is similar to that of PFNs, but the priors we use concern only simple regression tasks and the model

only outputs the mean of the posterior predictive distribution.

Contributions. After introducing state-space models and Mamba more formally (Section 2), we

make the following contributions:

• We demonstrate that Mamba is capable of ICL and performs on-par with transformers on simple

function classes (Section 3.1) and more complex NLP tasks (Section 4). This highlights Mamba

as an efficient alternative to transformers for ICL tasks entailing long sequences. In addition,

we find that Mamba outperforms its predecessor S4, and RWKV (Peng et al., 2023), a recent

parallel/recurrent architecture.

• Using a simple probing approach, we provide preliminary insights into the mechanism by which

Mamba incrementally solves ICL tasks (Section 3.2). We find that the optimization processes

exhibited by Mamba are similar to those of transformer models.

2 State Space Models and the Mamba Architecture

State Space Models (SSMs) are sequence-to-sequence models (when discretized) with learnable pa-

rameters which are inspired by a continuous-time model. SSMs map an input sequence (𝑥1, . . . , 𝑥𝐿)
to the output sequence (𝑦1, . . . , 𝑦𝐿) by computing latent states (ℎ1, . . . , ℎ𝐿). The map of linear time

invariant SSMs such as S4 (Gu et al., 2021a) or H3 (Fu et al., 2023) can be equivalently written as

ℎ𝑡 = 𝐴ℎ𝑡−1 + 𝐵𝑥𝑡
𝑦𝑡 = 𝐶ℎ𝑡

(1)

𝐾𝑖 = 𝐶𝐴
𝑖𝐵

𝑦𝑡 =
∑𝑡−1

𝑖=0
𝐾𝑖𝑥𝑡−𝑖

(2)

where ℎ0 = 0,𝐴 = 𝑓1(𝐴, 𝐵,Δ), 𝐵 = 𝑓2(𝐴, 𝐵,Δ), 𝑓1, 𝑓2 specify the type of discretization and (𝐴, 𝐵,𝐶,Δ)
are learnable parameters. In particular, if 𝑥𝑖 ∈ R𝐷

and ℎ𝑖 ∈ R𝑁𝐷
, then 𝐴, 𝐵,𝐶 are matrices of di-

mensions 𝑁𝐷 ×𝑁𝐷 , 𝑁𝐷 ×𝐷 and 𝐷 ×𝑁𝐷 respectively, while Δ is a scalar discretization parameter.

To have a sufficiently large memory of the past, the dimension of ℎ𝑡 is usually much larger than
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that of 𝑥𝑡 . The outputs and states in equation 1 can be computed recurrently with 𝑂 (𝐿) time

complexity and𝑂 (1) space complexity. However, since the state update is linear in ℎ𝑡−1 and 𝑥𝑡 and

does not change with 𝑡 (linear time invariant) the outputs can also be obtained (see equation 2)

by first computing 𝐾𝑖 in parallel for 𝑖 = 0, . . . , 𝐿 − 1 and then computing (𝑦1, . . . , 𝑦𝐿) through a

convolution implemented via Fast Fourier Transform (FFT), which can be easily parallelized and

has time complexity of 𝑂 (𝐿 log(𝐿)). The recurrent mode is ideal for auto-regressive inference,

since in that case parallelization is not possible, while for training the convolutional mode can fully

take advantage of the parallelism of modern specialized hardware.

A fundamental limit of linear time invariant SSMs is that they do not have a mechanism to

select which information to retain in the latent state based on the input sequence, and this makes

them perform badly in tasks involving content-aware reasoning like selective copying, in which

transformer models excel. The Mamba architecture (Gu and Dao, 2023) is a linear time varying

SSM which overcomes this limit via a selection mechanism allowing the latent state dynamics to

change with the current input, thus enabling selective retention of information. In particular, state

and outputs of Mamba follow the recursion (starting from ℎ0 = 0)

ℎ𝑡 = 𝐴𝑡ℎ𝑡−1 + 𝐵𝑡𝑥𝑡
𝑦𝑡 = 𝐶𝑡ℎ𝑡

where 𝐴𝑡 = exp(𝐴Δ𝑡 ), 𝐵𝑡 = exp(𝐴Δ𝑡 )−1
exp(Δ𝑡𝐴 − 𝐼 )Δ𝑡𝐵𝑡 (zero order hold discretization), 𝐵𝑡 =

𝑊1𝑥𝑡 + 𝑏1,𝐶𝑡 = 𝑊2𝑥𝑡 + 𝑏2, Δ𝑡 = softplus(𝑊3𝑥𝑡 + 𝑏3) and (𝐴,𝑊1,𝑊2,𝑊3, 𝑏1, 𝑏2, 𝑏3) are learnable

parameters and 𝐴 is diagonal. The now time-varying discretization parameter Δ𝑡 ∈ R enables

a gating mechanism which can selectively ignore the current input or reset the state. However,

the selection mechanism hinders the use of convolutions for fast and parallel training. Despite

this, Mamba has a similar training time as linear time invariant SSMs thanks to a hardware-aware

algorithm that uses a parallel scan (𝑂 (𝐿) time complexity with only 𝑂 (log(𝐿)) sequential steps) in
place of FFT and stores and updates the large latent states only in the fast SRAM, rather than in

GPU HBM memory. We refer to Gu and Dao (2023) for further details on Mamba’s architecture.

3 Investigation of Simple Function Classes

In this section, we assess Mamba’s ability to learn task distributions involving simple function

classes. We followed the experimental protocol of Garg et al. (2022): each model is trained on a task

distribution and then tested on the same distribution. This process was repeated for 4 regression

task distributions, each falling into a specific function class: linear functions, sparse linear functions,

2-layer ReLU neural networks, and Decision trees. Models trained on linear functions were also

tested on out-of-distribution (OOD) tasks. Differently from Garg et al. (2022), we also tested the

models on tasks with more input examples than seen during training, to measure whether they can

extrapolate to longer inputs. Details on each task distribution are provided in Appendix A.1.3.

We compare Mamba to a causal transformer model using the GPT2 architecture (Radford

et al., 2019) and to some baselines specific to each function class (see Appendix A.1.4). We also

compare with S4, a linear time invariant model, to measure the impact of the selection mechanism

of Mamba. To ensure a fair comparison, the architectures of Mamba and S4 are adjusted to have a

comparable number of parameters to the transformer (9.5 M). For further training details, we refer

to Appendix A.1.1.

We removed the positional encoding used in the causal transformer by Garg et al. (2022), since

we observed that it hinders the transformer’s ability to extrapolate to longer inputs, as also shown

by Press et al. (2021). Similar to Müller et al. (2022), we argue this to be more natural in the present

setup as the input is actually a set of data points, not a sequence.
To sample the inputs of each training task for linear regression, Garg et al. (2022) used a

normal distribution, while we used a skewed Gaussian distribution. Our findings show that this
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Figure 1: Comparative visualization of Mamba, S4, and transformer models (3 training seeds per

method) trained on skewed linear regression and evaluated in-distribution (a) and out-of-

distribution (b) - (f). The dashed vertical line indicates the number of in-context examples

used for training (40).

improves robustness w.r.t. OOD tasks of both Mamba and transformers. Formally, we trained

on linear functions in the set 𝐹 = {𝑓 : 𝑓 (𝑥) = 𝑤𝑇𝑥,𝑤 ∈ R𝑑 } with input dimension 𝑑 = 20. For

each training task, we sampled 𝑤 from an isotropic Gaussian N (0, 𝐼𝑑 ) and 𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1 from
N (0, Σ), where Σ is a skewed covariance matrix with its eigenbasis chosen at random and the 𝑖th

eigenvalue proportional to 1/𝑖2. Following this, we set 𝑦𝑖 = 𝑤
𝑇𝑥𝑖 and assembled the input prompt

𝑃 = (𝑥1, 𝑦1, 𝑥2, 𝑦2, ..., 𝑥𝑘 , 𝑦𝑘 , 𝑥𝑘+1). We used the mean squared error (MSE)
1

𝑘+1
∑𝑘+1

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 as loss

function, where 𝑦𝑖 is the output of the model corresponding to 𝑥𝑖 . For all results in this section, we

report the MSE/𝑑 (𝑑 = 20), which is what is reported by Garg et al. (2022) for linear regression.

3.1 Analysis of in-distribution and out-of-distribution performance

Results are shown in Figures 1 and 2. In skewed linear regression, both Mamba and the Transformer

model closely match the least squares baseline both in-distribution and out-of-distribution as long as

the context length is shorter than the one used for training. Increasing the context length generally

decreases performance, by an amount depending on the training run: two runs of the transfomer

model present very little degradation while Mamba degrades substantially for all three runs. In

contrast, S4 performs much worse than the least squares baseline in all setups. We hypothesize

that S4’s poor ICL performance is due to its linear time invariance. A similar hypothesis was also

drawn by Gu and Dao (2023) for the task of selective copying. Similar results for Mamba and

the Transformer also hold for sparse linear regression, while for neural networks and Decision

trees, Mamba and the transformers are comparable and even show a promising input length

extrapolation: the performance improves after the dotted vertical line indicating the number of

in-context examples used during training. Interestingly, in the case of Decision trees, two out of

three runs of the Transformer perform substantially better than Mamba, while Mamba’s error

degrades less than the one of the Transformer for ReLU neural networks. We also note that when

trained on non-skewed linear regression tasks, Mamba and Transformers are less robust to OOD
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Figure 2: Comparison of Mamba and transformer models (3 training seeds per method) trained and

tested on the same task distribution. The dotted vertical line indicates the number of in-

context examples used for training (40 for sparse linear regression, 100 for ReLU neural

network and Decision tree).
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Figure 3: ICL ’Learning curves’ depicting the iterative optimization performance of Mamba and Trans-

former models on three regression tasks. Ratio of layers is the layer index divided by the

total number of layers for each model (12 for the Transformer and 24 for Mamba). ReLU NN

and Decision tree evaluated at 𝑘 = 100 in-context examples and sparse/skewed LR at 𝑘 = 40

in-context examples (i.e. the same number of in-context examples used during training).

tasks (Figure 9), even if they both perform well in-distribution (Figure 8). In the appendix we also

report the performance when increasing the number of in-context examples during training for

skewed linear regression (Figure 10).

3.2 Mechanistic understanding via probing

To better understand how the Mamba and transformer models perform ICL, we aim to test if they

both employ a solution strategy akin to iterative optimization, i.e., we study if they incrementally

improve their solutions layer after layer (Von Oswald et al., 2023; Ahn et al., 2023; Bai et al., 2023).

We adopted a probing strategy similar to the one by Geva et al. (2021) for transformer language

models. Differently from other probing strategies like the one by Akyürek et al. (2023), who learn a

(non-linear) probe on the high-dimensional intermediate representations, this strategy learns a

linear probe on the output of the decoder applied to the intermediate representations after each

layer. We argue this to be a less biased probing strategy, since in our setup it reduces the degrees of

freedom of the probe to just 2 parameters per task (scale and shift), since the models have scalar

output.

More specifically, our probing strategy works as follows. Let {(𝑥𝑖 , 𝑦𝑖)}𝑖 be i.i.d. samples

belonging to one task. To compute and evaluate intermediate predictions, we use 𝑘 , 𝑚 and 𝑛

5



0.0 0.5 1.0

Ratio of layers

10−3

10−2

10−1

100

S
q
u
ar

ed
 e

rr
or

Num. Examples

40

80

160

(a) Mamba

0.0 0.5 1.0

Ratio of layers

10−4

10−3

10−2

10−1

100

S
q
u
ar

ed
 e

rr
o
r

Num. Examples

40

80

160

(b) Transformer ——————-

Figure 4: ICL ’Learning curves’ depicting the iterative optimization performance of Mamba and Trans-

former models (both trained with 40 in-context examples) on skewed linear regression when

tested on varying the number of in-context examples from 40 to 160.

examples for the train, validation, and test set, respectively. First, we separately feed the prompts

(𝑥1, 𝑦1, 𝑥2, 𝑦2, ..., 𝑥𝑘 , 𝑦𝑘 , 𝑥 𝑗 ) for 𝑗 = 𝑘+1, . . . , 𝑘+𝑚+𝑛 to themodel, to obtain for each token 𝑥𝑖 the inter-

nal representations 𝑧𝑙,𝑖 for each layer 𝑙 and the final prediction𝑦𝑖 = 𝑔(𝑧𝐿,𝑖), where𝑔 is the decoder and
𝐿 is the index of the last layer. Then for each layer 𝑙 and each token 𝑖 > 𝑘 , we first obtain intermediate

scalar predictions𝑦𝑙,𝑖 = 𝑔(𝑧𝑙,𝑖). Since𝑔 is not meant to be used on intermediate representations, we fi-

nally adjust the predictions by computing𝑦𝑙,𝑖 = 𝑎𝑙𝑔(𝑧𝑙,𝑖)+𝑏𝑙 , where the scalar scale and shift parame-

ters 𝑎𝑙 and𝑏𝑙 are obtained by least squares on (𝑦𝑙,𝑘+1, 𝑦𝑘+1) . . . (𝑦𝑙,𝑘+𝑚, 𝑦𝑘+𝑚) (i.e., using the validation
tokens). We can then measure the accuracy of these intermediate predictions with the normalized

mean squared error on the test tokens (𝑛𝑑)−1
∑𝑛

𝑗=1
(𝑦𝑙,𝑘+𝑚+𝑗 −𝑦𝑘+𝑚+𝑗 )2 (𝑑 = 20). We ran our analysis

over 128 tasks (e.g. different linear regression weight vectors) with 𝑘 as specified in Figures 3 and 4,

𝑚=10 and 𝑛=40. We conducted the probing analysis on Mamba and transformer models trained

on skewed linear regression, sparse linear regression, ReLU neural networks, and Decision trees.
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For skewed linear regression, we additionally compared to Gra-

dient Descent (GD) and GD
++

as done in Von Oswald et al. (2023).

GD
++

is a version of preconditioned gradient descent in which the

data samples undergo a transformation (𝑥𝑖 ← (𝐼 − 𝛾𝑋𝑋𝑇 )𝑥𝑖 ) and
we tuned 𝛾 for optimal performance via a grid search (c.f., Figure 11

in Appendix), while the step-size was set for each task to the the-

oretically optimal value, i.e., as 2/(𝐿 + 𝜇), where 𝐿, 𝜇 are the largest
and smallest eigenvalues of the empirical covariance matrix of the

task. We ran GD and GD
++

for 24 iterations to match the 24 layers

of our Mamba model. Figure 3 provides strong evidence to the hy-

pothesis that both Mamba and the transformer employ an iterative

solution scheme on the skewed and sparse linear regression task

(Figure 3d), since the log-MSE decreases (almost) linearly. In ReLU

neural networks, the error also decreases somewhat gradually after

some layers. Interestingly, for Decision trees the error stays high

for both models for more than half of the initial layers. The compar-

ison between GD, GD
++
, Mamba, and the transformer in Figure 3d

reveals that both GD and GD
++

are outperformed by Mamba and

the Transformer, while GD converges more slowly due to the tasks

having skewed covariance.
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In Figure 4 we show how, similarly to Figure 1a, having more in-context examples than the ones

used during training negatively affects the learning curves for linear regression. Both models never

seem to take advantage of the additional number of examples in this task: the performance with 40

in context examples (the number used for training) is the best (or close) for all layers. Moreover,

we note that the learning curve for Mamba with 160 in-context examples exhibits a clear U-shape:

the model actually found a good solution in intermediate layers but ultimately degrades.

In Figure 5, we compare the scale and shift parameters estimated by the linear probing model

for Mamba and the transformer in the context of Skewed Linear Regression. Additionally, for sparse

linear regression, ReLU neural networks, and Decision trees, we present the findings in Figure 12

in the Appendix. Interestingly, for linear regression and ReLU neural networks, the linear probing

model applies only minor modifications, with scale values near one and shift values approaching

zero after the first layers. We also observe that for all tasks, the variance across tasks of the

estimated scale and shift is higher in the early layers of the model and quickly approaches zero as

we move towards the output layer.

4 Investigation of Simple NLP Tasks
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Figure 6: Accuracy of Mamba vari-

ants compared to RWKV

and other transformer-

based models on in-context

NLP tasks.

In this section, we evaluated the ICL performance of various

pre-trained Mamba language models, with parameter counts

from 130 million to 2.8 billion. The pre-training for all variants

was done on the Pile dataset (Gao et al., 2020), while the Mamba

2.8B (SP) checkpoint underwent further fine-tuning on ca. 600

billion tokens from the SlimPajama dataset.

We compared the Mamba variants to another RNN

model with linear state dynamics named RWKV (Peng et al.,

2023), which was also pre-trained on the Pile
1
, and popular

transformer-based language models, such as LLama (Touvron

et al., 2023), Pythia (Biderman et al., 2023), and GPT-J 6B (Wang

and Komatsuzaki, 2021). We did not compare to S4 because we

are not aware of S4 models pretrained on the Pile.

We followed the experimental protocol of Hendel et al.

(2023), which tested 27 NLP tasks spanning a wide range of

categories, including algorithmic tasks (e.g., list element extrac-

tion), translation (e.g., English to Spanish), linguistic tasks (e.g.,

singular to plural conversion), and knowledge-based tasks (e.g.,

identifying country-capital pairs). For evaluation, we used the

same datasets as Hendel et al. (2023) except for the algorith-

mic tasks, which were randomly generated (we use the same

generation parameters). We report the mean accuracy over

400 generated test sets per task, each having five in-context

examples.
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A
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RWKV 0.43B
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Figure 7: Average task accuracy for

increasing context length.

Reported are the 5/95% con-

fidence intervals.

Figure 6 shows that the ICL performance improves for all

models with increasing number of parameters. Notably, Mamba

2.8B achieves an ICL accuracy close to LLama 7B, and on par

with GPT-J and Pythia models. In addition, we find that Mamba

consistently outperforms the similarly scalable RWKV at com-

parable parameter sizes. We provide a detailed table of per-task

accuracies in Appendix A.2.

1
We used RWKV v4 checkpoints trained on the Pile dataset by the authors available on huggingface.
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Finally, we find that Mamba scales well with the number of in-context examples; see Figure 7.

Particularly, Mamba 0.37B and 2.8B maintain a considerable performance edge over RWKV 0.43B

and 3B, respectively.

5 Related Work
In-context learning capabilities in transformer-based models. Brown et al. (2020) introduced

GPT-3 and were the first to show the remarkable in-context learning (ICL) abilities of large language

models. They showed that larger models tend to utilize more in-context information compared

to smaller models. Other work by Garg et al. (2022) showed that even small transformers exhibit

ICL abilities on linear modeling tasks. These small transformer-based models have been subject

to in-depth analysis by recent work (Dai et al., 2022; Von Oswald et al., 2023; Ahn et al., 2023; Bai

et al., 2023) that showed that they can implement mechanisms akin to gradient descent or more

complex optimization algorithms in the forward pass.

On a different tangent, Olsson et al. (2022) found that a two-layer attention-only network

can develop the so-called “induction heads” mechanism, which outputs the token succeeding a

previous instance of the current token, precisely when its ICL performance increases. Chan et al.

(2022) investigated properties of the data-distribution which lead to the emergence of ICL abilities,

while Reddy (2024) identified factors for the abrupt emergence of the induction heads. Another

line of work (Hendel et al., 2023; Todd et al., 2024) showed that some intermediate output of the

forward pass of transformer models, named “task vectors”, encodes most of the information for the

in-context task. In particular, merging a task vector with another from a different in-context task

allows the model to solve a combination of the two tasks.

In-context learning benchmarks. Garg et al. (2022) tested transformers abilities to learn task

distributions from simple function classes, like linear regression or Decision trees. Hendel et al.

(2023) tested pre-trained LLMs on a suite of NLP tasks such as English to French translation. Lastly,

Akyürek et al. (2024) proposed to test NLP models’ ability to learn formal languages.

Sub-quadratic transformer alternatives. Transformer-based models have a forward pass with

time complexity scaling quadratically with respect to the input sequence length. To reduce the

amount of computation, previous work proposed to introduce sparsity into the attention layers

(Child et al., 2019; Qiu et al., 2019; Beltagy et al., 2020), where the tokens only attend a subset of the

other tokens. Other works by Wang et al. (2020) proposed a low-rank factorization of the attention

mechanism. Others proposed linear attention, where the attention weights are computed using

possibly normalized dot-products without the softmax (Katharopoulos et al., 2020; Choromanski

et al., 2020; Kasai et al., 2021; Peng et al., 2021; Yang et al., 2023b). Intriguingly, causal linear

attention can be re-formulated either as a linear RNN or as the ratio between two linear RNNs, and

hence its time complexity scales linearly with the length of the input sequence.

Recently, state-space sequence models gained significant interest due their strong performance.

They are broadly related to recurrent neural networks with ideas from classical state space models,

such as the Kalman filter (Kalman, 1960), particle filters (Gordon et al., 1993), or hidden Markov

models (Baum et al., 1970; Rabiner, 1989). There exist various state-space models: S4 (Gu et al.,

2021a), DSS (Gupta et al., 2022), S5 (Smith et al., 2023), GSS (Mehta et al., 2023), H3 (Fu et al., 2023),

Selective S4 (Wang et al., 2023), or RWKV (Peng et al., 2023). While they have been successfully

applied to audio and vision (Goel et al., 2022; Nguyen et al., 2022), they lacked performance for text.

The recently proposed Mamba (Gu and Dao, 2023) exhibits great performance in large language

modeling and similar scaling properties as state of the art transformer models.

6 Broader Impact Statement
In-context learning (ICL) is an emergent phenomenon that drives the generalization skills of large

language models (LLMs). While the widespread use of a poorly-understood technology like ICL
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may have many potential negative societal impacts, our work contributes to mitigate this problem

by helping to build a mechanistic understanding of ICL. This understanding is crucial to build

better, more explainable and more trustworthy AI systems in the future. Since the favourable

scaling of Mamba (Gu and Dao, 2023) makes it a strong candidate for dealing with long context

sizes, we do believe it to be particularly important to understand the mechanisms behind ICL in

this architecture, and we thus focus on this aspect in our paper.

7 Limitations

Our investigation into the Mamba architecture’s in-context learning (ICL) capabilities shows

promise as an efficient alternative to transformer models for processing long input sequences, yet

it is not without limitations. The study’s focus on simple function approximation and natural

language processing (NLP) tasks raises questions about the generalizability of our findings to

other domains like image or audio analysis, suggesting the need for broader research. The linear

probing method used to understand Mamba’s approach may oversimplify the model’s complex

optimization processes, indicating that more sophisticated probing techniques could yield deeper

insights. Additionally, our evaluation covered a limited range of model sizes and configurations,

and a more comprehensive comparison is necessary to fully assess Mamba’s performance relative

to extensively optimized transformer models. The scalability of Mamba with increasing in-context

examples and its computational efficiency also remain underexplored, highlighting areas for future

investigation to better understand its practical applicability and potential across a wider range of

tasks and settings.

8 Conclusions and Future Directions

In this work, we have demonstrated that the recently proposed Mamba architecture is capable of

effective in-context-learning (ICL) across tasks involving simple function approximation as well as

more complex natural language processing problems. Our analysis showed that Mamba performs

on par with transformer models, while also outperforming the S4 and RWKV baselines. We provide

initial evidence that Mamba appears to solve ICL problems by incrementally refining its internal

representations in a manner akin to an iterative optimization strategy, as transformers do. Overall,

our findings suggest that Mamba can be an efficient and performant alternative to transformers for

ICL involving longer input sequences.

In future work, it would be interesting to replace the attention-based backbone of existing in-

context learned AutoML algorithms, such as TabPFN (Hollmann et al., 2023), ForecastPFN (Dooley

et al., 2024) or Optformer (Chen et al., 2022), enabling them to handle longer sequences.
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A Appendix

A.1 ICL for simple function classes

We follow the experimental setup of Garg et al. (2022) by building on their MIT-Licensed code at

https://github.com/dtsip/in-context-learning.

A.1.1 Model parameters. As in Garg et al. (2022), we used a GPT-2 (Radford et al., 2019) model with

embedding size 256, 12 layers and 8 heads, resulting in 9.5 million parameters. As mentioned in the

main text, we removed the positional encoding to improve the input length extrapolation. Mamba’s

𝑁 parameter is set to its default value 16, while we set Mamba’s 𝐷 parameter to 256, matching the

transformer’s embedding dimension, while we set the number of Mamba’s layers to 24, doubling

the ones of the transformer (12). This is done because each Mamba block can be roughly seen as

the fusion of a MLP and SSM, and has roughly half the number of parameters of a transformer

block, which can be divided into an MLP and an attention part. For a fair comparison, S4 also uses

24 layers, however we set the embedding size to 435 to match the 10 million parameters of Mamba

and the transformer. We note that a similar comparison between S4 and transformer models, also

testing for input length extrapolation, was done by Lee et al. (2023). However, we used models with

substantially more parameters (10 millions vs. 500 thousands) and transformers without positional

encoders.

A.1.2 Training details. We adopted the same experimental setup used for the transformer model by (Garg

et al., 2022) for Mamba, the transformer, and S4. At each training step, we computed the loss on a

mini-batch of 64 prompts, each corresponding to a task sampled from a task distribution. We used

no dropout in our experiments. We adopt a curriculum learning strategy: starting with training

points of the lower-dimensional subspace and fewer input examples per prompt, and increasing

the dimensionality of the subspace and the number of in-context examples every 2000 steps. For

more details on the training, we refer to (Garg et al., 2022, A.2 Training).

Differently for Garg et al. (2022), we use cosine annealing (from PyTorch) for Mamba, Trans-

former and S4, as we observed that it consistently improved performance.

The training was done Nvidia RTX 2080 GPUs and each training had a duration from 20 hours

(for skewed/linear/sparse regression) up to 24 hours (for ReLU neural network and Decision tree).

The evaluation for up to 500 ICL examples was done an Nvidia A100 GPU and took 16 hours for

skewed/linear/sparse regression and up to 24 hours for ReLU neural network and Decision tree.

A.1.3 Simple task distributions. Below, we describe how tasks are sampled for each task distribution

that we considered. Task distributions are the same ones as in Garg et al. (2022).

For each task we first sampled 𝑥1, . . . , 𝑥𝑘 , 𝑥𝑘+1 input points Then, for each point we sam-

pled the output 𝑦𝑖 as a function of 𝑥𝑖 ∈ R𝑑
, possibly adding noise. Finally, the prompt

𝑃 = 𝑥1, 𝑦1, . . . , 𝑥𝑘 , 𝑦𝑘 , 𝑥𝑘+1 was passed as input to the model, which can be divided in context

𝑥1, 𝑦1), . . . , 𝑥𝑘 , 𝑦𝑘 , and query point 𝑥𝑘+1. We now describe how each input-output pair (𝑥𝑖 , 𝑦𝑖) is
computed for each task for different task distributions. We set the number of input dimensions

𝑑 = 20 for all task distributions.

Linear regression. First sample 𝑤 ∼ N (0, 𝐼𝑑 ), then for 𝑖 = 1, . . . , 𝑘 + 1 sample 𝑥𝑖 ∼ N (0, 𝐼 ) and
𝑦𝑖 = 𝑤

𝑇𝑥𝑖 .

Skewed linear regression (Skewed LR). First sample 𝑤 ∼ N (0, 𝐼𝑑 ). Then sample a 𝑑 × 𝑑
matrix 𝐴 from a normal distribution, compute the SVD 𝐴 = 𝑈𝑆𝑉 and the tranformation

𝐵 = 𝑈 diag((1, 1/4, . . . , 1/𝑑2))𝑈 ⊤. Finally for 𝑖 = 1, . . . , 𝑘 + 1 sample 𝑥𝑖 ∼ N (0, 𝐼𝑑 ) and compute

𝑥𝑖 = 𝐵𝑥𝑖 and 𝑦𝑖 = 𝑤
𝑇𝑥𝑖 .

Sparse linear regression. First sample𝑤 ∼ N (0, 𝐼𝑑 ), then set all coordinates of𝑤 except 𝑠 = 3 to

zero. Finally, for 𝑖 = 1, . . . , 𝑘 + 1 sample 𝑥𝑖 ∼ N (0, 𝐼 ) and 𝑦𝑖 = 𝑤𝑇𝑥𝑖 .
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Noisy linear regression (Noisy LR). First sample 𝑤 ∼ N (0, 𝐼 ), then for 𝑖 = 1, . . . , 𝑘 + 1 sample

𝑥𝑖 ∼ N (0, 𝐼 ) and 𝑦𝑖 = 𝑤𝑇𝑥𝑖 + 𝜀𝑖 , with scalar noise 𝜀𝑖 ∼ N (0, 1).

Different orthants. As linear regression, but the sign of each coordinate is randomly sampled,

where every in-context example lies in one quadrant, while the query input lies in another with

high probability.

𝑑/2-dimensional subspace. As linear regression, but the coordinates from ⌈𝑑/2⌉ to 𝑑 are set to 0

for each 𝑥𝑖 .

ReLU neural network. These networks represents functions of the form 𝑓 (𝑥) = ∑𝑟
𝑖=1
𝛼𝑖𝜎 (𝑤𝑇

𝑖 𝑥),
where 𝛼𝑖 ∈ R, 𝑤𝑖 ∈ R𝑑

and 𝜎 (·) = max(0, ·) is the ReLU activation function. To generate a

random prompt 𝑃 = (𝑥1, 𝑓 (𝑥1), ..., 𝑥𝑘 , 𝑓 (𝑥𝑘 ), 𝑥𝑘+1), we sample prompt inputs 𝑥𝑖 ’s from 𝑁 (0, 𝐼𝑑 ),
along with network parameters 𝛼𝑖 ’s and𝑤𝑖 ’s from 𝑁 (0, 2/𝑟 ) and 𝑁 (0, 𝐼𝑑 ) respectively. We set the

input dimension 𝑑 to 20 and the number of the hidden neurons 𝑟 to 100.

Decision tree. We consider the class of depth 4 Decision trees with 20 dimensional inputs. A

function 𝑓 in this class is represented by a full binary tree (with 16 leaf nodes). Each non-leaf node

is associated with a coordinate of the input, and each leaf node is associated with a target value. To

evaluate 𝑓 on an input 𝑥 , we traverse the tree starting from the root node. Wemove to the right child

if the coordinate associated with the current node is positive, and move to the left child otherwise

(that is, the threshold at each node is 0). The function 𝑓 (𝑥) is given by the value associated with

the leaf node reached at the end. To sample a random prompt 𝑃 = (𝑥1, 𝑓 (𝑥1), ..., 𝑥𝑘 , 𝑓 (𝑥𝑘 ), 𝑥query),
we draw prompt inputs 𝑥𝑖 ’s and 𝑥query from 𝑁 (0, 𝐼𝑑 ). The function 𝑓 corresponds to a tree where

the coordinates associated with the non-leaf nodes are drawn uniformly at random from {1, . . . , 𝑑}
and the values associated with the leaf nodes are drawn from 𝑁 (0, 1).

A.1.4 Other baselines. As in Garg et al. (2022), we compared also with task distribution specific baselines,

which we will discuss below. We refer to (Garg et al., 2022, Appendix A.3) for more details.

Least Squares. Fits an ordinary least squares estimator to the in-context examples.

Lasso. Fits a LASSO estimator to the in-context examples with a specified L1 regularization

parameter.

n-Nearest neighbor. We average the predictions of the 3 in-context examples closest in euclidean

distance to the query point 𝑥𝑘+1.

Averaging. It computes the query prediction 𝑦𝑘+1 = 𝑤̂
⊤𝑥𝑘+1, with 𝑤̂ = 1

𝑘

∑𝑘
𝑖=1
𝑥𝑖𝑦𝑖 .

2-layer NN, GD.. A 2-layer NN with the same number of hidden neurons used in the task distribu-

tion, trained on the in-context examples using ADAM.

Greedy tree learning. It learns a Decision tree greedily using scikit-learn’s Decision tree regressor

(Chen and Guestrin, 2016) with default parameters and max_depth equal to 2.

Tree boosting. We use the XGBoost library (Chen and Guestrin, 2016) to learn an ensemble of 50

Decision trees with maximum depth 4 and learning rate 0.1.

A.1.5 Additional results. We provide additional results on Mamba and transformers on non-skewed

linear regression in Figure 8. We show its out-of-distribution performance in Figure 9. Differently

from the results in the main text, instead of cosine annealing we use the same learning rates used

by Garg et al. (2022) for both Mamba and the transformer model. As pointed out in the main text,

we find that both Mamba and the transformer perform worse out-of-distribution compared to when

they are trained on skewed linear regression.
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Figure 8: Mamba compares with transformers when trained and tested on the same unskewed linear

regression task distribution. We report one training run for each plot and method
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Figure 9: OOD Distribution tests for Mamba and Transformer trained on (non-skewed) linear regres-

sion data. We report one training run for each method.

In Figure 10, we observe how the context length extrapolation performance is affected by using

a higher number of examples during training for skewed linear regression tasks. In particular,

the window where both models obtain good performance is wider the higher the number of in-

context examples during training, with the transformer generally exhibiting a much lower degree

of degradation.

A.1.6 ICL learning curves. The scale and shift were estimated for each layer and each task and are

reported in Figure 12. We note that for skewed linear regression and ReLU neural networks the

value for scale approaches 1, and the one for shift approaches 0 relatively quickly.

A.2 ICL for NLP tasks

We added Mamba and RKWV to the code provided by (Hendel et al., 2023) at

github.com/roeehendel/icl_task_vectors. We leveraged their results for GPT-J, Llama and

Pythia and provided our experimental results for Mamba and RWKV. A detailed break down of the

per task performance of each model is given in Table 1.

Table 1: Complete results of the main experiment for all tasks and models.

method Baseline Regular

Model Task type Task name

GPT-J 6B Algorithmic List first 0.30 0.98

List last 0.24 1.00

Next letter 0.16 0.86

Prev letter 0.10 0.42

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.19 0.80
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Table 1 – continued from previous page

method Baseline Regular

Model Task type Task name

Location continent 0.03 0.70

Location religion 0.09 0.78

Person language 0.02 0.82

Linguistic Antonyms 0.43 0.78

Plural singular 0.08 0.98

Present simple gerund 0.00 0.98

Present simple past simple 0.02 0.96

Translation En es 0.14 0.56

En fr 0.16 0.54

Es en 0.06 0.74

Fr en 0.13 0.76

LLaMA 13B Algorithmic List first 0.77 1.00

List last 0.07 0.92

Next letter 0.31 0.94

Prev letter 0.05 0.50

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.17 0.86

Location continent 0.01 0.80

Location religion 0.10 0.84

Person language 0.02 0.88

Linguistic Antonyms 0.19 0.80

Plural singular 0.24 0.88

Present simple gerund 0.00 0.96

Present simple past simple 0.01 0.98

Translation En es 0.05 0.82

En fr 0.15 0.84

Es en 0.29 0.88

Fr en 0.25 0.72

LLaMA 30B Algorithmic List first 0.96 1.00

List last 0.02 0.96

Next letter 0.30 0.96

Prev letter 0.02 0.80

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.27 0.88

Location continent 0.01 0.86

Location religion 0.05 0.88

Person language 0.01 0.90

Linguistic Antonyms 0.37 0.82

Plural singular 0.21 0.90

Present simple gerund 0.00 0.98

Present simple past simple 0.02 1.00

Translation En es 0.07 0.78

En fr 0.10 0.86

Es en 0.24 0.88

Fr en 0.20 0.78

LLaMA 7B Algorithmic List first 0.87 1.00

List last 0.03 1.00

Next letter 0.03 0.88
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Table 1 – continued from previous page

method Baseline Regular

Model Task type Task name

Prev letter 0.04 0.58

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.28 0.86

Location continent 0.02 0.72

Location religion 0.12 0.94

Person language 0.02 0.78

Linguistic Antonyms 0.33 0.76

Plural singular 0.15 0.88

Present simple gerund 0.00 0.90

Present simple past simple 0.02 0.92

Translation En es 0.07 0.76

En fr 0.04 0.88

Es en 0.21 0.92

Fr en 0.15 0.70

Mamba 0.13B Algorithmic List first 0.66 0.92

List last 0.02 0.92

Next letter 0.24 0.76

Prev letter 0.06 0.04

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.07 0.19

Location continent 0.01 0.50

Location religion 0.02 0.63

Person language 0.01 0.53

Linguistic Antonyms 0.26 0.34

Plural singular 0.09 0.46

Present simple gerund 0.00 0.68

Present simple past simple 0.01 0.63

Translation En es 0.07 0.23

En fr 0.16 0.39

Es en 0.07 0.26

Fr en 0.10 0.27

Mamba 0.37B Algorithmic List first 0.09 1.00

List last 0.02 0.95

Next letter 0.19 0.87

Prev letter 0.07 0.11

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.10 0.57

Location continent 0.00 0.64

Location religion 0.06 0.56

Person language 0.01 0.79

Linguistic Antonyms 0.33 0.68

Plural singular 0.09 0.74

Present simple gerund 0.00 0.83

Present simple past simple 0.00 0.80

Translation En es 0.07 0.45

En fr 0.12 0.53

Es en 0.07 0.79
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Table 1 – continued from previous page

method Baseline Regular

Model Task type Task name

Fr en 0.08 0.70

Mamba 0.79B Algorithmic List first 0.76 1.00

List last 0.03 0.95

Next letter 0.12 0.85

Prev letter 0.03 0.35

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.15 0.76

Location continent 0.02 0.73

Location religion 0.12 0.74

Person language 0.00 0.83

Linguistic Antonyms 0.45 0.76

Plural singular 0.07 0.86

Present simple gerund 0.00 0.90

Present simple past simple 0.01 0.86

Translation En es 0.11 0.56

En fr 0.14 0.61

Es en 0.09 0.82

Fr en 0.20 0.75

Mamba 1.40B Algorithmic List first 0.68 1.00

List last 0.03 0.93

Next letter 0.07 0.77

Prev letter 0.05 0.41

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.15 0.76

Location continent 0.01 0.77

Location religion 0.06 0.77

Person language 0.00 0.84

Linguistic Antonyms 0.37 0.78

Plural singular 0.07 0.87

Present simple gerund 0.00 0.89

Present simple past simple 0.01 0.87

Translation En es 0.09 0.72

En fr 0.14 0.70

Es en 0.11 0.82

Fr en 0.14 0.72

Mamba 2.80B Algorithmic List first 0.70 1.00

List last 0.13 0.97

Next letter 0.02 0.95

Prev letter 0.04 0.37

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.15 0.80

Location continent 0.03 0.81

Location religion 0.12 0.79

Person language 0.02 0.89

Linguistic Antonyms 0.38 0.79

Plural singular 0.14 0.96

Present simple gerund 0.00 0.96
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Table 1 – continued from previous page

method Baseline Regular

Model Task type Task name

Present simple past simple 0.01 0.93

Translation En es 0.03 0.75

En fr 0.07 0.67

Es en 0.11 0.83

Fr en 0.16 0.81

Mamba 2.80B (SP) Algorithmic List first 0.84 1.00

List last 0.07 0.92

Next letter 0.17 0.84

Prev letter 0.02 0.23

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.20 0.84

Location continent 0.06 0.86

Location religion 0.12 0.84

Person language 0.04 0.87

Linguistic Antonyms 0.36 0.77

Plural singular 0.11 0.90

Present simple gerund 0.00 0.91

Present simple past simple 0.01 0.90

Translation En es 0.08 0.74

En fr 0.15 0.62

Es en 0.11 0.83

Fr en 0.16 0.76

Pythia 12B Algorithmic List first 0.53 0.96

List last 0.09 1.00

Next letter 0.15 0.76

Prev letter 0.00 0.42

To lower 0.02 1.00

To upper 0.00 1.00

Knowledge Country capital 0.19 0.82

Location continent 0.01 0.80

Location religion 0.07 0.78

Person language 0.01 0.86

Linguistic Antonyms 0.34 0.74

Plural singular 0.18 0.84

Present simple gerund 0.00 0.96

Present simple past simple 0.01 0.94

Translation En es 0.10 0.72

En fr 0.16 0.54

Es en 0.05 0.80

Fr en 0.14 0.80

Pythia 2.8B Algorithmic List first 0.69 1.00

List last 0.06 1.00

Next letter 0.42 0.90

Prev letter 0.01 0.48

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.18 0.76

Location continent 0.01 0.72

Location religion 0.08 0.82
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Table 1 – continued from previous page

method Baseline Regular

Model Task type Task name

Person language 0.00 0.82

Linguistic Antonyms 0.37 0.76

Plural singular 0.13 0.78

Present simple gerund 0.00 0.96

Present simple past simple 0.03 0.92

Translation En es 0.10 0.76

En fr 0.16 0.60

Es en 0.08 0.82

Fr en 0.10 0.82

Pythia 6.9B Algorithmic List first 0.43 0.98

List last 0.08 0.98

Next letter 0.01 0.86

Prev letter 0.04 0.32

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.21 0.82

Location continent 0.01 0.78

Location religion 0.10 0.80

Person language 0.01 0.80

Linguistic Antonyms 0.33 0.74

Plural singular 0.14 0.88

Present simple gerund 0.00 0.94

Present simple past simple 0.02 0.96

Translation En es 0.11 0.70

En fr 0.21 0.60

Es en 0.06 0.82

Fr en 0.14 0.74

RWKV 0.169B Algorithmic List first 0.48 0.46

List last 0.10 0.19

Next letter 0.10 0.29

Prev letter 0.00 0.03

To lower 0.00 0.54

To upper 0.00 0.85

Knowledge Country capital 0.17 0.10

Location continent 0.02 0.67

Location religion 0.10 0.60

Person language 0.01 0.31

Linguistic Antonyms 0.10 0.08

Plural singular 0.12 0.24

Present simple gerund 0.00 0.25

Present simple past simple 0.00 0.20

Translation En es 0.04 0.18

En fr 0.11 0.24

Es en 0.08 0.10

Fr en 0.17 0.10

RWKV 0.43B Algorithmic List first 0.40 0.73

List last 0.17 0.48

Next letter 0.09 0.66

Prev letter 0.00 0.01

To lower 0.00 1.00
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Table 1 – continued from previous page

method Baseline Regular

Model Task type Task name

To upper 0.00 1.00

Knowledge Country capital 0.10 0.37

Location continent 0.00 0.56

Location religion 0.07 0.71

Person language 0.01 0.64

Linguistic Antonyms 0.16 0.56

Plural singular 0.10 0.22

Present simple gerund 0.00 0.51

Present simple past simple 0.01 0.64

Translation En es 0.04 0.41

En fr 0.18 0.39

Es en 0.08 0.57

Fr en 0.08 0.49

RWKV 1.5B Algorithmic List first 0.51 0.97

List last 0.26 0.78

Next letter 0.20 0.81

Prev letter 0.00 0.05

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.13 0.41

Location continent 0.02 0.58

Location religion 0.04 0.73

Person language 0.00 0.79

Linguistic Antonyms 0.37 0.70

Plural singular 0.03 0.69

Present simple gerund 0.00 0.71

Present simple past simple 0.00 0.74

Translation En es 0.11 0.60

En fr 0.15 0.61

Es en 0.13 0.82

Fr en 0.14 0.73

RWKV 3B Algorithmic List first 0.29 0.96

List last 0.43 0.88

Next letter 0.02 0.56

Prev letter 0.02 0.08

To lower 0.00 1.00

To upper 0.00 1.00

Knowledge Country capital 0.08 0.79

Location continent 0.00 0.74

Location religion 0.02 0.74

Person language 0.00 0.82

Linguistic Antonyms 0.36 0.74

Plural singular 0.09 0.82

Present simple gerund 0.00 0.83

Present simple past simple 0.01 0.83

Translation En es 0.07 0.61

En fr 0.13 0.63

Es en 0.01 0.84

Fr en 0.05 0.75
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Figure 10: Length extrapolation performance for varying number of in-context examples used for

testing and training (dashed vertical lines) on the skewed linear regression task. We report

3 training runs for each plot and model
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Figure 11: Results for grid search over 𝛾 for GD++. We optimized 𝛾 in order to have optimal average

performance across tasks of GD++ at iteration 24 (the same number of iterations reported

in Figure 3d). We picked a value of approximately 2 × 10
−4
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Figure 12: Estimated scale and shift by the linear probing model used in Section 3.2.
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