
Under review as a conference paper at ICLR 2018

INTERPRETABLE CLASSIFICATION VIA SUPERVISED
VARIATIONAL AUTOENCODERS AND
DIFFERENTIABLE DECISION TREES

Anonymous authors
Paper under double-blind review

ABSTRACT

As deep learning-based classifiers are increasingly adopted in real-world appli-
cations, the importance of understanding how a particular label is chosen grows.
Single decision trees are an example of a simple, interpretable classifier, but are
unsuitable for use with complex, high-dimensional data. On the other hand, the
variational autoencoder (VAE) is designed to learn a factored, low-dimensional
representation of data, but typically encodes high-likelihood data in an intrinsically
non-separable way. We introduce the differentiable decision tree (DDT) as a mod-
ular component of deep networks and a simple, differentiable loss function that
allows for end-to-end optimization of a deep network to compress high-dimensional
data for classification by a single decision tree. We also explore the power of la-
beled data in a supervised VAE (SVAE) with a Gaussian mixture prior, which
leverages label information to produce a high-quality generative model with im-
proved bounds on log-likelihood. We combine the SVAE with the DDT to get
our classifier+VAE (C+VAE), which is competitive in both classification error and
log-likelihood, despite optimizing both simultaneously and using a very simple
encoder/decoder architecture.

1 INTRODUCTION

While deep learning approaches are very effective in many classification problems, interpretability of
the classifier (why a particular classification was made) can be very difficult, yet critical for many
applications. Decision trees are highly interpretable classifiers, so long as the data is encoded such
that the classes can be easily separated. We present a differentiable decision tree (DDT) that we
connect to a variational autoencoder (VAE) to learn an embedding of the data that the tree can classify
with low expected loss. The expected loss of the DDT is differentiable, so standard gradient-based
methods may be applied in training.

Since we work in a supervised learning setting, it is natural to exploit the label information when
training the VAE. Thus, we employ a supervised VAE (SVAE) that uses a class-specific Gaussian
mixture distribution as its prior distribution. We found that the SVAE was very effective in exploiting
label information, resulting in improved log-likelihood due to separation of classes in latent space.
Further, when we combined SVAE with DDT (yielding our Classifier+VAE, or C+VAE), we got
a model that is competitive in both classification error and log-likelihood, despite optimizing both
simultaneously and using a very simple encoder/decoder architecture. Further, the resultant decision
tree revealed clear semantic meanings in its internal nodes.

1.1 OUR CONTRIBUTIONS

Our first contribution is a demonstration of the power of labeled data in autoencoding, using a simple
class-based Gaussian mixture model as a VAE’s prior, trained with fully labeled data. Specifically,
our VAE objective function regularizes w.r.t. a class-specific Gaussian mixture model rather than
to N (0, I). Training this supervised VAE (SVAE) requires class labels, but results in better log-
likelihood bounds than an unmodified VAE and excellent image generation on MNIST data, very
effectively taking advantage of the class information.

1

Under review as a conference paper at ICLR 2018

Our second contribution is a differentiable decision tree (DDT), which allows us to differentiate the
expected loss of a specific tree w.r.t. a specific distribution. This is applicable to learning embeddings,
allowing us to compute the gradient of expected loss for weight updates.

Our third contribution combines SVAE with DDT to get Classifier+VAE (C+VAE), which learns a
latent variable distribution suitable for both classification and generation simultaneously. Trained
on MNIST data, C+VAE produced an encoder that is competitive in both classification error and
log-likelihood, using very simple encoders and decoders.

Our final contribution is an analysis of the interpretability of a DDT trained on MNIST. Each internal
node of the tree tests one of the 50 encoded dimensions when making a classification decision. We
examine the values of the MNIST test data in the encoded dimensions used by the tree, analyzing
the semantics of each dimension. We found that the dimensions used by the tree to discriminate
correspond to meaningful macro-features learned by the encoder, and that the tree itself effectively
summarizes the classification process.

The rest of this paper is organized as follows. In Section 2 we give relevant background. Then in
Section 3 we describe the SVAE and present our differentiable decision tree and our combined model.
Our experimental results appear in Section 4. Finally, we present related work in Section 5, and
conclude in Section 6 with a discussion of future work.

2 BACKGROUND

We begin with a dataset of pairs, {(x1, y1), . . . , (xn, yn)}, where xi ∈ X ⊂ Rm is the ith observation
and the class label is yi.

Kingma & Welling (2014) introduced the variational autoencoder (VAE) as a latent variable model
for efficient maximum marginal likelihood learning. The VAE performs density estimation on p(x, z)
where z are latent variables, to maximize the likelihood of the observed training data x:

log p(X) =

N∑
i=1

log p(x(i)) .

Since this marginal likelihood is difficult to work with directly for non-trivial models, instead a
parametric inference model q(z | x) is used to optimize the variational lower bound on the marginal
log-likelihood:

log p(x) ≥ Eq(z|x)[log p(x | z)]−KL(q(z | x)||p(z)) = L(x; θ) ,
where θ indicates the parameters of the encoder p and decoder q models, and KL(·||·) is the
Kullback-Leibler divergence (Kullback & Leibler (1951)). The VAE optimizes the lower bound by
reparameterizing q(z | x) (Kingma & Welling (2014); Rezende et al. (2014)).

The first term of L above corresponds to the reconstruction error of the decoder p(x | z), and the
second term regularizes the distribution parameterized by the encoder p(z | x) to minimize the K-L
divergence from a chosen prior distribution, usually an isotropic, centered Gaussian. The simplicity
of this prior distribution has the downside of restricting the flexibility of latent variable assignment,
but allows the VAE to be easily used as a decoder-based generative model as

p(x, z) = p(x | z)p(z)
p(z) = N (z; 0, I) .

While more sophisticated approximate posteriors have been used to improve variational inference
(Salimans et al. (2015); Rezende & Mohamed (2015); Tran et al. (2015); Kingma et al. (2016);
Burda et al. (2015)), for the sake of efficiency and simplicity, in our work we use only the simple
approximate posterior q(z | x) stated above. It is straightforward to combine the more sophisticated
approaches with our model.

3 OUR MODEL

Now we describe our model. The main contributions that this model brings in are (1) A differentiable
decision tree, where we describe how to compute the expected probability distribution over predicted

2

Under review as a conference paper at ICLR 2018

labels and use this to differentiate the expected loss of the tree (which can be used to optimize learned
embeddings to minimize expected loss); (2) an explicit concept of class-derived data (supervised
VAE) by modifying the prior p(z) to a mixture of Guassians; and (3) A combined VAE model using
modifications (1) and (2) designed to learn a latent variable distribution suitable simultaneously for
classifying and generating data (C+VAE).

3.1 SUPERVISED VAE

Previous work has explored the potential of the VAE’s encoder to learn the data manifold for non-
linear dimensionality reduction and semi-supervised classification (Kingma et al. (2014)). A difficulty
arises from the VAE objective as the encoder learns to cluster the latent codes of high-probability
data as close as possible to the mean of the prior distribution to minimize the K-L divergence term,
KL(q(z | x)‖p(z)), with the typical choice of unit Gaussian for the prior. This mixes data of various
classes, making them difficult to separate for classification. We address this issue by changing
the prior from an isotropic, unit Gaussian of the standard VAE to a mixture of unit Gaussians.
Specifically, we modify the generation procedure to be class-focused, rather than assuming otherwise
undifferentiated data.

To build the notion of class-distributed data into the VAE objective, we use a the prior to the following
Gaussian mixture:

y ∼Multinomial(y;π)

p(z | y) = N (z | µy, I)

p(z) =
∑
y

p(z | y)π(y) (1)

where y is a class label, and µy is the posterior mean of class y, and π is a probability vector which
may be pre-computed with the assumption that the labels in the training dataset are iid. As µy is
calculated empirically from the posterior, it can be initialized to small random values for all classes
and updated regularly throughout training. The objective for this VAE is

L(x; θ) = Eq(z|x)(log p(x | z))−KL(q(z | x)‖p(z)) (2)

Since we train in a fully supervised model, each training instance is of the form (x, y). Thus, when
y is instantiated as the class variable, we get p(z) = p(z | y) in Equation 1, so the KL term of
Equation 2 becomes KL(q(z | x)‖N (z | µy, I)), yielding an objective of

L′(x, y; θ) = Eq(z|x)(log p(x | z))−KL(q(z | x)‖N (z | µy, I)) . (3)

In the remainder of this paper, we refer to a VAE trained with this objective function as the supervised
VAE (SVAE).

Our approach to utilizing a Gaussian mixture as a prior distribution is similar to that of Dilokthanakul
et al. (2017). A key difference between their work and ours is that our use of class labels enhances
training, obviating the need to marginalize over all classes to compute the K-L divergence. This helps
avoid the over-regularization problem that they discuss in their paper, while achieving high sample
quality in our generated images.

3.2 DIFFERENTIABLE DECISION TREE

The decision tree is a simple, interpretable model used for non-parametric classification. Typically,
a tree is constructed by an algorithm like CART or C4.5 (Breiman et al. (1984); Quinlan (1993))
that recursively divides the dataset at each node of the tree, greedily minimizing the weighted Gini
coefficient or entropy of two subsets by choosing a dividing line in one dimension. Inference is
performed by walking an input from the root to a leaf according to this series of inequalities, and then
assigning a class probability vector according to the leaf. Decision trees often classify well when
using data with a few, richly descriptive features, and are very interpretable in their decision making
processes. We are interested in learning a deep network for non-linear dimensionality reduction
to allow the decision tree to classify a low-dimensional embedding of data that is normally high-
dimensional and very structured. Toward this end, we utilize a probabilistic generalization of decision

3

Under review as a conference paper at ICLR 2018

trees, where each leaf returns a distribution over all classes. I.e., if instance z lands in leaf ` of tree T ,
then T returns a distribution PT (y | `).
Fix a decision tree T with leaves L that takes as input instance z and outputs a label y. We observe
that each leaf ` of T corresponds to a region in an axis-aligned rectilinear partitioning covering
the data space whose bounds are defined by the inequalities encoded in the path from the root. To
compute the expected loss of T on instance z drawn according to probability distribution D(z), first
consider one leaf `, and let R` ⊂ Rd be the region of T ’s input space that is covered by `. Then the
probability that randomly drawn instance z falls into leaf ` is

Pz∼D(` | z) =
∫
R`

D(z) dz .

Then the probability that randomly drawn instance z is predicted to be class y is

Pz∼D(y | z) =
∑
`∈L

PT (y | `)
∫
R`

D(z) dz .

This calculation is simplified if D(z) is restricted to have diagonal covariance, i.e., D(z) =∏d
i=1Di(zi). Then, the integral of the PDF over R` = [r−`,1, r

+
`,1] × · · · × [r−`,d, r

+
`,d] may be

replaced with a product of the integrals in each dimension. Further, each integral may be calculated
as the difference of the cumulative distribution function at the upper (r+`,i) and lower (r−`,i) bounds of
the partition in each dimension i. The full inference may be re-written as

Pz∼D(y | z) =
∑
`∈L

d∏
i=1

(
CDFi(r

+
`,i)− CDFi(r

−
`,i)
)
,

where CDFi is the cumulative distribution function of Di(zi).

Given a user-specified loss function lossT (z, y), our goal is to minimize the expected loss LT =
Ez∼D[lossT (z, y)]. In our work, we use as D the distribution q(z | x) = N (x;µx, σxI), where µx

and σx are the outputs of the encoder on input x. To perform gradient-based optimization of LT , the
gradient w.r.t. each parameter is calculated as

∂

∂µx,i
Pz∼q(z|x)(y | z) =

∑
`∈L

(
PDFi(r

−
`,i | µx,i, σx,i)− PDFi(r

+
`,i | µx,i, σx,i)

)∏
j 6=i

(
CDFi(r

+
`,i)− CDFi(r

−
`,i)
)

and
∂

∂σx,i
Pz∼q(z|x)(y | z) =

∑
`∈L

(
(µx,i − r+`,i)PDFi(r

+
`,i | µx,i, σx,i)− (µx,i − r−`,i)PDFi(r

−
`,i | µx,i, σx,i)

)
∏
j 6=i

(
CDFi(r

+
`,i)− CDFi(r

−
`,i)
)
,

where PDFi(r | µx,i, σx,i) is the value of the Gaussian PDF of dimension i evaluated at r.

This allows optimization of the distribution parameters for maximum likelihood w.r.t. an existing
decision tree T . Thus, an embedding of the data may be learned in an EM-style manner, alternately
learning a tree on the embedding produced by the parameters of a deep encoder and optimizing the
embedding parameters to better fit the class-based partitioning induced by the learned decision tree.

3.3 OUR COMBINED MODEL

The supervised, Gaussian-mixture-based VAE and decision tree inference can be used with a VAE
model to both classify and reconstruct data from the encoded parameters of its latent variable
distribution. Although an embedding could be learned by only optimizing the classification accuracy
of the decision tree, the additional reconstruction objective ensures that the learned representation is
non-arbitrary and contains more than just class information for downstream use.

Our new architecture C+VAE (Classifier+VAE) uses a deep encoder network to parameterize a
Gaussian distribution, which is then used as the input for classifying with the DDT and to reconstruct

4

Under review as a conference paper at ICLR 2018

the encoded data with a deep decoder network. Generally, the combined modifications can also be
applied to existing VAE architectures when label information is available.

The C+VAE training procedure begins by randomly initializing the encoder/decoder parameters and
encoding the training data to initialize the decision tree and aggregate posterior class means. Training
then proceeds by running several epochs of gradient updates before re-training the decision tree and
updating the aggregate posterior class means until the model converges.

The optimization function of our combined model consists of a linear combination of the objective of
the supervised VAE and the expected error of the current decision tree T . However, since the effect
of the DDT gradient is to separate the class means and the supervised VAE K-L divergence term
measures w.r.t. these movable class-based means (rather than the distance from the mean of p(z)),
the parameters learned by the encoder could diverge, driving the class means arbitrarily far from the
origin. Thus, an additional regularizing L2

2-loss is imposed on the encoded µ posterior value to keep
the class means from “drifting” from the origin and encourage the model to learn common factors of
variation between classes. We observed experimentally that this additional drift loss term increases
the training stability and classification performance of the model. The modified VAE objective of the
C+VAE to be minimized is

f(x, y; θ) = −L′(x, y; θ) + γLT + λ‖µx‖22 . (4)

4 EXPERIMENTS

Our experiments are designed to empirically study the following claims:

1. The supervised VAE very effectively takes advantage of class labels to improve generative
performance.

2. The C+VAE classifies competitively with other tree-based embedding methods while simul-
taneously maintaining a generative model competitive with the literature.

3. The differentiable decision tree is an interpretable classifier that, when used in C+VAE, can
learn the semantics of the macro-features learned by the underlying VAE.

The MNIST dataset was used for all experiments, as it is widely understood and commonly used for
both classification and generation tasks. We applied the C+VAE modifications to a standard VAE
(Kingma & Welling (2014)) with two-layer MLPs of 500 hidden units as encoder and decoder models
and a 50-dimensional latent variable z without importance sampling or an autoregressive prior. The
CART algorithm as made available in scikit-learn (Pedregosa et al. (2011)) was used to train the
decision tree. This was regularized by annealing the maximum depth of the decision tree from 1 to
8 as training proceeded, incrementing every 15 epochs, and by setting the minimum proportion of
samples in a leaf to be 2% of the training set. Unless otherwise noted, we used γ = 1000 and λ = 0.1
in the objective function of the C+VAE (Equation (4)), and n = 5 epochs of gradient steps between
each update of both the decision tree and the aggregate posterior class means. Adam (Kingma & Ba
(2014)) was used for optimization and the data was not pre-processed or augmented.

Table 1 lists the classification performance of a number of tree-based and VAE-based models. The
M1:SVAE+CART model trains the supervised VAE to convergence, and then trains a standard
decision tree with CART to classify its latent code in the style of M1 (Kingma et al. (2014)). The
intent is to highlight the effect of training without the backpropagated classification loss from the
DDT. C+VAE sans reconstruction zeros the reconstruction loss term of the objective function to
highlight the effect of training a model that only learns an embedding suitable for classification with
the DDT. The boundary tree (BT) with embedding is from Zoran et al. (2017), M1+M2 is from
Kingma et al. (2014), and the Ladder Network is from Rasmus et al. (2015).

4.1 EVALUATING THE SUPERVISED VAE

We first evaluate the efficacy of leveraging label data in a supervised VAE in generation. I.e., the
effect on generation of making the prior distribution a Gaussian mixture and taking advantage of
class label information. This is equivalent to using C+VAE with γ = λ = 0 in Equation (4). The
flexibility of a Gaussian mixture and the fact that the data is clearly multi-modal both contribute to

5

Under review as a conference paper at ICLR 2018

Table 1: Classification error for various fully supervised tree- and VAE-based models.
Model Error
M1:SVAE+CART 37.09%
C+VAE sans reconstruction 7.30%
C+VAE 1.98%
BT w/embedding 1.85%
M1+M2 0.96%
Ladder Network 0.57%

the SVAE log-likelihood of −102.77, which is better than the log-likelihood of −109.56 using our
implementation of the VAE of Kingma & Welling (2014), which uses an unmodified Gaussian prior.
We expect this difference to be the result of using a flexible prior that is more faithful to the true prior.
This flexibility is similar to that seen in techniques like normalizing flows (Rezende & Mohamed
(2015)), but modifies the prior rather than the posterior and uses the additional information provided
by label information, rather than adding additional computation.

4.2 EVALUATING THE C+VAE

We next empirically evaluate C+VAE for both classification performance and generative ability. As a
baseline, we first examine how well a standard (non-differentiable) decision tree from CART can clas-
sify when the data is encoded by a supervised VAE (but without any error feedback: γ = λ = 0). This
is similar to M1 from Kingma et al. (2014) with a different VAE. In Table 1, row M1:SVAE+CART
shows that without the error feedback from the tree, it is unlikely that the embedding will be useful in
classification by a decision tree. This motivates our use of the DDT.

To test the benefit of reconstruction in learning an embedding that can be classified well, we ran a test
in which we switched off the reconstruction error feedback in learning. I.e., we removed the first
term of Equation (3). In Table 1, row C+VAE sans reconstruction shows a significant improvement in
classification error over M1:SVAE+CART, but still quite high.

Row C+VAE in Table 1 shows our combined method’s performance with γ = 1000 and λ = 0.1.
We see a large improvement in classification error over C+VAE sans reconstruction, demonstrating
the importance of both types of feedback in training. While C+VAE’s classification performance
is worse than results from the literature, it’s still competitive, despite simultaneously optimizing
both classification and log-likelihood. Also, we note that C+VAE’s log-likelihood of −110.12 is
comparable to the−109.56 from our implementation of the VAE of Kingma & Welling (2014), which
uses the same encoder-decoder pair as C+VAE. A more powerful encoder or the use of more recent
techniques (e.g., normalizing flows, importance weighting, etc.) could conceivably improve both
error and log-likelihood even further.

Figure 7 in the appendix presents sample MNIST digits generated by C+VAE. Each set of digits is
generated from one of the empirical aggregated class means.

4.3 EVALUATING THE INTERPRETABILITY OF THE DDT

The final decision tree learned by the C+VAE is shown in Figure 1 (a landscape version of the same
tree is in Figure 8 in the appendix). This tree performs feature selection over the 50 available latent
dimensions, using only 8 to classify with 98.02% accuracy with one dimension (21) used to split
twice. We were able to leverage the simplicity of the decision tree to assign meaning to the latent
dimensions used by the tree to classify inputs. Each node divides inputs according to a threshold
value in a single dimension, which corresponds to detecting the most salient macro-feature that
distinguishes the divided subsets.

Dimension 21 of the latent code is the macro-feature used by the decision tree to discriminate between
digits ‘6’ and ‘0’, as well as ‘4’ and ‘7’. Figure 2 visualizes the macro-feature corresponding to
dimension 21. Specifically, the top image (starting with ‘6’) was generated by fixing the other 49
dimensions to be the values of µ6 and varying the value of dimension 21 in even steps from −1
to 2. The bottom image was generated the same way, with the other 49 dimensions initialized to

6

Under review as a conference paper at ICLR 2018

Figure 1: Decision tree learned by C+VAEon the MNIST dataset. Each internal node indicates
which of the 50 latent dimensions is tested. The bottom line of each node is the number of generated
instances of each class that fell to that node. The majority class of each leaf is printed next to that
leaf.

values from µ4. In both image sequences, we see that a high value of dimension 21 emphasizes the
macro-feature of a flat top bar of a digit whereas a low value removes it.

Figure 2: Varying dimension 21, other dimensions set to µ6 (top) and µ4 (bottom). From left to right,
green indicates pixels which are fading, while magenta indicates pixels that are intensifying.

Figure 3: Varying dimension 21, other dimensions set to mean of class means.

To illustrate the effect of varying dimension 21 independently of a specific class mean, we generate
Figure 3 by an identical process, but fix the other 49 dimensions to be the mean of all 10 class means.
The center image is the mean of all 50 dimensions, and is provided for contrast. The left and right
images show the effect of a low or high value of dimension 21 on this ‘average digit’. The clearest
effect of this variation is that the flat top macro-feature is present when this value is high, and absent
when it is low, just as in Figure 2.

7

Under review as a conference paper at ICLR 2018

We generate Figures 4, 5, and 6 by the same process, varying dimensions 10, 26, and 45, respectively.
The decision tree uses dimension 0 to separate digits ‘3’, ‘5’, and ‘8’ from digits ‘2’, ‘4’, and ‘7’.
Figure 4 shows that a low value of dimension 0 correlates strongly with rounded digits, while a high
value creates an emphasized right side and a more angular appearance. Figure 5 shows the effect of
varying dimension 26, used by the tree to separate ‘2’ from ‘4’ and ‘7’. The most notable impact
of a low dimension 26 is the exaggerated lower-left corner, which is absent when that dimension
is high. Figure 6 shows the effect of varying dimension 45. This is the first dimension used by the
decision tree, to split ‘1’ from the other nine classes. A clear vertical line near the center of the digit
is emphasized by low values of dimension 1. Latent codes with high values of dimension 1, a feature
common to the other nine classes, lack that central vertical line.

Figure 4: Varying dimension
0, other dimensions set to
mean of class means.

Figure 5: Varying dimension
26, other dimensions set to
mean of class means.

Figure 6: Varying dimension
45, other dimensions set to
mean of class means.

5 RELATED WORK

Differentiable Trees Previous work that uses deep networks for representation learning with
decision trees is the Deep Neural Decision Forests of Kontschieder et al. (2015), which stochastically
make routing decisions through a decision tree according to the outputs of a deep convolutional
network. The setup achieved good performance at its classification task, but it is not clear how to
interpret the proposed classification process, especially when more than one tree is combined into
a forest classifier. As a method of making the decision tree differentiable, our proposed inference
method of integrating a probability distribution over the decision regions of the tree is a novel
approach.

Another tree-based method uses differentiable boundary trees to learn an embedding suitable for
k-nearest neighbor classification (Zoran et al. (2017)). The learned representation allows a small,
interpretable boundary tree to classify effectively, similar to our technique. The classification accuracy
of the technique marginally outperforms our combined model, but the C+VAE also acts as a generative
model and does not suffer from the significant complexity of having to use dynamically constructed
computation graphs.

VAE learning Other work in classifying the latent codes produced by a VAE includes Kingma et al.
(2014), whose M1 semi-supervised model learns to classify from the latent embedding similarly to
our combined classifier. However, M1 trains the discriminator separately from the VAE and lacks
interpretability as the class separation is performed solely by a black-box discriminator. The M2
model is similar to the supervised VAE, but doesn’t change the VAE prior.

Dilokthanakul et al. (2017) present a Gaussian Mixture Variational Autoencoder to learn a class-
focused latent representation. Our work assumes a supervised, rather than the GMVAE’s unsupervised
environment. This allows the classifying modification to the VAE framework to remain simpler and
more interpretable, as well as more tractable optimization.

6 FUTURE WORK

Future work includes applying our approach to other data sets such as CIFAR-10, and using more
powerful encoders and decoders to see how performance is affected. We will also look into extending
our approach to handle unlabeled data in applications such as semi-supervised learning and clustering.

8

Under review as a conference paper at ICLR 2018

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of NVIDIA Corporation with the donation of the Titan X
Pascal GPU used for this research.

REFERENCES

Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen. Classification and regression
trees. CRC press, 1984.

Yuri Burda, Roger B. Grosse, and Ruslan Salakhutdinov. Importance weighted autoencoders. CoRR,
abs/1509.00519, 2015. URL http://arxiv.org/abs/1509.00519.

Nat Dilokthanakul, Pedro A. M. Mediano, Marta Garnelo, Matthew C.H. Lee, Hugh Salimbeni,
Kai Arulkumaran, and Murray Shanahan. Deep unsupervised clustering with gaussian mixture
variational autoencoders, 2017.

D. P. Kingma and M Welling. Auto-encoding variational bayes. In International Conference on
Learning Representations (ICLR), 2014.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. CoRR,
abs/1412.6980, 2014. URL http://arxiv.org/abs/1412.6980.

Diederik P. Kingma, Danilo J. Rezende, Shakir Mohamed, and Max Welling. Semi-supervised
learning with deep generative models, 2014.

Diederik P. Kingma, Tim Salimans, Rafal Józefowicz, Xi Chen, Ilya Sutskever, and
Max Welling. Improving variational autoencoders with inverse autoregressive
flow. In Advances in Neural Information Processing Systems 29: Annual Con-
ference on Neural Information Processing Systems 2016, December 5-10, 2016,
Barcelona, Spain, pp. 4736–4744, 2016. URL http://papers.nips.cc/paper/
6581-improving-variational-autoencoders-with-inverse-autoregressive-flow.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulò. Deep neural
decision forests. In 2015 IEEE International Conference on Computer Vision, ICCV 2015, Santiago,
Chile, December 7-13, 2015, pp. 1467–1475, 2015. doi: 10.1109/ICCV.2015.172. URL http:
//dx.doi.org/10.1109/ICCV.2015.172.

S. Kullback and R. A. Leibler. On information and sufficiency. Annals of Mathematical Statistics, 22
(1):79–86, 1951.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

J. Ross Quinlan. C4.5: Programs for machine learning. Morgan Kaufmann, 1993.

Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani Raiko. Semi-supervised
learning with ladder networks. In Advances in Neural Information Processing Systems 28: An-
nual Conference on Neural Information Processing Systems 2015, December 7-12, 2015, Mon-
treal, Quebec, Canada, pp. 3546–3554, 2015. URL http://papers.nips.cc/paper/
5947-semi-supervised-learning-with-ladder-networks.

Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In
Proceedings of the 32nd International Conference on Machine Learning, ICML 2015, Lille, France,
6-11 July 2015, pp. 1530–1538, 2015. URL http://jmlr.org/proceedings/papers/
v37/rezende15.html.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic back-propagation and
variational inference in deep latent gaussian models. CoRR, abs/1401.4082, 2014. URL http:
//arxiv.org/abs/1401.4082.

9

http://arxiv.org/abs/1509.00519
http://arxiv.org/abs/1412.6980
http://papers.nips.cc/paper/6581-improving-variational-autoencoders-with-inverse-autoregressive-flow
http://papers.nips.cc/paper/6581-improving-variational-autoencoders-with-inverse-autoregressive-flow
http://dx.doi.org/10.1109/ICCV.2015.172
http://dx.doi.org/10.1109/ICCV.2015.172
http://papers.nips.cc/paper/5947-semi-supervised-learning-with-ladder-networks
http://papers.nips.cc/paper/5947-semi-supervised-learning-with-ladder-networks
http://jmlr.org/proceedings/papers/v37/rezende15.html
http://jmlr.org/proceedings/papers/v37/rezende15.html
http://arxiv.org/abs/1401.4082
http://arxiv.org/abs/1401.4082

Under review as a conference paper at ICLR 2018

Tim Salimans, Diederik P. Kingma, and Max Welling. Markov chain monte carlo and variational
inference: Bridging the gap. In Proceedings of the 32nd International Conference on Machine
Learning, ICML 2015, Lille, France, 6-11 July 2015, pp. 1218–1226, 2015. URL http://jmlr.
org/proceedings/papers/v37/salimans15.html.

Dustin Tran, Rajesh Ranganath, and David M Blei. Variational gaussian process. arXiv preprint
arXiv:1511.06499, 2015.

Daniel Zoran, Balaji Lakshminarayanan, and Charles Blundell. Learning deep nearest neighbor
representations using differentiable boundary trees, 2017.

10

http://jmlr.org/proceedings/papers/v37/salimans15.html
http://jmlr.org/proceedings/papers/v37/salimans15.html

Under review as a conference paper at ICLR 2018

A GENERATED MNIST IMAGES

Figure 7: Sample MNIST digits generated by C+VAE. Each set of digits is generated from one class
prior, but the mixture may be sampled from with one extra step.

11

Under review as a conference paper at ICLR 2018

B LANDSCAPE VERSION OF DECISION TREE

Figure 8: Landscape version of decision tree learned by C+VAE.

12

	Introduction
	Our Contributions

	Background
	Our Model
	Supervised VAE
	Differentiable Decision Tree
	Our Combined Model

	Experiments
	Evaluating the Supervised VAE
	Evaluating the C+VAE
	Evaluating the Interpretability of the DDT

	Related Work
	Future Work
	Generated MNIST Images
	Landscape Version of Decision Tree

