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ABSTRACT

End-to-end human animation with rich multi-modal conditions, e.g., text, image
and audio has achieved remarkable advancements in recent years. However, most
existing methods could only animate a single subject and inject conditions in a
global manner, ignoring scenarios that multiple concepts could appears in the same
video with rich human-human interactions and human-object interactions. Such
global assumption prevents precise and per-identity control of multiple concepts
including humans and objects, therefore hinders applications. In this work, we
discard the single-entity assumption and introduce a novel framework that enforces
strong, region-specific binding of conditions from modalities to each identity’s
spatiotemporal footprint. Given reference images of multiple concepts, our method
could automatically infer layout information by leveraging a mask predictor to
match appearance cues between the denoised video and each reference appearance.
Furthermore, we inject local audio condition into its corresponding region to ensure
layout-aligned modality matching in a iterative manner. This design enables the
high-quality generation of human dialogue videos between two to three people or
video customization from multiple reference images. Empirical results and ablation
studies validate the effectiveness of our explicit layout control for multi-modal
conditions compared to implicit counterparts and other existing methods. Code
and video demos are available in the supplementary materials.

1 INTRODUCTION

By leveraging the priors of pretrained Diffusion Transformer-based (DiT) video diffusion models (Bar-
Tal et al., 2024; Blattmann et al., 2023a;b; Guo et al., 2023; Zhou et al., 2022; Gupta et al., 2023;
Wang et al., 2023; Ho et al., 2022; Brooks et al., 2022; Wang et al., 2020; Singer et al., 2022; Li
et al., 2018; Villegas et al., 2022; Lin et al., 2025b), end-to-end human animation models, especially
audio-driven approaches (He et al., 2023; Tian et al., 2024; Xu et al., 2024a; Wang et al., 2024a;
Chen et al., 2024; Xu et al., 2024b; Stypulkowski et al., 2024; Jiang et al., 2024a; Lin et al., 2024;
2025a) has achieved high-quality human-centric video generation and strong controllability from
multi-modal conditions, such as text, image and audio. However, most of existing methods commonly
hold an assumption of a single-identity paradigm: all available conditions should be fused globally
and implicitly assumed to describe one unique subject in the given image. Although this global
injection strategy simplifies conditioning by sharing the same condition signal across all regions, it
fundamentally limits scalability in scenarios involving multiple individuals or complex human-object
interactions, where each entity requires distinct appearance and voice attributes.

Recent multi-concept video customization methods, such as Video-Alchemist (Chen et al., 2025a),
ConceptMaster (Huang et al., 2025), Phantom (Liu et al., 2025), and SkyReels-A2 (Fei et al., 2025a),
enable injecting multiple reference images into a single video, facilitating multi-person or human-
object interaction scenarios. However, these methods face significant challenges when directly applied
to human animation tasks. In such tasks, animation signals are highly specific to individual identities
and demand precise conditioning and alignment with specific spatiotemporal regions. For example,
audio signals are exclusively associated with the current speaker and are unrelated to the background
or other individuals’ concepts. Existing customization methods, akin to end-to-end human animation
approaches, still adopt video-level condition injection. While this approach may suffice for general
video generation, it often causes confusion in human-centric video generation, making it difficult
to produce satisfactory results, as shown in Fig. 3. For end-to-end human-centric video generation,
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sta rt frame

Figure 1: Video frames generated from audio and multi-concept reference images (human heads/full
bodies, objects, scenes) display rich, audio-matched expressions. Our method enables compositional
generation including outfit changes, human–object interactions, anime styles, dialogues even without
a start frame. Red and green wave icons denote speaking and listening, respectively.

conditioning inputs should ideally include not only global modalities (e.g., reference images and text
descriptions) but also local modalities (e.g., audio). As mentioned, existing human animation and
multi-concept customization methods fail to address this critical distinction. This limitation motivates
us to propose a new framework that enables the precise injection of local human-related modalities, a
capability that is both essential and urgently needed for robust multi-concept, human-centric video
generation, as illustrated in Fig. 1.

In this paper, we propose InterActHuman, a video diffusion framework for spatially aligning multi-
modal conditions in multi-concept human video generation. Unlike prior methods (Chen et al., 2025a;
Huang et al., 2025) that rely on feature fusion and attention to implicitly learn relationships between
condition signals and concepts, InterActHuman introduces an attention module that explicitly predicts
the spatial locations where the reference concepts appear in the video. This explicit layout allows
the model to accurately associate local audio conditions with the correct regions via iterative mask
prediction and masked audio attention during diffusion inference. Our framework offers two key
advantages. First, it enforces a stronger layout constraint by precisely binding each condition to its
corresponding spatial region. Second, it provides a unified interface for synchronously injecting all
modalities (e.g., visual and acoustic inputs) through the layout. These features make InterActHuman
well suited for multi-modal, multi-concept human animation and establish a baseline for this domain.

Although using an explicit mask for condition injection may seem straightforward, it creates a
chicken-and-egg dilemma: during inference the final video is not yet available, leaving the spatial
positions of each identity uncertain and making accurate mask prediction impossible; yet without
those masks, spatial injection of local audio conditions cannot be performed, leading to an incomplete
or misaligned generation process. To address this, we leverage the iterative denoising process inherent
in diffusion models (Song et al., 2021). Specifically, we introduce a mask-predictor branch into the
diffusion pipeline and adopt an interleaved mask-prediction strategy, wherein the mask predicted at
step k guides condition injection at step k+1. This iterative refinement progressively finalizes the
spatial layout, breaking the cyclic dependency and enabling precise spatial alignment even without
ground-truth video during inference. In essence, our approach converts the chicken-and-egg problem
into a sequential, convergent procedure that robustly aligns local audio conditions.

Beyond model design, we developed a scalable pipeline to automatically assemble high-quality,
human-centric animation data to address the lack of suitable multi-concept datasets. This pipeline
operates by: 1) accurately tracking individual identities to extract their mask information and images,
and 2) aligning audio segments to each identity through lip synchronization. We curated a dataset
of over two million video-entity pairs, capturing both human-human and human-object interactions
across a wide range of object categories. In summary, our contributions are as follows:
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(1) We propose a novel human animation framework capable of synthesizing multi-person and human-
object interactions, conditioned on multiple reference images, text descriptions, and audio inputs.
The framework also supports long video generation as well as single full-image conditioning. (2) We
highlight the importance of local condition injection for multi-concept, multi-modal video generation
and introduce a simple yet effective design that enables the model to handle both global and local
conditions by automatically localizing the conditioned layout. Experimental results demonstrate that
our proposed design significantly outperforms existing baselines.

2 RELATED WORKS

Video Diffusion Models have enabled unprecedented quality text-to-video (T2V) or image-to-video
(I2V) generation in recent years, thanks to diffusion-based generative models (Ho et al., 2020; Song
et al., 2021; Karras et al., 2022; Song et al., 2020; Liu et al., 2022). Early T2V approaches either
adapt pretrained text-to-image networks in a training-free manner (Singer et al., 2022; Wu et al.,
2023b; Qi et al., 2023) or fine-tune UNet-based latent diffusion architectures (Guo et al., 2023; Zhou
et al., 2022; Blattmann et al., 2023a; Wang et al., 2023). To push the frontier, recent works compress
spatiotemporal features with 3D causal VAEs (Yu et al., 2023), and migrate to Diffusion Transformer
(DiT) backbones (Vaswani et al., 2017; Peebles & Xie, 2023; Brooks et al., 2024; Hong et al., 2022).
Through progressive low-to-high resolution pretraining and fine-tuning (Polyak et al., 2024; Kong
et al., 2024; Wang et al., 2025a), these models yield longer, more coherent, and high-quality videos.
Our method is also built upon the pretrained DiT video generation models.

Human Animation Models synthesize videos of people driven by text, reference images, human
body poses or audios. Early GAN-based methods (Siarohin et al., 2019; Zhao & Zhang, 2022;
Siarohin et al., 2021; Jiang et al., 2024b; Wang et al., 2021) are trained on small datasets (Nagrani
et al., 2017; Siarohin et al., 2019; Xie et al., 2022; Zhu et al., 2022) for self-supervised pose transfer.
Diffusion-based approaches (Shao et al., 2024; Zhang et al., 2024; Hu, 2024; Wang et al., 2024c;
2025b) now surpass GAN-based methods by conditioning on 2D skeletons, 3D depth, or mesh
sequences. Audio-driven portrait methods (Ye et al., 2022; Zhang et al., 2023; Tian et al., 2025b;
Jiang et al., 2024a; Cui et al., 2024) have been extended toward full-body motion via two-stage
pipelines for improved hand quality (Corona et al., 2024; Meng et al., 2024; Tian et al., 2025a; Hogue
et al., 2024) and one-stage unified framework designs (Lin et al., 2024; 2025a). In summary, none of
them explored multi-concept human animation, and our method is the first to enable multi-concept
human animation with local audio conditions.

Multi-Concept Video Customization Models have received limited attention. Early single-concept
identity-preserving methods include Videobooth (Jiang et al., 2024c), which learns coarse-to-fine
embeddings from WebVid (Bain et al., 2021) via Grounded-SAM (Kirillov et al., 2023; Liu et al.,
2023; Ren et al., 2024); ID-Animator (He et al., 2024), which integrates IP-Adapter (Ye et al.,
2023) into AnimateDiff (Guo et al., 2023); and ConsisID (Yuan et al., 2024), which decouples
frequency signals to preserve facial identity. More recently, Video-Alchemist (Chen et al., 2025a),
ConceptMaster (Huang et al., 2025), and Phantom (Liu et al., 2025) support multiple reference
images and text descriptions via cross- or self-attention injection for general-purpose multi-concept
customization. BlobGen-Vid (Feng et al., 2025) further enables local layout control of text-specified
concepts using user- or LLM-provided spatiotemporal masks. Ingredients Fei et al. (2025b) proposes
to predict the layout of identities in multi-image customization, yet it does not consider the audio
condition and does not support multi-person talking generation. All existing methods rely solely on
image and text conditions and lack support for multimodal inputs such as audio, which we argue are
essential for truly versatile, human-centric video generation.

3 METHOD

In this section, we present InterActHuman, our multi-concept video generation framework designed
to address the challenges of local condition matching for identities in multi-modal conditions. As
shown in Fig. 2, the framework begins by customizing reference images of multiple concepts into
a video and predicting the mask regions corresponding to each reference appearance in the output
video as layout cues with a cross-attention as mask predictor. It operates on the features of the noisy
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Figure 2: Illustration of our framework, which adaptively predicts masks as the spatial guidance of
audio condition injection. In training, we train the mask predictor (cross-attn w/ MLP) with mask
loss; in inference, we collect mask predictions to cache and leverage masks predicted from the last
denoising step (t− 1) to guide the audio cross-attn in the current denoising step (t).

video latent and the reference image latent and supervised by ground-truth masks. Finally, local audio
conditions are injected into the designated regions guided by an iterative mask prediction procedure.

3.1 PRELIMINARIES

Problem Setting. Given a caption T that describes a target video, alongside a set of concept reference
images {Xi | i = 1, . . . , N} and identity-level audio {Yi | i = 1, . . . , N} where N denotes the
number of distinct concepts, the objective of Multi-Concept Human Animation is to generate high-
quality videos that faithfully integrate all image-specified visual concepts with correct lip movements
synchronized with each audio signal in accordance with the descriptive caption T . Each concept
should consistently preserve its visual identity as depicted in the provided images, while accurately
expressing the semantic roles and behaviors described in the caption.

Preliminaries. Transformer-based text-to-video latent diffusion models have recently demonstrated
remarkable capabilities in generating high-quality video content. Our proposed InterActHuman
framework is built upon the MMDiT-based video generation model (Peebles & Xie, 2023; Esser et al.,
2024; Seawead et al., 2025) and utilize a 3D Variational Autoencoder (VAE) (Kingma & Welling,
2013), which compresses input videos into a compact latent space. For training, we adopt the flow
matching objective (Lipman et al., 2022), which formulates the generative process as a probability
flow ordinary differential equation (ODE). This ODE transports clean latent representations z0
to their noisy counterparts zt along a linear path, defined as zt = (1 − t)z0 + tϵ at timestep t,
where ϵ is sampled from a standard Gaussian distribution. In our setting, which incorporates multi-
modal conditions (image and audio), the output of the diffusion transformer is parameterized as
vΘ(zt, t, cimg, caudio). This output is supervised to predict the velocity (z1 − z0), resulting in the
following training objective:

L = Et,z0,ϵ ||vΘ(zt, t, cimg, caudio)− (z1 − z0)| |22.

This formulation ensures the model effectively learns to generate videos conditioned on multi-modal
inputs while maintaining high fidelity and temporal consistency.

Multi-Concept Reference Image Injection. To handle multiple appearance images, we inject
appearance cues via self-attention in the original DiT layers. Each reference image Xi is encoded
into latent tensors xi using the same VAE as for noisy video frames. The reference latents are
then flattened into token sequences and processed by the DiT along with the noisy latents v. The
reference latents will reuse the parameters of DiT to extract features and interact with noisy latents at
the self-attention layer in every DiT block, allowing appearance cues to propagate to the denoising
pathway. Notably, no extra networks or additional parameters are required, thus preserving the
model’s efficiency. Please refer to Appendix D for more details.
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3.2 LAYOUT PREDICTION AND LOCAL CONDITION INJECTION

While reference-image injection is well studied, leveraging spatiotemporal layouts for local conditions,
such as precise audio alignment, remains challenging. Mask prediction and audio injection are
coupled: if a denoising step is incomplete, the masks are unavailable; if it is complete, it is too late to
inject local conditions. We resolve this with the multi-step inference of diffusion models (Song et al.,
2021): masks predicted at step k guide multi-modal condition injection at step k+1. As the network
learns spatiotemporal layouts for each identity, precise masks emerge without user annotations.

Mask Predictor. In each DiT block, we predict a spatiotemporal mask quantifying how strongly each
reference image should influence each video frame. A lightweight mask-predictor head is attached to
each of the L transformer layers, consisting of: (1) a shared linear projection that maps hidden video
features hv and hidden reference features hr

i to query, key, and value tensors; (2) LayerNorm; (3) 3D
RoPE positional encoding; (4) a cross-attention module; and (5) a two-layer MLP. After normalization
and RoPE, video tokens attend to a single reference via a

(l)
i = softmax

(
QvKr

i
⊤

√
d

)
Vr

i , where d is

the head dimension and l indexes the current layer. The attended feature a
(l)
i is transformed by the

MLP and passed through a sigmoid to yield a layer-specific mask m
(l)
i ∈ [0, 1]T for reference Xi.

We then average the predictions from the last few DiT blocks to obtain the final mask. Notably, the
mask predictor is trained to recover the complete human region, regardless of whether the reference
image shows only the upper body, face, or full body. This simplifies mask prediction and stabilizes
the conditioning module, yielding robust behavior across diverse scenarios. Because the predictors
reuse in-block features and share parameters across references, they add minimal overhead while
enabling explicit layout control for each identity.

Mask Prediction by Caching During Inference. During inference, aggregating mask signals across
layers is difficult in early denoising steps, when reference concept latents are still ambiguous. We
adopt an iterative strategy: at each step, the mask predicted at the previous step is cached and used as
a layout prior for the current step. This progressively sharpens spatiotemporal localization, allowing
masks to adapt to the evolving content and remain consistent per concept over time, thereby improving
overall conditioning quality.

Local Audio Conditioning. To prepare for multi-concept, human-centric video generation, we
first pretrain on single-identity audio-conditioned animation by adding cross-attention–based audio
conditioning (without masks) and a mixed-conditions training strategy, following (Lin et al., 2025a).
Concretely, a new cross-attention layer injects wav2vec (Baevski et al., 2020) audio features into each
DiT block after the MMDiT layer. In the multi-concept setting, this pretrained audio cross-attention
already provides strong per-identity audio control. We therefore implement local audio conditioning
primarily at inference: instead of updating all noisy video tokens (Lin et al., 2025a; 2024), we inject
wav2vec features only into tokens assigned to a given identity, using the previous-step mask as
guidance. To ensure smooth transitions in latent features and in the final video, we blend meaningful
and muted audio features per token using the mask confidence, with soft weighting near mask
boundaries. This local conditioning also enables multi-person dialogues. Given per-speaker audio
tracks as input, the model generates realistic interactions in which speakers take turns, supporting a
wide range of applications.

Training Loss and Strategies. The overall objective combines a flow-matching diffusion loss
(Sec. 3.1) with a focal loss (Lin et al., 2017) for mask classification, which stabilizes training
compared to binary cross-entropy, likely due to foreground–background imbalance and occasional
low-quality masks. A frame-alignment flag excludes frames with invalid or low-quality masks
from loss computation, strengthening temporal supervision. To mitigate the common “copy–paste”
behavior of diffusion models—replicating subjects from references with little variation in pose
or viewpoint—we randomly mask reference images to reveal only the head, full body, or clothing,
promoting appearance diversity. We use a face-to–full-body appearance conditioning ratio of 0.7 : 0.3
and weight the diffusion and focal losses equally (1 : 1).

Inference Strategies. Given N reference images and a text prompt, our method uses Qwen2.5-
VL (Bai et al., 2025) as a rephraser to extract detailed descriptions from each reference image and
integrate them with the original prompt. We apply a shared classifier-free guidance (CFG) across
audio and text. For local control, audio conditioning is applied only within the predicted mask
regions for each reference. Because early denoising steps yield unreliable masks that may suppress
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Start Frame Kling1.6 + Lip-sync OmniHuman-FixedMask OursUser Input

Figure 3: Qualitative comparison with previous methods on multi-concept audio injection.

other references, we disable mask-based injection for the first 10 steps, then enable it using the
previous-step mask. We inject masked audio only on the conditional (positive) branch during CFG
sampling, with a CFG scale of 6.5 and 50 denoising steps.

3.3 MULTI-CONCEPT HUMAN-CENTRIC VIDEO DATA CURATION

We curate a large-scale, human-centric video dataset from a large public video dataset (Li et al.,
2024) and self-collected videos, filtering out videos that are too short (<4 seconds) or contain
too many salient humans (>3) as detected by a human pose detector (Yang et al., 2023). Unlike
previous multi-concept video generation methods (Chen et al., 2025a; Huang et al., 2025) that rely on
conventional pipelines like Grounding-DINO (Liu et al., 2023) and SAM (Kirillov et al., 2023) for
obtaining a single reference image per identity, our multi-stage pipeline leverages advanced vision-
language models. First, each raw video is densely captioned using Qwen2-VL (Wang et al., 2024b)
(distilled from Gemini-2.0-Pro), generating fine-grained descriptions of the environment, subjects’
appearance, actions, expressions, interacting salient objects, and inter-subject interactions. Next,
these descriptions are parsed by a zero-shot Gemini-2.0-Flash API to extract structured appearance
phrases. For spatial supervision, we use Grounding-SAM2 (Ren et al., 2024) with the query person
to produce accurate, temporally consistent masks, which are used both for extracting foreground
reference images (with a white background) and as ground-truth for our mask predictor. Our corpus
comprises over 2.6M triplets of videos, per-frame masks, and captions, forming the foundation of
InterActHuman.

4 EXPERIMENTS

Baselines. Since ConceptMaster (Huang et al., 2025) and Video-Alchemist (Chen et al., 2025a)
are not open-sourced, we do not have access to their models nor test sets. Therefore, we primarily
compare our method with recent multi-concept video customization models through their publicly
available APIs or public models, evaluating performance from the perspectives of visual appear-
ance and adherence to text prompts, including Vidu2.0 (Bao et al., 2024), Pika2.1 (pik), Kling
1.6 (Kuaishou, 2024) and Phantom (Liu et al., 2025), and audio-driven human video generation
methods, including DiffTED (Hogue et al., 2024), DiffGest (Zhu et al., 2023) + Mimiction (Zhang
et al., 2024), CyberHost (Lin et al., 2024), OmniHuman (Lin et al., 2025a) and Kling 1.6 (Kuaishou,
2024) with lip synchronization.

Evaluation Metrics. As audio and appearance are key characteristics of humans, we follow current
state-of-the-art method (Lin et al., 2025a; Huang et al., 2025) to evaluate audio-driven, multi-concept
human-centric video generation. To comprehensively evaluate methods for this task, we consider
five dimensions: 1) Concept fidelity: We leverage CLIP-I (Radford et al., 2021) and DINO-I (Oquab
et al., 2023) on subjects in the generated videos to assess whether they are aligned with the provided
reference images. To get cropped subject images in output videos, we randomly sample 5 frames in
each video and use Florence-2 (Xiao et al., 2024) to detect the subject bounding boxes. We then crop
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Table 1: Quantitative comparisons with audio-conditioned full-body animation baselines.

Methods Single-Person Test Set Multi-Person Test Set

Sync-C↑ HKV↑ HKC↑ Sync-D↓ IQA↑ AES↑ FVD↓
DiffTED 0.926 - 0.769 - - - -
DiffGest.+Mimic. 0.496 23.409 0.833 - - - -
CyberHost 6.627 24.733 0.884 8.974 4.011 2.856 54.797
Kling1.6 + Lip-sync. 4.449 46.490 0.826 8.401 4.716 3.444 33.555
MultiTalk - - - 7.671 4.561 3.248 35.472
OmniHuman w/o mask 7.443 47.561 0.898 9.482 4.768 3.466 33.895
OmniHuman w/ fixed mask - - - 7.068 4.690 3.369 40.239

Ours 7.272 59.635 0.885 6.670 4.757 3.467 22.881

Table 2: User preference evaluation. ⋆means publicly available version with Wan2.1-1.3B.
Audio-Driven Multi-Concept Customization

Metric Kling OmniHuman Ours Pika Phantom⋆ Kling Vidu Ours

Avg. Score ↑ 1.70 1.82 2.48 2.22 2.46 2.90 3.40 4.01
Top-1 (%) ↑ 14.5% 25.6% 59.9% 4.9% 9.9% 13.6% 22.2% 49.4%

the detected regions and compute the CLIP-I and DINO-I scores. We also employ Face-Arc (Deng
et al., 2019), Face-Cur (Huang et al., 2020) and Face-Glink (Deng et al., 2019) to evaluate the
fidelity of facial features if the concept is a human. 2) Prompt following: We utilize video-level
CLIP (Wang et al., 2022) to measure the similarity between the input text prompts and the resulting
video content. 3) Visual quality: We utilize q-align (Wu et al., 2023a), a vision-language model,
for no-reference image quality assessment (IQA) and aesthetics score estimation (ASE). 4) Audio
synchronization and human pose diversity: For lip synchronization, we leverage the widely used
Sync-C and Sync-D (Chung & Zisserman, 2017) to compute audio-visual confidence. We also
incorporate hand keypoint confidence (HKC) and hand keypoint variance (HKV) (Lin et al., 2024)
to quantify hand-pose accuracy and motion richness, respectively. For simplicity, we assume each
test video contains exactly two participants: one speaking (with meaningful audio as input) and one
listening (with muted audio as input). 5) Distribution distance: We employ FVD (Unterthiner et al.)
to measure the distance between generated and ground-truth videos.

Test Sets. We use three test sets in our experiments: 1) single-person audio conditioned human
animation test set following OmniHuman (Lin et al., 2025a) (see Tab. 1); 2) our collected two-person
audio conditioned human animation test set where only one person is talking (see Tab. 1 and Tab. 4);
and 3) multi-concept video customization test set following Phantom (Liu et al., 2025), where we
select 100 human-related pairs of reference images and text prompts in our experiments (see Tab. 3).

4.1 COMPARISONS WITH STATE-OF-THE-ARTS

Multi-Concept Audio-Driven Human Video Generation. In Tab. 1, our approach achieves state-of-
the-art or comparable performance in lip synchronization accuracy and motion diversity, particularly
excelling in complex multi-person interactions where baseline methods(Lin et al., 2024; Kuaishou,
2024) struggle with accurate audio signal assignments. For single-person scenarios, our method
performs on par with specialized models like OmniHuman (Lin et al., 2025a). In multi-person
settings, existing methods including OmniHuman and its extensions as well as leading commercial
video generation models with post-processed lip-sync, fail to deliver satisfactory results. Poor lip-
sync accuracy highlights their inability to generate accurate lip movements for the correct person.
Although OmniHuman with oracle masks (manually setting audio-conditioned regions) improves
lip-sync accuracy, it still significantly degrades overall video quality, as reflected in the FVD metric.
This clearly demonstrates the limitations of existing methods that rely on single-identity assumptions,
hindering their applicability to broader scenarios. In contrast, our method achieves strong performance
in both lip-sync accuracy and overall video synthesis quality, effectively addressing the challenges of
audio-conditioned multi-person video generation while remaining compatible with existing settings.
Fig. 3 presents qualitative results for multi-person audio-driven video generation. While Kling1.6
w/ lip-sync shows many audio assignment errors and OmniHuman w/ fixed mask shows inflexible
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Table 3: Quantitative comparison of subject consistency, prompt following and visual quality.⋆means
publicly available version with Wan2.1-1.3B.

Methods Decoupled Concept Fidelity Prompt Video Quality

CLIP-I↑ DINO-I↑ Face-Arc↑ Face-Cur↑ Face-Glink↑ ViCLIP-T↑ AES↑ IQA↑
Vidu2.0 0.696 0.458 0.568 0.562 0.597 18.61 3.350 4.689
Pika2.1 0.688 0.459 0.579 0.566 0.607 19.39 3.534 4.791
Kling1.6 0.659 0.420 0.552 0.547 0.582 18.38 3.487 4.787
Phantom⋆ 0.703 0.476 0.589 0.573 0.615 17.73 3.404 4.812

Ours 0.744 0.533 0.598 0.600 0.644 18.87 3.565 4.903

Kling1.6Pika2.1Vidu2.0 Phantom* Ours

In a garage with a white door and tools in the background, a dark-haired, bearded man in a dark gray T-shirt stands facing the camera, holding 

and showing a small mechanical part while speaking.

In a dimly lit auditorium, a woman in a black dress smiles widely and claps slowly. A man in a suit beside her matches her applause.

Man, adorned in elegant gloves, stands upright with poised composure, his posture exuding quiet dignity.

Reference

Figure 4: Qualitative comparison with previous methods on subject consistency and text following.

audio control with many missing cases, our method consistently assigns audio signals to the correct
identity and demonstrates better motion dynamics and more precise audio-driven animation. It is
worth noting that all previous methods rely on a reference frame containing complete information to
generate talking-person videos, while our method only needs reference appearance of human’s head
or full-body images and audios.

User Study. We conducted a user study to evaluate our method on two tasks: (1) lip synchronization
in multi-person talking videos and (2) subject consistency in multi-concept customizations. The lip
sync test used 19 videos from three methods, while subject consistency was assessed on 9 videos
from five methods. We use the same model (labeled ‘ours’) for two evaluation tasks. Ten experienced
users ranked each method with scores (higher values indicate superior performance). Tab. 2 reports
the average scores and top-1 selection percentages. Our method achieved the highest scores and top-1
rates in both tasks, validating the effectiveness of our method.

Multi-Concept Video Customization. Although our major contribution is not on multi-concept
video customization, we show that our model is also capable of preserving multi-concept visual
appearances. In Tab. 3, our method outperforms existing approaches (Bao et al., 2024; pik; Kuaishou,
2024) in preserving identity details and facial features, addressing the common degradation issue in
multi-subject generation. Notably, we achieve this without sacrificing audio injection performance,
while these methods are incapable to generate videos from audio conditions. It suggests our joint opti-
mization framework on video generation and mask prediction successfully balances video generation.
Our method ranks second in prompt following, likely due to our audio-driven human-centric training
data focusing on talking and singing, which limits prompt diversity compared to text-to-video tasks.
Despite this, qualitative results (Fig. 4) show that our approach maintains natural subject consistency
and visual quality in both real-world and anime domains, outperforming previous methods that suffer
from unnatural compositions and degraded visuals.

4.2 ABLATION STUDY

We validate our local audio injection designs via ablation on three variants: 1) Global audio (Lin et al.,
2025a) applies audio across the entire feature map; 2) ID Embedding injects audio features with a
learnable ID embedding without mask prediction; 3) Fixed Mask uses predefined static spatial masks.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 4: Ablation study on audio-driven multi-person animation methods.
Variants Sync-D↓ IQA↑ AES↑ FVD↓
Global audio condition 9.482 4.768 3.466 33.895
ID Embedding 8.627 4.658 3.338 35.665
Fixed Mask 7.068 4.690 3.369 40.239

Predicted Mask (Ours) 6.670 4.757 3.467 22.881

Table 5: Runtime and parameters versus number of reference images.
Component 1 ref 2 refs 3 refs #Params

DiT Model 6.5s 7.0s 7.7s 7B
Mask Predictor 0.4s 0.8s 1.2s 56M
Full Model 6.9s 7.8s 8.9s 7B

As shown in Tab. 4, our framework with predicted dynamic masks achieves the best Sync-D and FVD
scores. The fixed mask yields decent Sync-D but suffers motion artifacts (worst FVD), and global
audio, while scoring best in IQA, offers poor audio-visual alignment. Qualitative results in Fig. 6
further reveal that global audio drives all identities uniformly, ID embedding often mismatches audio
with identities, and fixed masks lose alignment when characters move. These findings underscore
that current methods overlook the need for precise local conditions, highlighting the strength of our
dynamic, adaptive mask prediction strategy for multi-person talking video generation.

Computational Cost and Runtime We measure inference time with the setting of 720p, 109 frames
(28 VAE latents) on single A100, and record single forward pass time. The mask predictor adds
∼56M parameters versus a 7B DiT and incurs a small overhead per reference image (≈0.013s per
DiT block). As more references increase VAE latents from 28 to 28+n, DiT self-attention scales as
(1+n/28)2.

Failure case analysis of mask prediction In Figure. 5 we show the qualitative results on the failure
case of mask predictions, where the yellow cat is the current identity image (i.e., ID query of
mask predictor). We can see that although the mask prediction achieves good performance in IoU
measurement from Tables 9 and 10, it still make mistakes when there are highly overlapping regions.
For example, two girls are standing in front of the yellow cat, and the mask predictor manages to
exclude the upper body of the right girl in yellow because of small area of overlapping regions. Yet,
the mask predictor fails for the girl in pink in both frames. In the first frame, the mask predictor
manages to exclude the face region of the little girl in pink, but it mistakenly include another white
animal. Besides, due to the high VAE down-sampling ratio of the widely used DiT models, the mask
is predicted in a very low resolution, leading to inaccurate mask boundaries.

Additional analyses in Appendix. We include (i) a capability matrix against concurrent systems
(Tables 8), (ii) mask IoU versus denoising steps/layers under low/high motion plus motion statistics
(Tables 9, 10, 11), (iii) a mask cache ablation (Table 12), (iv) scaling to >3 people (Table 13).

5 CONCLUSION

In this paper, we introduced InterActHuman, a novel end-to-end video diffusion framework that
supports spatially aligned, multi-modal conditioning for multi-concept human animation. By integrat-
ing an efficient mask-prediction module into a pretrained DiT backbone, our method automatically
infers per-identity spatio-temporal layouts from reference images and uses these masks to guide local
audio conditioning. This explicit layout binding enables each reference concept to retain its unique
appearance and voice, even in complex scenes with multiple interacting entities. To facilitate training
procedure of our model, we presented a high-throughput pipeline for harvesting and annotating over
2.6 million identity-aware video snippets, complete with per-frame masks for humans and objects.
Extensive experiments on both single- and multi-person benchmarks demonstrate that InterActHuman
achieves state-of-the-art performance in lip synchronization, motion diversity and subject apperance
fidelity, while maintaining competitive video quality. We hope it could serve as a solid baseline
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Generated Frames

Visualized Masks

Figure 5: Qualitative results on the failure case of mask predictions.

Fixed MaskID EmbeddingGlobal Audio Ours Reference

Figure 6: Qualitative ablation on audio injection strategies.

for the multi-concept human animation and audio-driven multi-person video generation community,
where further improvements could be built upon it.

Limitations. Since the goal of this work is for human-centric video generation, the available data
domain is inherently narrower than one used for general text-to-video pretraining, limiting the ability
to follow the diverse text prompts. While our framework is designed to accommodate any number
of concept images, the training dataset predominantly consists of videos featuring two to three
individuals. This distribution may constrain the generalization of any number of inputs, suggesting
further improvements could be achieved by enlarging the diversity and scale of training data.
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Ethics Statement. Our model could be used to generate misinformation by using celebrity images
and voices. We will strictly restrict access and add watermarks to prevent misuse.

Reproducibility Statement. We have provided a code re-implemented on the publicly available
video diffusion pretraining model Wan2.1 (Wang et al., 2025a) to show the details of our method. We
also provided the dataset processing code, e.g., caption analysis and Grounding-SAM2 (Ren et al.,
2024). In the Algorithm 1, we provided detailed pseudo-code to show the inference pipeline of our
method. Based on such information, we believe the reproducibility of method is solid enough.
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Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
robust visual features without supervision. arXiv preprint arXiv:2304.07193, 2023.

William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 4195–4205, 2023.

Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas,
Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media foundation
models. arXiv preprint arXiv:2410.13720, 2024.

Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, and Qifeng
Chen. Fatezero: Fusing attentions for zero-shot text-based video editing. arXiv:2303.09535, 2023.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International conference on machine learning, pp.
8748–8763. PMLR, 2021.

Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
tasks. arXiv preprint arXiv:2401.14159, 2024.

Team Seawead, Ceyuan Yang, Zhijie Lin, Yang Zhao, Shanchuan Lin, Zhibei Ma, Haoyuan Guo, Hao
Chen, Lu Qi, Sen Wang, et al. Seaweed-7b: Cost-effective training of video generation foundation
model. arXiv preprint arXiv:2504.08685, 2025.

Ruizhi Shao, Youxin Pang, Zerong Zheng, Jingxiang Sun, and Yebin Liu. Human4dit: Free-view
human video generation with 4d diffusion transformer. arXiv preprint arXiv:2405.17405, 2024.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026
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A ADDITIONAL EXPERIMENTAL RESULTS

A.1 LLM USAGE STATEMENT.

We use LLMs (e.g., Gemini-2.5 and GPT-5) to polish our paragraphs.

A.2 COMPARISON WITH SINGLE-PERSON TALKING-HEAD METHODS

Although our method targets multi-person full-body talking video generation, we report single-person
talking-head results for completeness.

Table 6: CelebV-HQ: higher is better for IQA/ASE/Sync-C; lower is better for FID.
Method IQA↑ ASE↑ Sync-C↑ FID↓
SadTalker (Zhang et al., 2023) 2.953 1.812 3.843 36.648
Hallo (Xu et al., 2024a) 3.505 2.262 4.130 35.961
VExpress (Wang et al., 2024a) 2.946 1.901 3.547 65.098
EchoMimic (Chen et al., 2024) 3.307 2.128 3.136 35.373
Hallo-3 (Cui et al., 2024) 3.451 2.257 3.933 38.481
Loopy (Jiang et al., 2024a) 3.780 2.492 4.849 33.204
OmniHuman (Lin et al., 2025a) 3.875 2.656 5.199 31.435

Ours 3.834 2.553 5.047 30.159

As shown in Table 6, OmniHuman achieves the best single-person talking-head scores on
IQA/ASE/Sync-C, while our method yields the best FID. Since our approach targets multi-person,
full-body generation rather than single-person heads, these results indicate competitive quality under
a setting that is not our primary target. On RAVDESS (Table 7), our method attains the best IQA and
ASE, while OmniHuman leads on Sync-C and FID. This mirrors the CelebV-HQ trend and supports
our claim that the proposed framework remains competitive on single-person benchmarks while being
designed for multi-person, full-body scenarios.
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Table 7: RAVDESS: higher is better for IQA/ASE/Sync-C; lower is better for FID.
Method IQA↑ ASE↑ Sync-C↑ FID↓
SadTalker (Zhang et al., 2023) 3.840 2.277 4.304 32.343
Hallo (Xu et al., 2024a) 4.393 2.688 4.062 19.826
VExpress (Wang et al., 2024a) 3.690 2.331 5.001 26.736
EchoMimic (Chen et al., 2024) 4.504 2.742 3.292 21.058
Hallo-3 (Cui et al., 2024) 4.006 2.462 4.448 28.840
Loopy (Jiang et al., 2024a) 4.506 2.658 4.814 17.017
OmniHuman (Lin et al., 2025a) 4.564 2.815 5.255 16.970
Ours 4.602 2.915 5.132 17.187

A.3 COMPARISON WITH CONCURRENT WORKS

We show comparison with recent multi-person talking systems which are conditioned on a reference
frame only and released concurrently with our method. Our framework supports both concept-only
and first-frame modes.

Table 8: Qualitative capability comparison. ✓: supported; x: not supported.
Methods Audio-driven full-body First-frame I2V Multi-ref images Multi-person talking

Video-Alchemist (Chen et al., 2025a) x x ✓ x
ConceptMaster (Huang et al., 2025) x x ✓ x
Phantom (Liu et al., 2025) x x ✓ x
OmniHuman (Lin et al., 2025a) ✓ ✓ x x
HunyuanVideo-Avatar (Chen et al., 2025b) ✓ ✓ x ✓
MultiTalk (Kong et al., 2025) ✓ ✓ x ✓
Ours ✓ ✓ ✓ ✓

A.4 MASK REFINEMENT ACROSS DENOISING STEPS AND LAYERS

Across both regimes (Tables 9, 10), IoU steadily improves with denoising steps, validating the
iterative refinement strategy. Deeper layers (e.g., layer 36) outperform shallow layers early on, while
the combined mask yields the strongest mid/late-step IoUs. Notably, high-motion sequences retain
strong IoUs and achieve competitive lip-sync (Sync-D 6.921), indicating that masks are not static
and remain reliable even under larger motion (see the motion statistics in Table 11).

Table 9: Low motion strength: mask IoU across steps/layers; Sync-D for the setting.
step 1 step 10 step 20 step 30 step 50 Sync-D↓

Mask layer 4 0.306 0.436 0.509 0.640 0.858 –
Mask layer 20 0.386 0.629 0.733 0.890 0.957 –
Mask layer 36 0.538 0.742 0.850 0.916 0.923 –
Combine mask 0.376 0.738 0.881 0.949 0.956 7.292

A.5 EFFECT OF MASK CACHE

Using the cached mask from step t−1 to gate audio injection at step t markedly improves lip
sync (Table 12; 6.921 vs 11.046 Sync-D). Without caching, identity assignment degrades toward a
single-person behavior, confirming the necessity of cross-timestep spatial guidance.

Table 12: Mask cache significantly improves multi-person lip sync.
Condition Sync-D↓
With mask cache 6.921
Without mask cache 11.046
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Table 10: High motion strength: mask IoU across steps/layers; Sync-D for the setting.
step 1 step 10 step 20 step 30 step 50 Sync-D↓

Mask layer 4 0.113 0.426 0.529 0.730 0.779 –
Mask layer 20 0.527 0.816 0.911 0.934 0.945 –
Mask layer 36 0.694 0.902 0.923 0.931 0.915 –
Combine mask 0.741 0.916 0.932 0.936 0.937 6.921

Table 11: Statistics used to define motion regimes.
Statistic Low High

Body keypoints confidence 0.737 0.663
Max body kp moving dist (px) 21.268 216.269
Var body kp moving dist (px) 6.098 34.022
Head keypoints confidence 0.9856 0.9840
Max head kp moving dist (px) 2.258 34.201
Var head kp moving dist (px) 2.961 216.383

A.6 SCALING BEYOND THREE PEOPLE

Table 13 shows stable scaling to 4–5 speakers: Sync-D improves slightly (6.608) and AES increases
(3.992) with a marginal IQA change. This aligns with our claim that per-identity mask prediction is
independent, enabling more entities without collapsing lip-sync quality.

Table 13: Stable performance when scaling to 4–5 subjects.
#People Sync-D↓ AES↑ IQA↑
≤3 6.670 3.467 4.757
4–5 6.608 3.992 4.738

B ALGORITHM OF OUR MODEL IMPLEMENTATION

Please refer to Algorithm 1 for our model implementation.

C MORE DETAILS OF OUR MODEL

C.1 LONG VIDEO GENERATION AND FRAME-ALIGNMENT DETAILS

We follow sliding-window strategies (Jiang et al., 2024a; Tian et al., 2025b) by reusing several motion
frames from the tail of window w as the head of window w+1. Reference injection is unchanged;
starting frames are optional for window 1.

Frame alignment flag. Per-frame masks have confidence scores from SAM2; frames with confi-
dence < 0.5 are excluded from the mask loss (flow-matching still applies). Videos are retained if
other frames have reliable masks, so supervision remains temporally dense.

C.2 LOSS DESIGN AND AUDIO STACK CLARIFICATIONS

Focal loss. We adopt focal loss with α = 0.25, γ = 2 to mitigate class imbalance (background vs
person) and stabilize early training; BCE converges more slowly and is less stable initially.

Audio features. Audio tokens come from wav2vec 2.0; we do not add extra transformer blocks
before injection. Spatial attention is unrestricted; temporally each latent attends to a local ±5 token
window.
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C.3 IMPLEMENTATION DETAILS

Our model was trained for 10,000 steps on 32 A800 GPUs with a learning rate of 3e-5. We adopted
the PyTorch framework combined with Fully Sharded Data Parallel (FSDP) to finetune the DiT model
across multiple GPUs. Specifically, the model was partitioned such that different GPUs handled
distinct portions of the model’s parameters. We configured the effective batch size so that every
node—comprising 8 GPUs—processed 2 videos simultaneously. With 32 GPUs in total (i.e., 4
nodes), this resulted in an overall effective batch size of 8 videos.

C.4 ABLATION DETAILS

In Tab. 4 and Fig. 5 of the paper, we validate our local audio injection designs via ablation on
three variants: 1) Global audio (Lin et al., 2025a) applies audio across the entire feature map; 2) ID
Embedding injects audio features with a learnable ID embedding without mask prediction; 3) Fixed
Mask uses predefined static spatial masks.

For global audio, it is identical to the pretrained audio-driven model (Lin et al., 2025a). For fixed
mask, it is a manually input rectangle mask upon the audio cross-attention of pretrained audio-driven
model (Lin et al., 2025a). It requires the generated human being static and it needs the user to ensure
there is only one person inside a mask.

For ID embedding, here we provide some implementation details. Inspired by detection transform-
ers (Carion et al., 2020), we introduce a set of N learnable ID embeddings Equery ∈ RN×C . These
embeddings serve as identity tokens for the N individuals. Specifically, we add the same learnable
ID embedding equery ∈ RC to a paired reference image and audio segment. In this way, we expect
the model to implicitly match an individual (defined by a reference image) and audio segments in
the output video to get synchronized lip movements. For the ID embedding dataset preparation, we
incorporate multi-person videos into training. We use Active Speaker Detection (ASD) to extract
talking persons’ identities as a bounding box with identity-number. Then we use the bounding box
and SAM2 masks to match the identity-number of each timestep of audio based on their IoU. Finally
we use paired audio with timestep and reference image to generate video, and use flow-matching
loss only to supervised it. No mask information is provided to the model and no mask supervision
adopted.

In the main paper, our experimental results in ablation study indicate that implicit matching of
individuals and audio segments is worse than explicit matching with layout-aligned mask prediction
and audio injection. It is worth noting that although our implementation shows this evidence,
implicit matching is not necessarily worse than explicit matching. We show that a straight-forward
implementation of implicit matching cannot generate satisfactory results, yet there could be better
implementations to improve this result in the future.

D DETAILS OF AUDIO-DRIVEN BASE MODEL’S ARCHITECTURE AND
TRAINING

This appendix provides a detailed description of the network structure and training specifics for
the pretrained audio-driven single-person video generation model, OmniHuman (Lin et al., 2025a).
As noted in our main paper, the text-to-video base model undergoes post-pretraining for audio
conditioning, following the OmniHuman (Lin et al., 2025a) methodology. Subsequently, our multi-
concept framework is built and trained on this foundation.

D.1 AUDIO-DRIVEN BASE MODEL

Our foundational model is composed of a Variational Autoencoder (VAE) and a Latent Diffusion
Transformer (DiT). The VAE includes an encoder, which compresses raw pixel data into a compact
latent representation, and a decoder, which reconstructs the original pixel inputs from these latent
features. The VAE achieves compression ratios of (4, 8, 8) for the (t, h, w) dimensions, respectively.
Both the encoder and decoder utilize a temporally causal convolutional architecture, facilitating
image and video compression across both spatial and temporal domains within the joint latent space.
The denoising latents possess 16 channels.
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The DiT Blocks are based on the dual-stream Diffusion Transformer (DiT)(Esser et al., 2024). This
transformer processes video and text tokens through multiple self-attention layers and feedforward
networks (FFNs) to learn representations that are both shared and modality-specific. SwiGLU
is employed as the activation function to enhance nonlinear modeling capabilities. Additionally,
AdaSingle(Chen et al., 2023) is used for efficient timestep modulation. Moreover, two-thirds of the
FFN weights in the deeper layers share parameters, creating a hybrid-stream design that preserves
model capacity while substantially improving parameter efficiency.

D.2 MIXED TRAINING STRATEGY

We utilize a multi-condition training strategy based on the framework established in OmniHuman (Lin
et al., 2025a). Our method employs a two-stage progressive training scheme to develop the base
model’s capabilities. In the initial stage, the model is trained solely on text-to-video (T2V) data
to build fundamental video generation abilities. The second stage introduces audio-synchronized
datasets to expand the model’s functionality to include audio-driven generation and reference image
injection. For this second stage, we follow two core principles from OmniHuman: 1) Tasks with
stronger conditioning can leverage tasks with weaker conditioning and their associated data to broaden
the effective training dataset; 2) Tasks with stronger conditioning should be assigned proportionally
lower training ratios. Guided by these principles, we first train the reference image injection capability
before introducing the audio-driven generation objective. This staged methodology facilitates efficient
knowledge transfer while ensuring stable training dynamics throughout the multi-condition learning
process.

E ADDITIONAL DETAILS FOR AUDIO-DRIVEN BASE MODEL DATASET

E.1 DATASET CURATION

We initially filter the T2V data using rules 1 through 6. Following this, we apply rule 7 to further
refine the audio-driven data.

1. Video Clip. We begin by using PySceneDetect ( https://github.com/Breakthrough/PySceneDetect)
to identify and trim shot transitions and fades within video clips. After this process, all clips are
standardized to a duration of 5 to 30 seconds.

2. Human. Utilizing the annotated video captions, we implement a rule-based system to detect
keywords such as ”people”, ”human”, ”men”, ”women”, ”girl”, and ”boy”. If any of these keywords
are found, the video is categorized as human-related. This technique ensures the dataset is effectively
filtered to comprise only videos pertinent to human activities and interactions.

3. Subtitles. We use PaddleOCR ( https://github.com/PaddlePaddle/PaddleOCR) to detect subtitles in
the videos and remove clips where subtitles change. This step guarantees that the dataset emphasizes
continuous and consistent visual content, reducing distractions from textual variations and improving
the data quality for subsequent tasks.

4. Visual Quality. We utilize Q-align (Wu et al., 2023a) to evaluate the visual quality of the
videos, filtering out clips that do not meet a predefined threshold. This procedure ensures the dataset
maintains a high standard of visual clarity, which is essential for accurate analysis and robust model
performance. By eliminating low-quality segments, we enhance the overall dependability and utility
of the dataset.

5. Aesthetics. We employ Q-align (Wu et al., 2023a) to assess the aesthetic appeal of the videos and
discard clips falling below a set threshold. Through aesthetic quality assessment, we can filter out
videos containing post-production elements, thereby improving the quality of the training dataset.
This measure ensures the dataset is composed of natural and unaltered video content, which better
represents real-world scenarios and boosts the robustness and generalization of the trained models.

6. Motion. We use Raft (Teed & Deng, 2020) to calculate the optical flow of the videos and filter out
clips exhibiting overly intense motion. This step ensures that the dataset includes only video clips
with moderate and significant motion, which are more appropriate for analysis and model training.
By removing clips with extreme motion, we enhance the stability and quality of the dataset, leading
to more dependable results.
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7. Syncnet. For audio-driven content, we employ SyncNet (Chung & Zisserman, 2017) to determine if
the lip movements are synchronized with the audio. Videos displaying considerable asynchronization
are excluded. This step ensures that the dataset consists only of high-quality, synchronized audio-
visual data. By removing out-of-sync segments, we improve the overall quality and reliability of the
dataset. Ultimately, we gather 2,000 hours of audio-driven data.

E.2 DATASET ANALYSIS

To gain a better understanding of the dataset’s distribution, we perform an analysis across three
dimensions. Detailed definitions for each dimension are provided below.

• Human Size. Human size indicates the portion of the human body visible within the video
frame. It is categorized into the following levels: Portrait (head and shoulders), Chest
(from head to chest), Waist (from head to waist), Knees (from head to knees), and Full
Body (the entire body is visible). To determine this, we first detect body keypoints using
RTMpose (Jiang et al., 2023), and then classify the human size based on the confidence
scores of these keypoints. This method ensures a robust and accurate categorization of the
visible human body extent in each video.

• Motion Amplitude. After extracting body keypoints from the video, the amplitude of
human motion is computed by measuring the displacement of the chest keypoint over time,
relative to the width of the shoulders. Based on these calculations, we classify motion
amplitude into four categories: Slight(< 0.1), Moderate(0.1− 0.2), Significant(0.2− 0.3),
and Extreme(> 0.3).

• Scene. Using video captioning, we employ Doubao to categorize videos into the following
scenarios: Household, Work, Show, Outdoor Adventure, transportation, Arts and Crafts,
Sports, and Others.

• Language. For data containing audio, we use a language detection tool
( https://github.com/Mimino666/langdetect) to identify and count the types of languages
present. These are categorized as English, Chinese, Spanish, French, German, Urdu, Hindi,
and Others.

F USER STUDY DETAILS

Here we show our questionnaires used in the user study.

F.1 MULTI-PERSON AUDIO-DRIVEN VIDEO GENERATION QUESTIONNAIRE

Please take 10 minutes to complete the following ranking questions. For each question, consider the
priority of the three videos based on the following dimensions and rank them accordingly:

(1) Lip-sync Accuracy: Based on the audio you hear, do you think the lip movements are accurate?
Ideally, only one person’s lip movements should correspond to the audio, but it doesn’t matter
specifically who is speaking. It is considered poor if multiple people are speaking simultaneously or
if no one is speaking when there is audio. When multiple methods all correctly show only one person
speaking, rank them based on the quality of lip-sync with the audio. Perfect synchronization is good;
missing syllables or incorrect lip shapes for certain syllables is poor.

(2) Sense of Dialogue Among Multiple People: Is there a feeling of conversation between the
individuals? It is considered good if it portrays a natural scenario where one person speaks and
another listens. The judgment here is based on whether their expressions during the interaction appear
natural and whether the overall feeling of the conversation is natural.

(3) Video Quality: If all the above criteria are tied, then prioritize the video with higher quality.

The priority of these three criteria decreases in the order listed. Aspect ratio and resolution should not
be taken into account; you should not favor a particular aspect ratio or higher resolution, but rather
focus on the inherent video quality itself.
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F.2 MULTI-CONCEPT VIDEO GENERATION QUESTIONNAIRE

Please take 8 minutes to complete the following ranking questions. For each question, consider the
priority of the five videos from the perspective of consistency between the reference images and the
appearance in the video, and rank them accordingly:

(1) Consistency with Reference Images: Based on the reference images, do you think all the listed
reference images appear in the video? And does the appearance of those in the video match the
images? Consider the priority in the following order from high to low:

Ranked highest: Appearance is consistent, and all reference images appear.

Next: All reference images appear, but the appearance of some reference images is inconsistent.

Ranked lowest: Some reference images do not appear.

(2) Video Quality: If the above criteria are tied, then prioritize the video with higher quality.

(3) Motion Strength: If all the above criteria are tied, then prioritize the video with a larger motion
strength.

The priority of these criteria decreases in the order listed. Aspect ratio and resolution should not be
taken into account; you should not favor a particular aspect ratio or higher resolution, but rather focus
on the inherent video quality itself.
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Algorithm 1 InterActHuman: Audio-Driven Multi-Concept Video Generation Inference
Require:

Text prompt T , reference images {Xi}Ni=1, identity-level audio {Yi}Ni=1
Total diffusion steps S, mask injection threshold step Smask
VAE Encoder/Decoder, diffusion transformer

Ensure: Generated video V
1: Preprocessing:
2: for i← 1 to N do
3: Ti ← Rephrase(Xi, T ) ▷ Generate detailed prompt via Qwen2.5-VL.
4: xi ← VAE Encoder(Xi) ▷ Encode reference image.
5: ai ← wav2vec(Yi) ▷ Extract audio features.
6: end for
7: ctext ← {T, T1, . . . , TN} ▷ Aggregate text conditions.
8: zS ∼ N (0, I) ▷ Initialize the noisy video latent.
9: Initialize mask cache: {mprev

i } ← 0
10: for k ← S downto 1 do
11: for each DiT block layer l that we inject conditions do
12: for i← 1 to N do
13: Reference Injection: Inject {xi} via concatnation and self-attention.
14: Compute hidden video feature hv and reference feature hr

i .
15: Qv ← Projq(h

v). [Kr
i , V

r
i ]← Projk,v(h

r
i ).

16: Apply LayerNorm and 3D RoPE to the features.
17: Compute cross-attention:

p
(l)
i ← softmax

(Qv(Kr
i )

⊤
√
d

)
Vr

i .

18: Predict layer mask:

m
(l)
i ← sigmoid

(
MLP(p(l)

i )
)
.

19: end for
20: end for
21: Aggregate Masks:

mi ←
1

L

L∑
l=1

m
(l)
i ∀ i ∈ {1, . . . , N}.

22: Cache current masks: {mprev
i } ← {mi}.

23: if k < Smask then
24: for i← 1 to N do
25: Audio Injection: inject local audio by updating the noisy latent hv .
26: Qv ← Projq(h

v). [Kmute
i , Vmute

i ]← Projk,v(a
mute
i ). [Ki, Vi]← Projk,v(ai).

27: Compute cross-attention:

pi ← softmax
(Qv(Ki)

⊤
√
d

)
Vi, pmute

i ← softmax
(Qv(Kmute

i )⊤√
d

)
Vmute

i ,

28: Bind audio conditions:

hv ← hv +mi ⊙ pi + (1−mi)⊙ pmute
i ,

where ⊙ denotes element-wise multiplication.
29: end for
30: end if
31: Update latent via diffusion step via flow-matching formulas or custom samplers.
32: end for
33: Decoding: Decode the final latent via VAE:

V ← VAE Decoder(z0).

return V
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