

000 001 002 003 004 005 006 007 008 009 010 INTERACTHUMAN: MULTI-CONCEPT HUMAN ANIMA- TION WITH LAYOUT-ALIGNED AUDIO CONDITIONS

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 End-to-end human animation with rich multi-modal conditions, e.g., text, image
012 and audio has achieved remarkable advancements in recent years. However, most
013 existing methods could only animate a single subject and inject conditions in a
014 global manner, ignoring scenarios that multiple concepts could appear in the same
015 video with rich human-human interactions and human-object interactions. Such
016 global assumption prevents precise and per-identity control of multiple concepts
017 including humans and objects, therefore hinders applications. In this work, we
018 discard the single-entity assumption and introduce a novel framework that enforces
019 strong, region-specific binding of conditions from modalities to each identity's
020 spatiotemporal footprint. Given reference images of multiple concepts, our method
021 could automatically infer layout information by leveraging a mask predictor to
022 match appearance cues between the denoised video and each reference appearance.
023 Furthermore, we inject local audio condition into its corresponding region to ensure
024 layout-aligned modality matching in a iterative manner. This design enables the
025 high-quality generation of human dialogue videos between two to three people or
026 video customization from multiple reference images. Empirical results and ablation
027 studies validate the effectiveness of our explicit layout control for multi-modal
028 conditions compared to implicit counterparts and other existing methods. **Code**
029 and **video demos are available in the supplementary materials.**

030 1 INTRODUCTION

031 By leveraging the priors of pretrained Diffusion Transformer-based (DiT) video diffusion models (Bar-
032 Tal et al., 2024; Blattmann et al., 2023a;b; Guo et al., 2023; Zhou et al., 2022; Gupta et al., 2023;
033 Wang et al., 2023; Ho et al., 2022; Brooks et al., 2022; Wang et al., 2020; Singer et al., 2022; Li
034 et al., 2018; Villegas et al., 2022; Lin et al., 2025b), end-to-end human animation models, especially
035 audio-driven approaches (He et al., 2023; Tian et al., 2024; Xu et al., 2024a; Wang et al., 2024a;
036 Chen et al., 2024; Xu et al., 2024b; Stypulkowski et al., 2024; Jiang et al., 2024a; Lin et al., 2024;
037 2025a) has achieved high-quality human-centric video generation and strong controllability from
038 multi-modal conditions, such as text, image and audio. However, most of existing methods commonly
039 hold an assumption of a single-identity paradigm: all available conditions should be fused globally
040 and implicitly assumed to describe one unique subject in the given image. Although this global
041 injection strategy simplifies conditioning by sharing the same condition signal across all regions, it
042 fundamentally limits scalability in scenarios involving multiple individuals or complex human-object
043 interactions, where each entity requires distinct appearance and voice attributes.

044 Recent multi-concept video customization methods, such as Video-Alchemist (Chen et al., 2025a),
045 ConceptMaster (Huang et al., 2025), Phantom (Liu et al., 2025), and SkyReels-A2 (Fei et al., 2025a),
046 enable injecting multiple reference images into a single video, facilitating multi-person or human-
047 object interaction scenarios. However, these methods face significant challenges when directly applied
048 to human animation tasks. In such tasks, animation signals are highly specific to individual identities
049 and demand precise conditioning and alignment with specific spatiotemporal regions. For example,
050 audio signals are exclusively associated with the current speaker and are unrelated to the background
051 or other individuals' concepts. Existing customization methods, akin to end-to-end human animation
052 approaches, still adopt video-level condition injection. While this approach may suffice for general
053 video generation, it often causes confusion in human-centric video generation, making it difficult
to produce satisfactory results, as shown in Fig. 3. For end-to-end human-centric video generation,

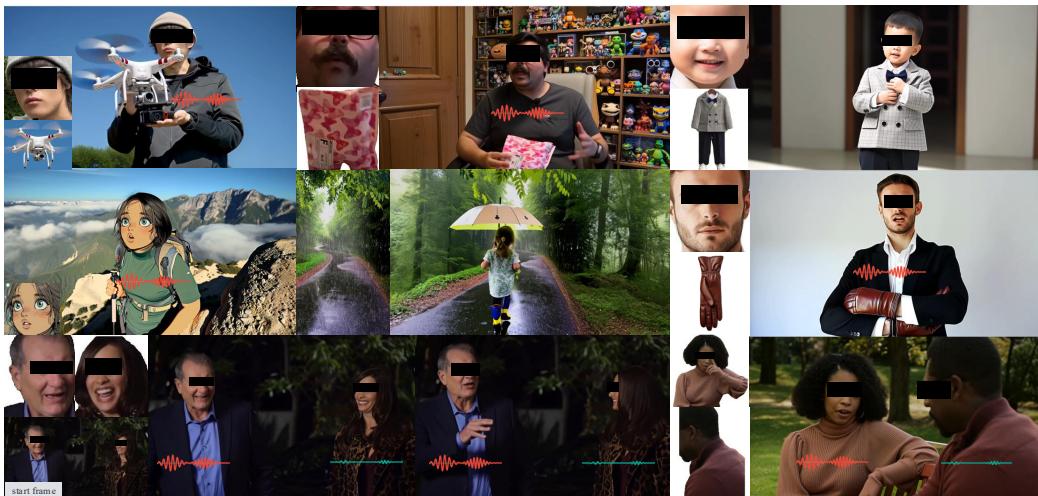


Figure 1: Video frames generated from audio and multi-concept reference images (human heads/full bodies, objects, scenes) display rich, audio-matched expressions. Our method enables compositional generation including outfit changes, human–object interactions, anime styles, dialogues even without a start frame. Red and green wave icons denote speaking and listening, respectively.

conditioning inputs should ideally include not only global modalities (e.g., reference images and text descriptions) but also local modalities (e.g., audio). As mentioned, existing human animation and multi-concept customization methods fail to address this critical distinction. This limitation motivates us to propose a new framework that enables the precise injection of local human-related modalities, a capability that is both essential and urgently needed for robust multi-concept, human-centric video generation, as illustrated in Fig. 1.

In this paper, we propose **InterActHuman**, a video diffusion framework for spatially aligning multi-modal conditions in multi-concept human video generation. Unlike prior methods (Chen et al., 2025a; Huang et al., 2025) that rely on feature fusion and attention to implicitly learn relationships between condition signals and concepts, InterActHuman introduces an attention module that explicitly predicts the spatial locations where the reference concepts appear in the video. This explicit layout allows the model to accurately associate local audio conditions with the correct regions via iterative mask prediction and masked audio attention during diffusion inference. Our framework offers two key advantages. First, it enforces a stronger layout constraint by precisely binding each condition to its corresponding spatial region. Second, it provides a unified interface for synchronously injecting all modalities (e.g., visual and acoustic inputs) through the layout. These features make InterActHuman well suited for multi-modal, multi-concept human animation and establish a baseline for this domain.

Although using an explicit mask for condition injection may seem straightforward, it creates a chicken-and-egg dilemma: during inference the final video is not yet available, leaving the spatial positions of each identity uncertain and making accurate mask prediction impossible; yet without those masks, spatial injection of local audio conditions cannot be performed, leading to an incomplete or misaligned generation process. To address this, we leverage the iterative denoising process inherent in diffusion models (Song et al., 2021). Specifically, we introduce a mask-predictor branch into the diffusion pipeline and adopt an interleaved mask-prediction strategy, wherein the mask predicted at step k guides condition injection at step $k+1$. This iterative refinement progressively finalizes the spatial layout, breaking the cyclic dependency and enabling precise spatial alignment even without ground-truth video during inference. In essence, our approach converts the chicken-and-egg problem into a sequential, convergent procedure that robustly aligns local audio conditions.

Beyond model design, we developed a scalable pipeline to automatically assemble high-quality, human-centric animation data to address the lack of suitable multi-concept datasets. This pipeline operates by: 1) accurately tracking individual identities to extract their mask information and images, and 2) aligning audio segments to each identity through lip synchronization. We curated a dataset of over two million video-entity pairs, capturing both human-human and human-object interactions across a wide range of object categories. In summary, our contributions are as follows:

(1) We propose a novel human animation framework capable of synthesizing multi-person and human-object interactions, conditioned on multiple reference images, text descriptions, and audio inputs. The framework also supports long video generation as well as single full-image conditioning. (2) We highlight the importance of local condition injection for multi-concept, multi-modal video generation and introduce a simple yet effective design that enables the model to handle both global and local conditions by automatically localizing the conditioned layout. Experimental results demonstrate that our proposed design significantly outperforms existing baselines.

2 RELATED WORKS

Video Diffusion Models have enabled unprecedented quality text-to-video (T2V) or image-to-video (I2V) generation in recent years, thanks to diffusion-based generative models (Ho et al., 2020; Song et al., 2021; Karras et al., 2022; Song et al., 2020; Liu et al., 2022). Early T2V approaches either adapt pretrained text-to-image networks in a training-free manner (Singer et al., 2022; Wu et al., 2023b; Qi et al., 2023) or fine-tune UNet-based latent diffusion architectures (Guo et al., 2023; Zhou et al., 2022; Blattmann et al., 2023a; Wang et al., 2023). To push the frontier, recent works compress spatiotemporal features with 3D causal VAEs (Yu et al., 2023), and migrate to Diffusion Transformer (DiT) backbones (Vaswani et al., 2017; Peebles & Xie, 2023; Brooks et al., 2024; Hong et al., 2022). Through progressive low-to-high resolution pretraining and fine-tuning (Polyak et al., 2024; Kong et al., 2024; Wang et al., 2025a), these models yield longer, more coherent, and high-quality videos. Our method is also built upon the pretrained DiT video generation models.

Human Animation Models synthesize videos of people driven by text, reference images, human body poses or audios. Early GAN-based methods (Siarohin et al., 2019; Zhao & Zhang, 2022; Siarohin et al., 2021; Jiang et al., 2024b; Wang et al., 2021) are trained on small datasets (Nagrani et al., 2017; Siarohin et al., 2019; Xie et al., 2022; Zhu et al., 2022) for self-supervised pose transfer. Diffusion-based approaches (Shao et al., 2024; Zhang et al., 2024; Hu, 2024; Wang et al., 2024c; 2025b) now surpass GAN-based methods by conditioning on 2D skeletons, 3D depth, or mesh sequences. Audio-driven portrait methods (Ye et al., 2022; Zhang et al., 2023; Tian et al., 2025b; Jiang et al., 2024a; Cui et al., 2024) have been extended toward full-body motion via two-stage pipelines for improved hand quality (Corona et al., 2024; Meng et al., 2024; Tian et al., 2025a; Hogue et al., 2024) and one-stage unified framework designs (Lin et al., 2024; 2025a). In summary, none of them explored multi-concept human animation, and our method is the first to enable multi-concept human animation with local audio conditions.

Multi-Concept Video Customization Models have received limited attention. Early single-concept identity-preserving methods include Videobooth (Jiang et al., 2024c), which learns coarse-to-fine embeddings from WebVid (Bain et al., 2021) via Grounded-SAM (Kirillov et al., 2023; Liu et al., 2023; Ren et al., 2024); ID-Animator (He et al., 2024), which integrates IP-Adapter (Ye et al., 2023) into AnimateDiff (Guo et al., 2023); and ConsisID (Yuan et al., 2024), which decouples frequency signals to preserve facial identity. More recently, Video-Alchemist (Chen et al., 2025a), ConceptMaster (Huang et al., 2025), and Phantom (Liu et al., 2025) support multiple reference images and text descriptions via cross- or self-attention injection for general-purpose multi-concept customization. BlobGen-Vid (Feng et al., 2025) further enables local layout control of text-specified concepts using user- or LLM-provided spatiotemporal masks. [Ingredients Fei et al. \(2025b\) proposes to predict the layout of identities in multi-image customization, yet it does not consider the audio condition and does not support multi-person talking generation.](#) All existing methods rely solely on image and text conditions and lack support for multimodal inputs such as audio, which we argue are essential for truly versatile, human-centric video generation.

3 METHOD

In this section, we present InterActHuman, our multi-concept video generation framework designed to address the challenges of local condition matching for identities in multi-modal conditions. As shown in Fig. 2, the framework begins by customizing reference images of multiple concepts into a video and predicting the mask regions corresponding to each reference appearance in the output video as layout cues with a cross-attention as mask predictor. It operates on the features of the noisy

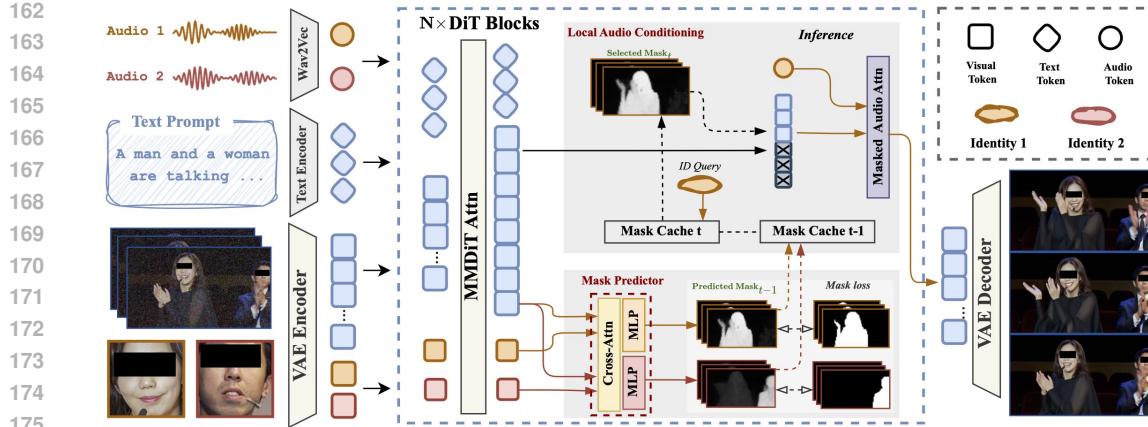


Figure 2: Illustration of our framework, which adaptively predicts masks as the spatial guidance of audio condition injection. In training, we train the mask predictor (cross-attn w/ MLP) with mask loss; in inference, we collect mask predictions to cache and leverage masks predicted from the last denoising step ($t - 1$) to guide the audio cross-attn in the current denoising step (t).

video latent and the reference image latent and supervised by ground-truth masks. Finally, local audio conditions are injected into the designated regions guided by an iterative mask prediction procedure.

3.1 PRELIMINARIES

Problem Setting. Given a caption T that describes a target video, alongside a set of concept reference images $\{X_i \mid i = 1, \dots, N\}$ and identity-level audio $\{Y_i \mid i = 1, \dots, N\}$ where N denotes the number of distinct concepts, the objective of Multi-Concept Human Animation is to generate high-quality videos that faithfully integrate all image-specified visual concepts with correct lip movements synchronized with each audio signal in accordance with the descriptive caption T . Each concept should consistently preserve its visual identity as depicted in the provided images, while accurately expressing the semantic roles and behaviors described in the caption.

Preliminaries. Transformer-based text-to-video latent diffusion models have recently demonstrated remarkable capabilities in generating high-quality video content. Our proposed InterActHuman framework is built upon the MMDiT-based video generation model (Peebles & Xie, 2023; Esser et al., 2024; Seaweed et al., 2025) and utilize a 3D Variational Autoencoder (VAE) (Kingma & Welling, 2013), which compresses input videos into a compact latent space. For training, we adopt the flow matching objective (Lipman et al., 2022), which formulates the generative process as a probability flow ordinary differential equation (ODE). This ODE transports clean latent representations z_0 to their noisy counterparts z_t along a linear path, defined as $z_t = (1 - t)z_0 + t\epsilon$ at timestep t , where ϵ is sampled from a standard Gaussian distribution. In our setting, which incorporates multi-modal conditions (image and audio), the output of the diffusion transformer is parameterized as $v_\Theta(z_t, t, c_{img}, c_{audio})$. This output is supervised to predict the velocity $(z_1 - z_0)$, resulting in the following training objective:

$$\mathcal{L} = \mathbb{E}_{t, z_0, \epsilon} \|v_\Theta(z_t, t, c_{img}, c_{audio}) - (z_1 - z_0)\|_2^2.$$

This formulation ensures the model effectively learns to generate videos conditioned on multi-modal inputs while maintaining high fidelity and temporal consistency.

Multi-Concept Reference Image Injection. To handle multiple appearance images, we inject appearance cues via self-attention in the original DiT layers. Each reference image X_i is encoded into latent tensors x_i using the same VAE as for noisy video frames. The reference latents are then flattened into token sequences and processed by the DiT along with the noisy latents v . The reference latents will reuse the parameters of DiT to extract features and interact with noisy latents at the self-attention layer in every DiT block, allowing appearance cues to propagate to the denoising pathway. Notably, no extra networks or additional parameters are required, thus preserving the model’s efficiency. Please refer to Appendix D for more details.

216
217

3.2 LAYOUT PREDICTION AND LOCAL CONDITION INJECTION

218
219
220
221
222
223

While reference-image injection is well studied, leveraging spatiotemporal layouts for local conditions, such as precise audio alignment, remains challenging. Mask prediction and audio injection are coupled: if a denoising step is incomplete, the masks are unavailable; if it is complete, it is too late to inject local conditions. We resolve this with the multi-step inference of diffusion models (Song et al., 2021): masks predicted at step k guide multi-modal condition injection at step $k+1$. As the network learns spatiotemporal layouts for each identity, precise masks emerge without user annotations.

224
225
226
227
228
229
230
231
232
233
234
235
236
237
238

Mask Predictor. In each DiT block, we predict a spatiotemporal mask quantifying how strongly each reference image should influence each video frame. A lightweight mask-predictor head is attached to each of the L transformer layers, consisting of: (1) a shared linear projection that maps hidden video features \mathbf{h}^v and hidden reference features \mathbf{h}_i^r to query, key, and value tensors; (2) LayerNorm; (3) 3D RoPE positional encoding; (4) a cross-attention module; and (5) a two-layer MLP. After normalization and RoPE, video tokens attend to a single reference via $a_i^{(l)} = \text{softmax}\left(\frac{\mathbf{Q}^v \mathbf{K}_i^{r\top}}{\sqrt{d}}\right) \mathbf{V}_i^r$, where d is the head dimension and l indexes the current layer. The attended feature $\mathbf{a}_i^{(l)}$ is transformed by the MLP and passed through a sigmoid to yield a **layer-specific mask** $\mathbf{m}_i^{(l)} \in [0, 1]^T$ for reference X_i . We then average the predictions from the last few DiT blocks to obtain the final mask. Notably, the mask predictor is trained to recover the complete human region, regardless of whether the reference image shows only the upper body, face, or full body. This simplifies mask prediction and stabilizes the conditioning module, yielding robust behavior across diverse scenarios. Because the predictors reuse in-block features and share parameters across references, they add minimal overhead while enabling explicit layout control for each identity.

239
240
241
242
243
244

Mask Prediction by Caching During Inference. During inference, aggregating mask signals across layers is difficult in early denoising steps, when reference concept latents are still ambiguous. We adopt an iterative strategy: at each step, the mask predicted at the previous step is cached and used as a layout prior for the current step. This progressively sharpens spatiotemporal localization, allowing masks to adapt to the evolving content and remain consistent per concept over time, thereby improving overall conditioning quality.

245
246
247
248
249
250
251
252
253
254
255
256

Local Audio Conditioning. To prepare for multi-concept, human-centric video generation, we first pretrain on single-identity audio-conditioned animation by adding cross-attention-based audio conditioning (without masks) and a mixed-conditions training strategy, following (Lin et al., 2025a). Concretely, a new cross-attention layer injects wav2vec (Baevski et al., 2020) audio features into each DiT block after the MMDiT layer. In the multi-concept setting, this pretrained audio cross-attention already provides strong per-identity audio control. We therefore implement *local* audio conditioning primarily at inference: instead of updating all noisy video tokens (Lin et al., 2025a; 2024), we inject wav2vec features only into tokens assigned to a given identity, using the previous-step mask as guidance. To ensure smooth transitions in latent features and in the final video, we blend meaningful and muted audio features per token using the mask confidence, with soft weighting near mask boundaries. This local conditioning also enables multi-person dialogues. Given per-speaker audio tracks as input, the model generates realistic interactions in which speakers take turns, supporting a wide range of applications.

257
258
259
260
261
262
263
264
265

Training Loss and Strategies. The overall objective combines a flow-matching diffusion loss (Sec. 3.1) with a focal loss (Lin et al., 2017) for mask classification, which stabilizes training compared to binary cross-entropy, likely due to foreground–background imbalance and occasional low-quality masks. A frame-alignment flag excludes frames with invalid or low-quality masks from loss computation, strengthening temporal supervision. To mitigate the common “copy–paste” behavior of diffusion models—replicating subjects from references with little variation in pose or viewpoint—we randomly mask reference images to reveal only the head, full body, or clothing, promoting appearance diversity. We use a face-to–full-body appearance conditioning ratio of 0.7 : 0.3 and weight the diffusion and focal losses equally (1 : 1).

266
267
268
269

Inference Strategies. Given N reference images and a text prompt, our method uses Qwen2.5-VL (Bai et al., 2025) as a rephraser to extract detailed descriptions from each reference image and integrate them with the original prompt. We apply a shared classifier-free guidance (CFG) across audio and text. For local control, audio conditioning is applied only within the predicted mask regions for each reference. Because early denoising steps yield unreliable masks that may suppress

Figure 3: Qualitative comparison with previous methods on multi-concept audio injection.

other references, we disable mask-based injection for the first 10 steps, then enable it using the previous-step mask. We inject masked audio only on the conditional (positive) branch during CFG sampling, with a CFG scale of 6.5 and 50 denoising steps.

3.3 MULTI-CONCEPT HUMAN-CENTRIC VIDEO DATA CURATION

We curate a large-scale, human-centric video dataset from [a large public video dataset \(Li et al., 2024\)](#) and [self-collected videos](#), filtering out videos that are too short (<4 seconds) or contain too many salient humans (>3) as detected by a human pose detector (Yang et al., 2023). Unlike previous multi-concept video generation methods (Chen et al., 2025a; Huang et al., 2025) that rely on conventional pipelines like Grounding-DINO (Liu et al., 2023) and SAM (Kirillov et al., 2023) for obtaining a single reference image per identity, our multi-stage pipeline leverages advanced vision-language models. First, each raw video is densely captioned using Qwen2-VL (Wang et al., 2024b) (distilled from Gemini-2.0-Pro), generating fine-grained descriptions of the environment, subjects’ appearance, actions, expressions, interacting salient objects, and inter-subject interactions. Next, these descriptions are parsed by a zero-shot Gemini-2.0-Flash API to extract structured appearance phrases. For spatial supervision, we use Grounding-SAM2 (Ren et al., 2024) with the query person to produce accurate, temporally consistent masks, which are used both for extracting foreground reference images (with a white background) and as ground-truth for our mask predictor. Our corpus comprises over 2.6M triplets of videos, per-frame masks, and captions, forming the foundation of InterActHuman.

4 EXPERIMENTS

Baselines. Since ConceptMaster (Huang et al., 2025) and Video-Alchemist (Chen et al., 2025a) are not open-sourced, we do not have access to their models nor test sets. Therefore, we primarily compare our method with recent multi-concept video customization models through their publicly available APIs or public models, evaluating performance from the perspectives of visual appearance and adherence to text prompts, including Vidu2.0 (Bao et al., 2024), Pika2.1 (pik), Kling 1.6 (Kuaishou, 2024) and Phantom (Liu et al., 2025), and audio-driven human video generation methods, including DiffTED (Hogue et al., 2024), DiffGest (Zhu et al., 2023) + Mimiction (Zhang et al., 2024), CyberHost (Lin et al., 2024), OmniHuman (Lin et al., 2025a) and Kling 1.6 (Kuaishou, 2024) with lip synchronization.

Evaluation Metrics. As *audio* and *appearance* are key characteristics of humans, we follow current state-of-the-art method (Lin et al., 2025a; Huang et al., 2025) to evaluate audio-driven, multi-concept human-centric video generation. To comprehensively evaluate methods for this task, we consider five dimensions: 1) *Concept fidelity*: We leverage CLIP-I (Radford et al., 2021) and DINO-I (Oquab et al., 2023) on subjects in the generated videos to assess whether they are aligned with the provided reference images. To get cropped subject images in output videos, we randomly sample 5 frames in each video and use Florence-2 (Xiao et al., 2024) to detect the subject bounding boxes. We then crop

324
325 Table 1: Quantitative comparisons with audio-conditioned full-body animation baselines.
326

Methods	Single-Person Test Set			Multi-Person Test Set			
	Sync-C↑	HKV↑	HKC↑	Sync-D↓	IQA↑	AES↑	FVD↓
DiffTED	0.926	-	0.769	-	-	-	-
DiffGest.+Mimic.	0.496	23.409	0.833	-	-	-	-
CyberHost	6.627	24.733	0.884	8.974	4.011	2.856	54.797
Kling1.6 + Lip-sync.	4.449	46.490	0.826	8.401	4.716	3.444	33.555
MultiTalk	-	-	-	7.671	4.561	3.248	35.472
OmniHuman w/o mask	7.443	47.561	0.898	9.482	4.768	3.466	33.895
OmniHuman w/ fixed mask	-	-	-	7.068	4.690	3.369	40.239
Ours	7.272	59.635	0.885	6.670	4.757	3.467	22.881

336
337 Table 2: User preference evaluation. *means publicly available version with Wan2.1-1.3B.
338

Metric	Audio-Driven			Multi-Concept Customization				
	Kling	OmniHuman	Ours	Pika	Phantom*	Kling	Vidu	Ours
Avg. Score ↑	1.70	1.82	2.48	2.22	2.46	2.90	3.40	4.01
Top-1 (%) ↑	14.5%	25.6%	59.9%	4.9%	9.9%	13.6%	22.2%	49.4%

343
344 the detected regions and compute the CLIP-I and DINO-I scores. We also employ Face-Arc (Deng
345 et al., 2019), Face-Cur (Huang et al., 2020) and Face-Glink (Deng et al., 2019) to evaluate the
346 fidelity of facial features if the concept is a human. 2) *Prompt following*: We utilize video-level
347 CLIP (Wang et al., 2022) to measure the similarity between the input text prompts and the resulting
348 video content. 3) *Visual quality*: We utilize q-align (Wu et al., 2023a), a vision-language model,
349 for no-reference image quality assessment (IQA) and aesthetics score estimation (ASE). 4) *Audio*
350 *synchronization and human pose diversity*: For lip synchronization, we leverage the widely used
351 Sync-C and Sync-D (Chung & Zisserman, 2017) to compute audio-visual confidence. We also
352 incorporate hand keypoint confidence (HKC) and hand keypoint variance (HKV) (Lin et al., 2024)
353 to quantify hand-pose accuracy and motion richness, respectively. For simplicity, we assume each
354 test video contains exactly two participants: one speaking (with meaningful audio as input) and one
355 listening (with muted audio as input). 5) *Distribution distance*: We employ FVD (Unterthiner et al.)
356 to measure the distance between generated and ground-truth videos.

357 **Test Sets.** We use three test sets in our experiments: 1) single-person audio conditioned human
358 animation test set following OmniHuman (Lin et al., 2025a) (see Tab. 1); 2) our collected two-person
359 audio conditioned human animation test set where only one person is talking (see Tab. 1 and Tab. 4);
360 and 3) multi-concept video customization test set following Phantom (Liu et al., 2025), where we
361 select 100 human-related pairs of reference images and text prompts in our experiments (see Tab. 3).

362 4.1 COMPARISONS WITH STATE-OF-THE-ARTS
363

364 **Multi-Concept Audio-Driven Human Video Generation.** In Tab. 1, our approach achieves state-of-
365 the-art or comparable performance in lip synchronization accuracy and motion diversity, particularly
366 excelling in complex multi-person interactions where baseline methods (Lin et al., 2024; Kuaishou,
367 2024) struggle with accurate audio signal assignments. For single-person scenarios, our method
368 performs on par with specialized models like OmniHuman (Lin et al., 2025a). In multi-person
369 settings, existing methods including OmniHuman and its extensions as well as leading commercial
370 video generation models with post-processed lip-sync, fail to deliver satisfactory results. Poor lip-
371 sync accuracy highlights their inability to generate accurate lip movements for the correct person.
372 Although OmniHuman with oracle masks (manually setting audio-conditioned regions) improves
373 lip-sync accuracy, it still significantly degrades overall video quality, as reflected in the FVD metric.
374 This clearly demonstrates the limitations of existing methods that rely on single-identity assumptions,
375 hindering their applicability to broader scenarios. In contrast, our method achieves strong performance
376 in both lip-sync accuracy and overall video synthesis quality, effectively addressing the challenges of
377 audio-conditioned multi-person video generation while remaining compatible with existing settings.
378 Fig. 3 presents qualitative results for multi-person audio-driven video generation. While Kling1.6
379 w/ lip-sync shows many audio assignment errors and OmniHuman w/ fixed mask shows inflexible

378
 379 Table 3: Quantitative comparison of subject consistency, prompt following and visual quality.*means
 380 publicly available version with Wan2.1-1.3B.

381 Methods	382 Decoupled Concept Fidelity					383 Prompt	384 Video Quality	
	385 CLIP-I↑	386 DINO-I↑	387 Face-Arc↑	388 Face-Cur↑	389 Face-Glink↑		390 ViCLIP-T↑	391 AES↑
Vidu2.0	0.696	0.458	0.568	0.562	0.597	18.61	3.350	4.689
Pika2.1	0.688	0.459	0.579	0.566	0.607	19.39	3.534	4.791
Kling1.6	0.659	0.420	0.552	0.547	0.582	18.38	3.487	4.787
Phantom*	0.703	0.476	0.589	0.573	0.615	17.73	3.404	4.812
Ours	0.744	0.533	0.598	0.600	0.644	18.87	3.565	4.903

Reference
Vidu2.0
Pika2.1
Kling1.6
Phantom*
Ours

401 Figure 4: Qualitative comparison with previous methods on subject consistency and text following.
 402

403
 404 audio control with many missing cases, our method consistently assigns audio signals to the correct
 405 identity and demonstrates better motion dynamics and more precise audio-driven animation. It is
 406 worth noting that all previous methods rely on a reference frame containing complete information to
 407 generate talking-person videos, while our method only needs reference appearance of human’s head
 408 or full-body images and audios.

409 **User Study.** We conducted a user study to evaluate our method on two tasks: (1) lip synchronization
 410 in multi-person talking videos and (2) subject consistency in multi-concept customizations. The lip
 411 sync test used 19 videos from three methods, while subject consistency was assessed on 9 videos
 412 from five methods. We use the same model (labeled ‘ours’) for two evaluation tasks. Ten experienced
 413 users ranked each method with scores (higher values indicate superior performance). Tab. 2 reports
 414 the average scores and top-1 selection percentages. Our method achieved the highest scores and top-1
 415 rates in both tasks, validating the effectiveness of our method.

416 **Multi-Concept Video Customization.** Although our major contribution is not on multi-concept
 417 video customization, we show that our model is also capable of preserving multi-concept visual
 418 appearances. In Tab. 3, our method outperforms existing approaches (Bao et al., 2024; pik; Kuaishou,
 419 2024) in preserving identity details and facial features, addressing the common degradation issue in
 420 multi-subject generation. Notably, we achieve this without sacrificing audio injection performance,
 421 while these methods are incapable to generate videos from audio conditions. It suggests our joint opti-
 422 mization framework on video generation and mask prediction successfully balances video generation.
 423 Our method ranks second in prompt following, likely due to our audio-driven human-centric training
 424 data focusing on talking and singing, which limits prompt diversity compared to text-to-video tasks.
 425 Despite this, qualitative results (Fig. 4) show that our approach maintains natural subject consistency
 426 and visual quality in both real-world and anime domains, outperforming previous methods that suffer
 427 from unnatural compositions and degraded visuals.

4.2 ABLATION STUDY

428 We validate our local audio injection designs via ablation on three variants: 1) *Global audio* (Lin et al.,
 429 2025a) applies audio across the entire feature map; 2) *ID Embedding* injects audio features with a
 430 learnable ID embedding without mask prediction; 3) *Fixed Mask* uses predefined static spatial masks.

432

433

Table 4: Ablation study on audio-driven multi-person animation methods.

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

As shown in Tab. 4, our framework with predicted dynamic masks achieves the best Sync-D and FVD scores. The fixed mask yields decent Sync-D but suffers motion artifacts (worst FVD), and global audio, while scoring best in IQA, offers poor audio-visual alignment. Qualitative results in Fig. 6 further reveal that global audio drives all identities uniformly, ID embedding often mismatches audio with identities, and fixed masks lose alignment when characters move. These findings underscore that current methods overlook the need for precise local conditions, highlighting the strength of our dynamic, adaptive mask prediction strategy for multi-person talking video generation.

455

456

457

458

459

Computational Cost and Runtime We measure inference time with the setting of 720p, 109 frames (28 VAE latents) on single A100, and record single forward pass time. The mask predictor adds $\sim 56M$ parameters versus a 7B DiT and incurs a small overhead per reference image ($\approx 0.013s$ per DiT block). As more references increase VAE latents from 28 to $28+n$, DiT self-attention scales as $(1+n/28)^2$.

460

461

462

463

464

465

466

467

468

469

Failure case analysis of mask prediction In Figure. 5 we show the qualitative results on the failure case of mask predictions, where the yellow cat is the current identity image (i.e., ID query of mask predictor). We can see that although the mask prediction achieves good performance in IoU measurement from Tables 9 and 10, it still make mistakes when there are highly overlapping regions. For example, two girls are standing in front of the yellow cat, and the mask predictor manages to exclude the upper body of the right girl in yellow because of small area of overlapping regions. Yet, the mask predictor fails for the girl in pink in both frames. In the first frame, the mask predictor manages to exclude the face region of the little girl in pink, but it mistakenly include another white animal. Besides, due to the high VAE down-sampling ratio of the widely used DiT models, the mask is predicted in a very low resolution, leading to inaccurate mask boundaries.

470

471

472

Additional analyses in Appendix. We include (i) a capability matrix against concurrent systems (Tables 8), (ii) mask IoU versus denoising steps/layers under low/high motion plus motion statistics (Tables 9, 10, 11), (iii) a mask cache ablation (Table 12), (iv) scaling to >3 people (Table 13).

473

474

5 CONCLUSION

475

476

477

478

479

480

481

482

483

484

485

In this paper, we introduced InterActHuman, a novel end-to-end video diffusion framework that supports spatially aligned, multi-modal conditioning for multi-concept human animation. By integrating an efficient mask-prediction module into a pretrained DiT backbone, our method automatically infers per-identity spatio-temporal layouts from reference images and uses these masks to guide local audio conditioning. This explicit layout binding enables each reference concept to retain its unique appearance and voice, even in complex scenes with multiple interacting entities. To facilitate training procedure of our model, we presented a high-throughput pipeline for harvesting and annotating over 2.6 million identity-aware video snippets, complete with per-frame masks for humans and objects. Extensive experiments on both single- and multi-person benchmarks demonstrate that InterActHuman achieves state-of-the-art performance in lip synchronization, motion diversity and subject appearance fidelity, while maintaining competitive video quality. We hope it could serve as a solid baseline

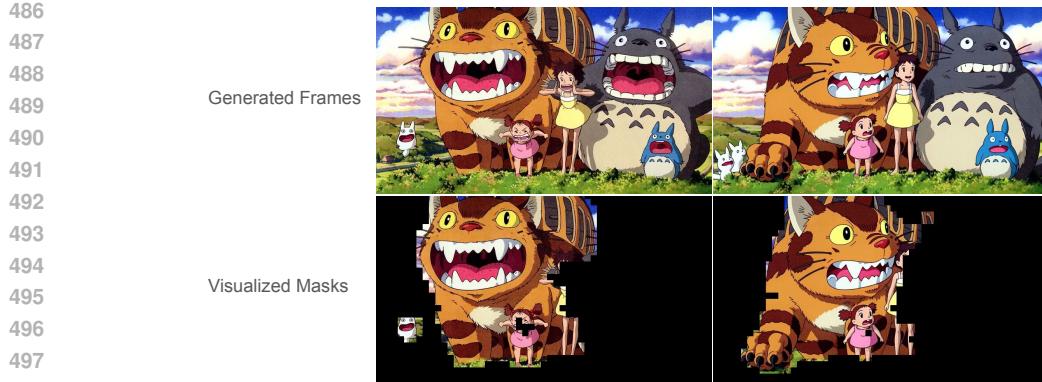


Figure 5: Qualitative results on the failure case of mask predictions.

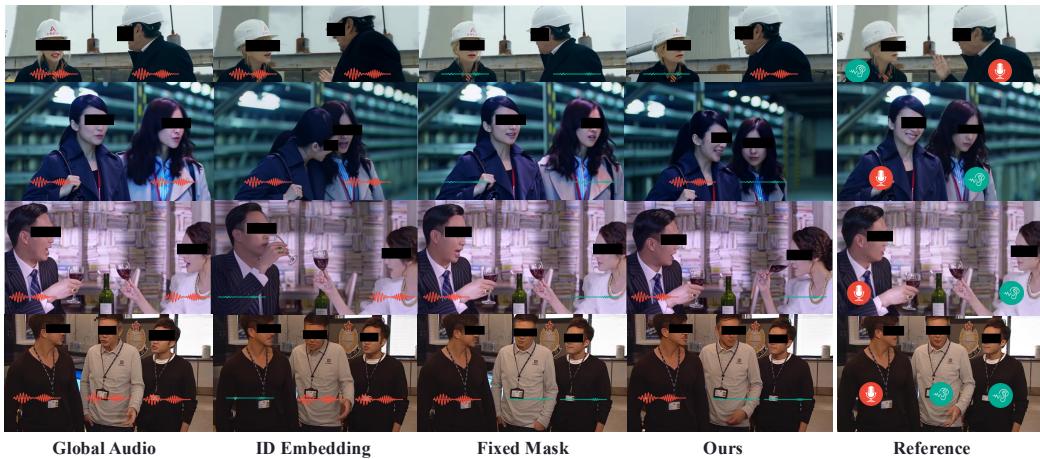


Figure 6: Qualitative ablation on audio injection strategies.

514
515
516 for the multi-concept human animation and audio-driven multi-person video generation community,
517 where further improvements could be built upon it.

518
519 **Limitations.** Since the goal of this work is for human-centric video generation, the available data
520 domain is inherently narrower than one used for general text-to-video pretraining, limiting the ability
521 to follow the diverse text prompts. While our framework is designed to accommodate any number
522 of concept images, the training dataset predominantly consists of videos featuring two to three
523 individuals. This distribution may constrain the generalization of any number of inputs, suggesting
524 further improvements could be achieved by enlarging the diversity and scale of training data.

525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

540 **Ethics Statement.** Our model could be used to generate misinformation by using celebrity images
 541 and voices. We will strictly restrict access and add watermarks to prevent misuse.
 542

543 **Reproducibility Statement.** We have provided a code re-implemented on the publicly available
 544 video diffusion pretraining model Wan2.1 (Wang et al., 2025a) to show the details of our method. We
 545 also provided the dataset processing code, e.g., caption analysis and Grounding-SAM2 (Ren et al.,
 546 2024). In the Algorithm 1, we provided detailed pseudo-code to show the inference pipeline of our
 547 method. Based on such information, we believe the reproducibility of method is solid enough.
 548

549 **REFERENCES**

550 Pika art. <https://pika.art/>. Accessed: 2025-05-12.
 551

552 Alexei Baevski, Yuhao Zhou, Abdelrahman Mohamed, and Michael Auli. wav2vec 2.0: A framework
 553 for self-supervised learning of speech representations. *Advances in neural information processing
 554 systems*, 33:12449–12460, 2020.

555 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 556 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 557 2025.

558 Max Bain, Arsha Nagrani, Gü̈l Varol, and Andrew Zisserman. Frozen in time: A joint video and
 559 image encoder for end-to-end retrieval. In *Proceedings of the IEEE/CVF international conference
 560 on computer vision*, pp. 1728–1738, 2021.

561 Fan Bao, Chendong Xiang, Gang Yue, Guande He, Hongzhou Zhu, Kaiwen Zheng, Min Zhao,
 562 Shilong Liu, Yaole Wang, and Jun Zhu. Vidu: a highly consistent, dynamic and skilled text-to-
 563 video generator with diffusion models. *arXiv preprint arXiv:2405.04233*, 2024.

564 Omer Bar-Tal, Hila Chefer, Omer Tov, Charles Herrmann, Roni Paiss, Shiran Zada, Ariel Ephrat,
 565 Junhwa Hur, Yuanzhen Li, Tomer Michaeli, et al. Lumiere: A space-time diffusion model for
 566 video generation. *arXiv preprint arXiv:2401.12945*, 2024.

567 Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Dominik
 568 Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion: Scaling
 569 latent video diffusion models to large datasets. *arXiv preprint arXiv:2311.15127*, 2023a.

570 Andreas Blattmann, Robin Rombach, Huan Ling, Tim Dockhorn, Seung Wook Kim, Sanja Fidler, and
 571 Karsten Kreis. Align your latents: High-resolution video synthesis with latent diffusion models.
 572 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 573 22563–22575, 2023b.

574 Tim Brooks, Janne Hellsten, Miika Aittala, Ting-Chun Wang, Timo Aila, Jaakko Lehtinen, Ming-Yu
 575 Liu, Alexei Efros, and Tero Karras. Generating long videos of dynamic scenes. *Advances in
 576 Neural Information Processing Systems*, 35:31769–31781, 2022.

577 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
 578 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
 579 generation models as world simulators. 2024. URL [https://openai.com/research/
 580 video-generation-models-as-world-simulators](https://openai.com/research/video-generation-models-as-world-simulators).

581 Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
 582 Zagoruyko. End-to-end object detection with transformers. In *European conference on computer
 583 vision*, pp. 213–229. Springer, 2020.

584 Junsong Chen, Jincheng Yu, Chongjian Ge, Lewei Yao, Enze Xie, Yue Wu, Zhongdao Wang,
 585 James Kwok, Ping Luo, Huchuan Lu, et al. Pixart- α : Fast training of diffusion transformer for
 586 photorealistic text-to-image synthesis. *arXiv preprint arXiv:2310.00426*, 2023.

587 Tsai-Shien Chen, Aliaksandr Siarohin, Willi Menapace, Yuwei Fang, Kwot Sin Lee, Ivan Sko-
 588 rokhodov, Kfir Aberman, Jun-Yan Zhu, Ming-Hsuan Yang, and Sergey Tulyakov. Multi-subject
 589 open-set personalization in video generation. *arXiv preprint arXiv:2501.06187*, 2025a.

594 Yi Chen, Sen Liang, Zixiang Zhou, Ziyao Huang, Yifeng Ma, Junshu Tang, Qin Lin, Yuan Zhou,
 595 and Qinglin Lu. Hunyuanyvideo-avatar: High-fidelity audio-driven human animation for multiple
 596 characters. *arXiv preprint arXiv:2505.20156*, 2025b.

597

598 Zhiyuan Chen, Jiajiong Cao, Zhiqian Chen, Yuming Li, and Chenguang Ma. Echomimic: Life-
 599 like audio-driven portrait animations through editable landmark conditions. *arXiv preprint*
 600 *arXiv:2407.08136*, 2024.

601 Joon Son Chung and Andrew Zisserman. Out of time: automated lip sync in the wild. In *Computer*
 602 *Vision–ACCV 2016 Workshops: ACCV 2016 International Workshops, Taipei, Taiwan, November*
 603 *20–24, 2016, Revised Selected Papers, Part II 13*, pp. 251–263. Springer, 2017.

604 Enric Corona, Andrei Zanfir, Eduard Gabriel Bazavan, Nikos Kolotouros, Thiemo Alldieck, and
 605 Cristian Sminchisescu. Vlogger: Multimodal diffusion for embodied avatar synthesis. *arXiv*
 606 *preprint arXiv:2403.08764*, 2024.

607

608 Jiahao Cui, Hui Li, Yun Zhan, Hanlin Shang, Kaihui Cheng, Yuqi Ma, Shan Mu, Hang Zhou,
 609 Jingdong Wang, and Siyu Zhu. Hallo3: Highly dynamic and realistic portrait image animation
 610 with diffusion transformer networks. *arXiv preprint arXiv:2412.00733*, 2024.

611 Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular margin
 612 loss for deep face recognition. In *CVPR*, pp. 4690–4699, 2019.

613

614 Patrick Esser, Sumith Kulal, Andreas Blattmann, Rahim Entezari, Jonas Müller, Harry Saini, Yam
 615 Levi, Dominik Lorenz, Axel Sauer, Frederic Boesel, et al. Scaling rectified flow transformers for
 616 high-resolution image synthesis. In *Forty-first International Conference on Machine Learning*,
 617 2024.

618 Zhengcong Fei, Debang Li, Di Qiu, Jiahua Wang, Yikun Dou, Rui Wang, Jingtao Xu, Mingyuan
 619 Fan, Guibin Chen, Yang Li, et al. Skyreels-a2: Compose anything in video diffusion transformers.
 620 *arXiv preprint arXiv:2504.02436*, 2025a.

621 Zhengcong Fei, Debang Li, Di Qiu, Changqian Yu, and Mingyuan Fan. Ingredients: Blending custom
 622 photos with video diffusion transformers. *arXiv preprint arXiv:2501.01790*, 2025b.

623

624 Weixi Feng, Chao Liu, Sifei Liu, William Yang Wang, Arash Vahdat, and Weili Nie. Blobgen-
 625 vid: Compositional text-to-video generation with blob video representations. *arXiv preprint*
 626 *arXiv:2501.07647*, 2025.

627

628 Yuwei Guo, Ceyuan Yang, Anyi Rao, Zhengyang Liang, Yaohui Wang, Yu Qiao, Maneesh Agrawala,
 629 Dahua Lin, and Bo Dai. Animatediff: Animate your personalized text-to-image diffusion models
 630 without specific tuning. In *International Conference on Learning Representations (ICLR)*, 2023.

631

632 Agrim Gupta, Lijun Yu, Kihyuk Sohn, Xiuye Gu, Meera Hahn, Li Fei-Fei, Irfan Essa, Lu Jiang,
 633 and José Lezama. Photorealistic video generation with diffusion models. *arXiv preprint*
 634 *arXiv:2312.06662*, 2023.

635

636 Tianyu He, Junliang Guo, Runyi Yu, Yuchi Wang, Jialiang Zhu, Kaikai An, Leyi Li, Xu Tan, Chunyu
 637 Wang, Han Hu, et al. Gaia: Zero-shot talking avatar generation. *arXiv preprint arXiv:2311.15230*,
 638 2023.

639

640 Xuanhua He, Quande Liu, Shengju Qian, Xin Wang, Tao Hu, Ke Cao, Keyu Yan, Man Zhou, and
 641 Jie Zhang. Id-animator: Zero-shot identity-preserving human video generation. *arXiv preprint*
 642 *arXiv:2404.15275*, 2024.

643

644 Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
 645 In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances in Neural*
 646 *Information Processing Systems*, volume 33, pp. 6840–6851. Curran Associates, Inc., 2020. URL
 647 <https://proceedings.neurips.cc/paper/2020/file/4c5bcfec8584af0d967f1ab10179ca4b-Paper.pdf>.

648

649 Jonathan Ho, Tim Salimans, Alexey Gritsenko, William Chan, Mohammad Norouzi, and David J
 650 Fleet. Video diffusion models. *Advances in Neural Information Processing Systems*, 35:8633–8646,
 651 2022.

648 Steven Hogue, Chenxu Zhang, Hamza Daruger, Yapeng Tian, and Xiaohu Guo. Diffited: One-shot
 649 audio-driven ted talk video generation with diffusion-based co-speech gestures. In *Proceedings of*
 650 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 1922–1931, 2024.

651

652 Wenyi Hong, Ming Ding, Wendi Zheng, Xinghan Liu, and Jie Tang. Cogvideo: Large-scale
 653 pretraining for text-to-video generation via transformers. *arXiv preprint arXiv:2205.15868*, 2022.

654

655 Li Hu. Animate anyone: Consistent and controllable image-to-video synthesis for character animation.
 656 In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 657 8153–8163, 2024.

658

659 Yuge Huang, Yuhang Wang, Ying Tai, Xiaoming Liu, Pengcheng Shen, Shaoxin Li, Jilin Li, and Feiyue
 660 Huang. Curricularface: adaptive curriculum learning loss for deep face recognition. In *proceedings*
 661 *of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 5901–5910, 2020.

662

663 Yuzhou Huang, Ziyang Yuan, Quande Liu, Qiulin Wang, Xintao Wang, Ruimao Zhang, Pengfei
 664 Wan, Di Zhang, and Kun Gai. Conceptmaster: Multi-concept video customization on diffusion
 665 transformer models without test-time tuning. *arXiv preprint arXiv:2501.04698*, 2025.

666

667 Jianwen Jiang, Chao Liang, Jiaqi Yang, Gaojie Lin, Tianyun Zhong, and Yanbo Zheng. Loopy:
 668 Taming audio-driven portrait avatar with long-term motion dependency. *arXiv preprint*
 669 *arXiv:2409.02634*, 2024a.

670

671 Jianwen Jiang, Gaojie Lin, Zhengkun Rong, Chao Liang, Yongming Zhu, Jiaqi Yang, and Tianyun
 672 Zhong. Mobileportrait: Real-time one-shot neural head avatars on mobile devices. *arXiv preprint*
 673 *arXiv:2407.05712*, 2024b.

674

675 Tao Jiang, Peng Lu, Li Zhang, Ningsheng Ma, Rui Han, Chengqi Lyu, Yining Li, and Kai Chen. Rtm-
 676 pose: Real-time multi-person pose estimation based on mmpose. *arXiv preprint arXiv:2303.07399*,
 677 2023.

678

679 Yuming Jiang, Tianxing Wu, Shuai Yang, Chenyang Si, Dahua Lin, Yu Qiao, Chen Change Loy, and
 680 Ziwei Liu. Videobooth: Diffusion-based video generation with image prompts. In *Proceedings of*
 681 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6689–6700, 2024c.

682

683 Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
 684 based generative models. *Advances in neural information processing systems*, 35:26565–26577,
 685 2022.

686

687 Diederik P Kingma and Max Welling. Auto-encoding variational bayes. *arXiv preprint*
 688 *arXiv:1312.6114*, 2013.

689

690 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
 691 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *Proceedings*
 692 *of the IEEE/CVF International Conference on Computer Vision*, pp. 4015–4026, 2023.

693

694 Weijie Kong, Qi Tian, Zijian Zhang, Rox Min, Zuozhuo Dai, Jin Zhou, Jiangfeng Xiong, Xin Li,
 695 Bo Wu, Jianwei Zhang, et al. Hunyanvideo: A systematic framework for large video generative
 696 models. *arXiv preprint arXiv:2412.03603*, 2024.

697

698 Zhe Kong, Feng Gao, Yong Zhang, Zhuoliang Kang, Xiaoming Wei, Xunliang Cai, Guanying Chen,
 699 and Wenhan Luo. Let them talk: Audio-driven multi-person conversational video generation. *arXiv*
 700 *preprint arXiv:2505.22647*, 2025.

701

702 Kuaishou. Kling video model. <https://kling.kuaishou.com/en>, 2024. Accessed: 29
 703 April 2025.

704

705 Hui Li, Mingwang Xu, Yun Zhan, Shan Mu, Jiaye Li, Kaihui Cheng, Yuxuan Chen, Tan Chen,
 706 Mao Ye, Jingdong Wang, et al. Openhumanvid: A large-scale high-quality dataset for enhancing
 707 human-centric video generation. *arXiv preprint arXiv:2412.00115*, 2024.

708

709 Yitong Li, Martin Min, Dinghan Shen, David Carlson, and Lawrence Carin. Video generation from
 710 text. In *Proceedings of the AAAI conference on artificial intelligence*, volume 32, 2018.

702 Gaojie Lin, Jianwen Jiang, Chao Liang, Tianyun Zhong, Jiaqi Yang, and Yanbo Zheng. Cyberhost:
 703 Taming audio-driven avatar diffusion model with region codebook attention. *arXiv preprint*
 704 *arXiv:2409.01876*, 2024.

705 Gaojie Lin, Jianwen Jiang, Jiaqi Yang, Zerong Zheng, and Chao Liang. Omnihuman-1: Rethinking the
 706 scaling-up of one-stage conditioned human animation models. *arXiv preprint arXiv:2502.01061*,
 707 2025a.

708 Shanchuan Lin, Xin Xia, Yuxi Ren, Ceyuan Yang, Xuefeng Xiao, and Lu Jiang. Diffusion adversarial
 709 post-training for one-step video generation. *arXiv preprint arXiv:2501.08316*, 2025b.

710 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
 711 detection. In *Proceedings of the IEEE international conference on computer vision*, pp. 2980–2988,
 712 2017.

713 Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
 714 for generative modeling. *arXiv preprint arXiv:2210.02747*, 2022.

715 Lijie Liu, Tianxiang Ma, Bingchuan Li, Zhuowei Chen, Jiawei Liu, Qian He, and Xinglong
 716 Wu. Phantom: Subject-consistent video generation via cross-modal alignment. *arXiv preprint*
 717 *arXiv:2502.11079*, 2025.

718 Shilong Liu, Zhaoyang Zeng, Tianhe Ren, Feng Li, Hao Zhang, Jie Yang, Qing Jiang, Chunyuan
 719 Li, Jianwei Yang, Hang Su, et al. Grounding dino: Marrying dino with grounded pre-training for
 720 open-set object detection. *arXiv preprint arXiv:2303.05499*, 2023.

721 Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
 722 transfer data with rectified flow. *arXiv preprint arXiv:2209.03003*, 2022.

723 Rang Meng, Xingyu Zhang, Yuming Li, and Chenguang Ma. Echomimicv2: Towards striking,
 724 simplified, and semi-body human animation. *arXiv preprint arXiv:2411.10061*, 2024.

725 A Nagrani, J Chung, and A Zisserman. Voxceleb: a large-scale speaker identification dataset.
 726 *Interspeech 2017*, 2017.

727 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 728 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 729 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

730 William Peebles and Saining Xie. Scalable diffusion models with transformers. In *Proceedings of*
 731 *the IEEE/CVF International Conference on Computer Vision*, pp. 4195–4205, 2023.

732 Adam Polyak, Amit Zohar, Andrew Brown, Andros Tjandra, Animesh Sinha, Ann Lee, Apoorv Vyas,
 733 Bowen Shi, Chih-Yao Ma, Ching-Yao Chuang, et al. Movie gen: A cast of media foundation
 734 models. *arXiv preprint arXiv:2410.13720*, 2024.

735 Chenyang Qi, Xiaodong Cun, Yong Zhang, Chenyang Lei, Xintao Wang, Ying Shan, and Qifeng
 736 Chen. Fatezero: Fusing attentions for zero-shot text-based video editing. *arXiv:2303.09535*, 2023.

737 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 738 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 739 models from natural language supervision. In *International conference on machine learning*, pp.
 740 8748–8763. PMLR, 2021.

741 Tianhe Ren, Shilong Liu, Ailing Zeng, Jing Lin, Kunchang Li, He Cao, Jiayu Chen, Xinyu Huang,
 742 Yukang Chen, Feng Yan, et al. Grounded sam: Assembling open-world models for diverse visual
 743 tasks. *arXiv preprint arXiv:2401.14159*, 2024.

744 Team Seawead, Ceyuan Yang, Zhijie Lin, Yang Zhao, Shanchuan Lin, Zhibei Ma, Haoyuan Guo, Hao
 745 Chen, Lu Qi, Sen Wang, et al. Seaweed-7b: Cost-effective training of video generation foundation
 746 model. *arXiv preprint arXiv:2504.08685*, 2025.

747 Ruizhi Shao, Youxin Pang, Zerong Zheng, Jingxiang Sun, and Yebin Liu. Human4dit: Free-view
 748 human video generation with 4d diffusion transformer. *arXiv preprint arXiv:2405.17405*, 2024.

756 Aliaksandr Siarohin, Stéphane Lathuilière, Sergey Tulyakov, Elisa Ricci, and Nicu Sebe. First order
 757 motion model for image animation. *Advances in neural information processing systems*, 32, 2019.
 758

759 Aliaksandr Siarohin, Oliver J Woodford, Jian Ren, Menglei Chai, and Sergey Tulyakov. Motion rep-
 760 resentations for articulated animation. In *Proceedings of the IEEE/CVF Conference on Computer*
 761 *Vision and Pattern Recognition*, pp. 13653–13662, 2021.

762 Uriel Singer, Adam Polyak, Thomas Hayes, Xi Yin, Jie An, Songyang Zhang, Qiyuan Hu, Harry
 763 Yang, Oron Ashual, Oran Gafni, et al. Make-a-video: Text-to-video generation without text-video
 764 data. *arXiv preprint arXiv:2209.14792*, 2022.

765 Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In *Inter-
 766 national Conference on Learning Representations*, 2021. URL [https://openreview.net/
 767 forum?id=St1giarCHLP](https://openreview.net/forum?id=St1giarCHLP).

768

769 Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
 770 Poole. Score-based generative modeling through stochastic differential equations. *arXiv preprint
 771 arXiv:2011.13456*, 2020.

772 Michal Stypulkowski, Konstantinos Vougioukas, Sen He, Maciej Zieba, Stavros Petridis, and Maja
 773 Pantic. Diffused heads: Diffusion models beat gans on talking-face generation. In *Proceedings of
 774 the IEEE/CVF Winter Conference on Applications of Computer Vision*, pp. 5091–5100, 2024.

775

776 Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical flow. In *Computer
 777 Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
 778 Part II 16*, pp. 402–419. Springer, 2020.

779 Linrui Tian, Qi Wang, Bang Zhang, and Liefeng Bo. Emo: Emote portrait alive-generating expres-
 780 sive portrait videos with audio2video diffusion model under weak conditions. *arXiv preprint
 781 arXiv:2402.17485*, 2024.

782 Linrui Tian, Siqi Hu, Qi Wang, Bang Zhang, and Liefeng Bo. Emo2: End-effector guided audio-driven
 783 avatar video generation. *arXiv preprint arXiv:2501.10687*, 2025a.

784

785 Linrui Tian, Qi Wang, Bang Zhang, and Liefeng Bo. Emo: Emote portrait alive generating expressive
 786 portrait videos with audio2video diffusion model under weak conditions. In *European Conference
 787 on Computer Vision*, pp. 244–260. Springer, 2025b.

788

789 Thomas Unterthiner, Sjoerd van Steenkiste, Karol Kurach, Raphaël Marinier, Marcin Michalski, and
 790 Sylvain Gelly. Fvd: A new metric for video generation.

791

792 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
 793 Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing
 793 systems*, 30, 2017.

794

795 Ruben Villegas, Mohammad Babaeizadeh, Pieter-Jan Kindermans, Hernan Moraldo, Han Zhang,
 796 Mohammad Taghi Saffar, Santiago Castro, Julius Kunze, and Dumitru Erhan. Phenaki: Variable
 797 length video generation from open domain textual descriptions. In *International Conference on
 797 Learning Representations*, 2022.

798

799 Ang Wang, Baole Ai, Bin Wen, Chaojie Mao, Chen-Wei Xie, Di Chen, Feiwu Yu, Haiming Zhao,
 800 Jianxiao Yang, Jianyuan Zeng, et al. Wan: Open and advanced large-scale video generative models.
 801 *arXiv preprint arXiv:2503.20314*, 2025a.

802

803 Cong Wang, Kuan Tian, Jun Zhang, Yonghang Guan, Feng Luo, Fei Shen, Zhiwei Jiang, Qing Gu,
 804 Xiao Han, and Wei Yang. V-express: Conditional dropout for progressive training of portrait video
 804 generation. *arXiv preprint arXiv:2406.02511*, 2024a.

805

806 Jiuniu Wang, Hangjie Yuan, Dayou Chen, Yingya Zhang, Xiang Wang, and Shiwei Zhang. Mod-
 807 ellscope text-to-video technical report. *arXiv preprint arXiv:2308.06571*, 2023.

808

809 Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing Liu,
 809 Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception of the
 809 world at any resolution. *arXiv preprint arXiv:2409.12191*, 2024b.

810 Ting-Chun Wang, Arun Mallya, and Ming-Yu Liu. One-shot free-view neural talking-head synthesis
 811 for video conferencing. In *Proceedings of the IEEE/CVF conference on computer vision and*
 812 *pattern recognition*, pp. 10039–10049, 2021.

813

814 Yaohui Wang, Piotr Bilinski, Francois Bremond, and Antitza Dantcheva. Imaginator: Conditional
 815 spatio-temporal gan for video generation. In *Proceedings of the IEEE/CVF Winter Conference on*
 816 *Applications of Computer Vision*, pp. 1160–1169, 2020.

817

818 Yi Wang, Kunchang Li, Yizhuo Li, Yinan He, Bingkun Huang, Zhiyu Zhao, Hongjie Zhang, Jilan
 819 Xu, Yi Liu, Zun Wang, et al. Internvideo: General video foundation models via generative and
 820 discriminative learning. *arXiv preprint arXiv:2212.03191*, 2022.

821

822 Zhenzhi Wang, Yixuan Li, Yanhong Zeng, Youqing Fang, Yuwei Guo, Wenran Liu, Jing Tan, Kai
 823 Chen, Tianfan Xue, Bo Dai, and Dahua Lin. Humanvid: Demystifying training data for camera-
 824 controllable human image animation. In *Advances in Neural Information Processing Systems*,
 2024c.

825

826 Zhenzhi Wang, Yixuan Li, Yanhong Zeng, Yuwei Guo, Dahua Lin, Tianfan Xue, and Bo Dai. Multi-
 827 identity human image animation with structural video diffusion. *arXiv preprint arXiv:2504.04126*,
 2025b.

828

829 Haoning Wu, Zicheng Zhang, Weixia Zhang, Chaofeng Chen, Liang Liao, Chunyi Li, Yixuan Gao,
 830 Annan Wang, Erli Zhang, Wenxiu Sun, et al. Q-align: Teaching lmms for visual scoring via
 831 discrete text-defined levels. *arXiv preprint arXiv:2312.17090*, 2023a.

832

833 Jay Zhangjie Wu, Yixiao Ge, Xintao Wang, Stan Weixian Lei, Yuchao Gu, Yufei Shi, Wynne Hsu,
 834 Ying Shan, Xiaohu Qie, and Mike Zheng Shou. Tune-a-video: One-shot tuning of image diffusion
 835 models for text-to-video generation. In *Proceedings of the IEEE/CVF International Conference on*
 836 *Computer Vision*, pp. 7623–7633, 2023b.

837

838 Bin Xiao, Haiping Wu, Weijian Xu, Xiyang Dai, Houdong Hu, Yumao Lu, Michael Zeng, Ce Liu,
 839 and Lu Yuan. Florence-2: Advancing a unified representation for a variety of vision tasks. In
 840 *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp.
 4818–4829, 2024.

841

842 Liangbin Xie, Xintao Wang, Honglun Zhang, Chao Dong, and Ying Shan. Vfhq: A high-quality
 843 dataset and benchmark for video face super-resolution. In *Proceedings of the IEEE/CVF Conference*
 844 *on Computer Vision and Pattern Recognition*, pp. 657–666, 2022.

845

846 Mingwang Xu, Hui Li, Qingkun Su, Hanlin Shang, Liwei Zhang, Ce Liu, Jingdong Wang, Luc
 847 Van Gool, Yao Yao, and Siyu Zhu. Hallo: Hierarchical audio-driven visual synthesis for portrait
 848 image animation. *arXiv preprint arXiv:2406.08801*, 2024a.

849

850 Sicheng Xu, Guojun Chen, Yu-Xiao Guo, Jiaolong Yang, Chong Li, Zhenyu Zang, Yizhong Zhang,
 851 Xin Tong, and Baining Guo. Vasa-1: Lifelike audio-driven talking faces generated in real time.
 852 *arXiv preprint arXiv:2404.10667*, 2024b.

853

854 Zhendong Yang, Ailing Zeng, Chun Yuan, and Yu Li. Effective whole-body pose estimation with
 855 two-stages distillation. In *Proceedings of the IEEE/CVF International Conference on Computer*
 856 *Vision*, pp. 4210–4220, 2023.

857

858 Hu Ye, Jun Zhang, Sibo Liu, Xiao Han, and Wei Yang. Ip-adapter: Text compatible image prompt
 859 adapter for text-to-image diffusion models. *arXiv preprint arXiv:2308.06721*, 2023.

860

861 Zhenhui Ye, Ziyue Jiang, Yi Ren, Jinglin Liu, Jinzheng He, and Zhou Zhao. Geneface: Generalized
 862 and high-fidelity audio-driven 3d talking face synthesis. In *The Eleventh International Conference*
 863 *on Learning Representations*, 2022.

864

865 Lijun Yu, Jos Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong
 866 Cheng, Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion-
 867 tokenizer is key to visual generation. *arXiv preprint arXiv:2310.05737*, 2023.

864 Shanghai Yuan, Jinfa Huang, Xianyi He, Yunyuan Ge, Yujun Shi, Liuhan Chen, Jiebo Luo, and
 865 Li Yuan. Identity-preserving text-to-video generation by frequency decomposition. *arXiv preprint*
 866 *arXiv:2411.17440*, 2024.

867 Wenxuan Zhang, Xiaodong Cun, Xuan Wang, Yong Zhang, Xi Shen, Yu Guo, Ying Shan, and Fei
 868 Wang. Sadtalker: Learning realistic 3d motion coefficients for stylized audio-driven single image
 869 talking face animation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 870 *Pattern Recognition*, pp. 8652–8661, 2023.

871 Yuang Zhang, Jiaxi Gu, Li-Wen Wang, Han Wang, Junqi Cheng, Yuefeng Zhu, and Fangyuan Zou.
 872 Mimicmotion: High-quality human motion video generation with confidence-aware pose guidance.
 873 *arXiv preprint arXiv:2406.19680*, 2024.

874 Jian Zhao and Hui Zhang. Thin-plate spline motion model for image animation. In *Proceedings of*
 875 *the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 3657–3666, 2022.

876 Daquan Zhou, Weimin Wang, Hanshu Yan, Weiwei Lv, Yizhe Zhu, and Jiashi Feng. Magicvideo:
 877 Efficient video generation with latent diffusion models. *arXiv preprint arXiv:2211.11018*, 2022.

878 Hao Zhu, Wayne Wu, Wentao Zhu, Liming Jiang, Siwei Tang, Li Zhang, Ziwei Liu, and Chen Change
 879 Loy. CelebV-hq: A large-scale video facial attributes dataset. In *European conference on computer*
 880 *vision*, pp. 650–667. Springer, 2022.

881 Lingting Zhu, Xian Liu, Xuanyu Liu, Rui Qian, Ziwei Liu, and Lequan Yu. Taming diffusion models
 882 for audio-driven co-speech gesture generation. In *Proceedings of the IEEE/CVF Conference on*
 883 *Computer Vision and Pattern Recognition*, pp. 10544–10553, 2023.

884

889 A ADDITIONAL EXPERIMENTAL RESULTS

890 A.1 LLM USAGE STATEMENT.

891 We use LLMs (e.g., Gemini-2.5 and GPT-5) to polish our paragraphs.

892 A.2 COMPARISON WITH SINGLE-PERSON TALKING-HEAD METHODS

893 Although our method targets multi-person *full-body* talking video generation, we report single-person
 894 *talking-head* results for completeness.

900 Table 6: CelebV-HQ: higher is better for IQA/ASE/Sync-C; lower is better for FID.

Method	IQA↑	ASE↑	Sync-C↑	FID↓
SadTalker (Zhang et al., 2023)	2.953	1.812	3.843	36.648
Hallo (Xu et al., 2024a)	3.505	2.262	4.130	35.961
VExpress (Wang et al., 2024a)	2.946	1.901	3.547	65.098
EchoMimic (Chen et al., 2024)	3.307	2.128	3.136	35.373
Hallo-3 (Cui et al., 2024)	3.451	2.257	3.933	38.481
Loopy (Jiang et al., 2024a)	3.780	2.492	4.849	33.204
OmniHuman (Lin et al., 2025a)	3.875	2.656	5.199	31.435
Ours	3.834	2.553	5.047	30.159

912 As shown in Table 6, OmniHuman achieves the best single-person talking-head scores on
 913 IQA/ASE/Sync-C, while *our method yields the best FID*. Since our approach targets multi-person,
 914 full-body generation rather than single-person heads, these results indicate competitive quality under
 915 a setting that is not our primary target. On RAVDESS (Table 7), our method attains the best IQA and
 916 ASE, while OmniHuman leads on Sync-C and FID. This mirrors the CelebV-HQ trend and supports
 917 our claim that the proposed framework remains competitive on single-person benchmarks while being
 918 designed for multi-person, full-body scenarios.

918

919

Table 7: RAVDESS: higher is better for IQA/ASE/Sync-C; lower is better for FID.

Method	IQA \uparrow	ASE \uparrow	Sync-C \uparrow	FID \downarrow
SadTalker (Zhang et al., 2023)	3.840	2.277	4.304	32.343
Hallo (Xu et al., 2024a)	4.393	2.688	4.062	19.826
VExpress (Wang et al., 2024a)	3.690	2.331	5.001	26.736
EchoMimic (Chen et al., 2024)	4.504	2.742	3.292	21.058
Hallo-3 (Cui et al., 2024)	4.006	2.462	4.448	28.840
Loopy (Jiang et al., 2024a)	4.506	2.658	4.814	17.017
OmniHuman (Lin et al., 2025a)	4.564	2.815	5.255	16.970
Ours	4.602	2.915	5.132	17.187

928

929

930

A.3 COMPARISON WITH CONCURRENT WORKS

931

932

We show comparison with recent multi-person talking systems which are conditioned on a *reference frame* only and released concurrently with our method. Our framework supports both concept-only and first-frame modes.

933

934

935

936

937

Table 8: Qualitative capability comparison. ✓: supported; x: not supported.

Methods	Audio-driven full-body	First-frame I2V	Multi-ref images	Multi-person talking
Video-Alchemist (Chen et al., 2025a)	x	x	✓	x
ConceptMaster (Huang et al., 2025)	x	x	✓	x
Phantom (Liu et al., 2025)	x	x	✓	x
OmniHuman (Lin et al., 2025a)	✓	✓	x	x
HunyuanVideo-Avatar (Chen et al., 2025b)	✓	✓	x	✓
MultiTalk (Kong et al., 2025)	✓	✓	x	✓
Ours	✓	✓	✓	✓

944

945

946

A.4 MASK REFINEMENT ACROSS DENOISING STEPS AND LAYERS

947

948

949

950

951

Across both regimes (Tables 9, 10), IoU steadily improves with denoising steps, validating the *iterative refinement* strategy. Deeper layers (e.g., layer 36) outperform shallow layers early on, while the *combined* mask yields the strongest mid/late-step IoUs. Notably, high-motion sequences retain strong IoUs and achieve competitive lip-sync (Sync-D **6.921**), indicating that masks are *not static* and remain reliable even under larger motion (see the motion statistics in Table 11).

952

953

954

Table 9: Low motion strength: mask IoU across steps/layers; Sync-D for the setting.

	step 1	step 10	step 20	step 30	step 50	Sync-D \downarrow
Mask layer 4	0.306	0.436	0.509	0.640	0.858	—
Mask layer 20	0.386	0.629	0.733	0.890	0.957	—
Mask layer 36	0.538	0.742	0.850	0.916	0.923	—
Combine mask	0.376	0.738	0.881	0.949	0.956	7.292

960

961

962

A.5 EFFECT OF MASK CACHE

963

964

965

Using the cached mask from step $t-1$ to gate audio injection at step t markedly improves lip sync (Table 12; **6.921** vs 11.046 Sync-D). Without caching, identity assignment degrades toward a single-person behavior, confirming the necessity of cross-timestep spatial guidance.

966

967

968

Table 12: Mask cache significantly improves multi-person lip sync.

Condition	Sync-D \downarrow
With mask cache	6.921
Without mask cache	11.046

972

973

Table 10: High motion strength: mask IoU across steps/layers; Sync-D for the setting.

974

975

	step 1	step 10	step 20	step 30	step 50	Sync-D \downarrow
Mask layer 4	0.113	0.426	0.529	0.730	0.779	–
Mask layer 20	0.527	0.816	0.911	0.934	0.945	–
Mask layer 36	0.694	0.902	0.923	0.931	0.915	–
Combine mask	0.741	0.916	0.932	0.936	0.937	6.921

976

977

978

979

980

981

Table 11: Statistics used to define motion regimes.

982

983

984

985

986

987

988

989

990

991

A.6 SCALING BEYOND THREE PEOPLE

992

993

994

995

Table 13 shows stable scaling to 4–5 speakers: Sync-D improves slightly (**6.608**) and AES increases (**3.992**) with a marginal IQA change. This aligns with our claim that per-identity mask prediction is independent, enabling more entities without collapsing lip-sync quality.

996

997

998

999

1000

1001

1002

1003

1004

B ALGORITHM OF OUR MODEL IMPLEMENTATION

1005

1006

Please refer to Algorithm 1 for our model implementation.

1007

1008

C MORE DETAILS OF OUR MODEL

1009

1010

C.1 LONG VIDEO GENERATION AND FRAME-ALIGNMENT DETAILS

1011

1012

1013

1014

We follow sliding-window strategies (Jiang et al., 2024a; Tian et al., 2025b) by reusing several motion frames from the tail of window w as the head of window $w+1$. Reference injection is unchanged; starting frames are optional for window 1.

1015

1016

1017

Frame alignment flag. Per-frame masks have confidence scores from SAM2; frames with confidence < 0.5 are excluded from the mask loss (flow-matching still applies). Videos are retained if other frames have reliable masks, so supervision remains temporally dense.

1018

1019

C.2 LOSS DESIGN AND AUDIO STACK CLARIFICATIONS

1020

1021

1022

Focal loss. We adopt focal loss with $\alpha = 0.25$, $\gamma = 2$ to mitigate class imbalance (background vs person) and stabilize early training; BCE converges more slowly and is less stable initially.

1023

1024

1025

Audio features. Audio tokens come from wav2vec 2.0; we do not add extra transformer blocks before injection. Spatial attention is unrestricted; temporally each latent attends to a local ± 5 token window.

1026
1027

C.3 IMPLEMENTATION DETAILS

1028
1029
1030
1031
1032
1033

Our model was trained for 10,000 steps on 32 A800 GPUs with a learning rate of 3e-5. We adopted the PyTorch framework combined with Fully Sharded Data Parallel (FSDP) to finetune the DiT model across multiple GPUs. Specifically, the model was partitioned such that different GPUs handled distinct portions of the model’s parameters. We configured the effective batch size so that every node—comprising 8 GPUs—processed 2 videos simultaneously. With 32 GPUs in total (i.e., 4 nodes), this resulted in an overall effective batch size of 8 videos.

1034
1035

C.4 ABLATION DETAILS

1036
1037
1038
1039

In Tab. 4 and Fig. 5 of the paper, we validate our local audio injection designs via ablation on three variants: 1) *Global audio* (Lin et al., 2025a) applies audio across the entire feature map; 2) *ID Embedding* injects audio features with a learnable ID embedding without mask prediction; 3) *Fixed Mask* uses predefined static spatial masks.

1040
1041
1042
1043
1044

For global audio, it is identical to the pretrained audio-driven model (Lin et al., 2025a). For fixed mask, it is a manually input rectangle mask upon the audio cross-attention of pretrained audio-driven model (Lin et al., 2025a). It requires the generated human being static and it needs the user to ensure there is only one person inside a mask.

1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055

For ID embedding, here we provide some implementation details. Inspired by detection transformers (Carion et al., 2020), we introduce a set of N learnable ID embeddings $\mathbf{E}_{query} \in \mathbb{R}^{N \times C}$. These embeddings serve as identity tokens for the N individuals. Specifically, we add the same learnable ID embedding $\mathbf{e}_{query} \in \mathbb{R}^C$ to a paired reference image and audio segment. In this way, we expect the model to implicitly match an individual (defined by a reference image) and audio segments in the output video to get synchronized lip movements. For the ID embedding dataset preparation, we incorporate multi-person videos into training. We use Active Speaker Detection (ASD) to extract talking persons’ identities as a bounding box with identity-number. Then we use the bounding box and SAM2 masks to match the identity-number of each timestep of audio based on their IoU. Finally we use paired audio with timestep and reference image to generate video, and use flow-matching loss only to supervised it. No mask information is provided to the model and no mask supervision adopted.

1056
1057
1058
1059
1060
1061
1062

In the main paper, our experimental results in ablation study indicate that implicit matching of individuals and audio segments is worse than explicit matching with layout-aligned mask prediction and audio injection. It is worth noting that although our implementation shows this evidence, implicit matching is not necessarily worse than explicit matching. We show that a straight-forward implementation of implicit matching cannot generate satisfactory results, yet there could be better implementations to improve this result in the future.

1063
1064
1065

D DETAILS OF AUDIO-DRIVEN BASE MODEL’S ARCHITECTURE AND TRAINING

1066
1067
1068
1069
1070
1071

This appendix provides a detailed description of the network structure and training specifics for the pretrained audio-driven single-person video generation model, OmniHuman (Lin et al., 2025a). As noted in our main paper, the text-to-video base model undergoes post-pretraining for audio conditioning, following the OmniHuman (Lin et al., 2025a) methodology. Subsequently, our multi-concept framework is built and trained on this foundation.

1072
1073

D.1 AUDIO-DRIVEN BASE MODEL

1074
1075
1076
1077
1078
1079

Our foundational model is composed of a Variational Autoencoder (VAE) and a Latent Diffusion Transformer (DiT). The VAE includes an encoder, which compresses raw pixel data into a compact latent representation, and a decoder, which reconstructs the original pixel inputs from these latent features. The VAE achieves compression ratios of (4, 8, 8) for the (t, h, w) dimensions, respectively. Both the encoder and decoder utilize a temporally causal convolutional architecture, facilitating image and video compression across both spatial and temporal domains within the joint latent space. The denoising latents possess 16 channels.

1080 The DiT Blocks are based on the dual-stream Diffusion Transformer (DiT)(Esser et al., 2024). This
 1081 transformer processes video and text tokens through multiple self-attention layers and feedforward
 1082 networks (FFNs) to learn representations that are both shared and modality-specific. SwiGLU
 1083 is employed as the activation function to enhance nonlinear modeling capabilities. Additionally,
 1084 AdaSingle(Chen et al., 2023) is used for efficient timestep modulation. Moreover, two-thirds of the
 1085 FFN weights in the deeper layers share parameters, creating a hybrid-stream design that preserves
 1086 model capacity while substantially improving parameter efficiency.

1088 D.2 MIXED TRAINING STRATEGY

1090 We utilize a multi-condition training strategy based on the framework established in OmniHuman (Lin
 1091 et al., 2025a). Our method employs a two-stage progressive training scheme to develop the base
 1092 model’s capabilities. In the initial stage, the model is trained solely on text-to-video (T2V) data
 1093 to build fundamental video generation abilities. The second stage introduces audio-synchronized
 1094 datasets to expand the model’s functionality to include audio-driven generation and reference image
 1095 injection. For this second stage, we follow two core principles from OmniHuman: 1) Tasks with
 1096 stronger conditioning can leverage tasks with weaker conditioning and their associated data to broaden
 1097 the effective training dataset; 2) Tasks with stronger conditioning should be assigned proportionally
 1098 lower training ratios. Guided by these principles, we first train the reference image injection capability
 1099 before introducing the audio-driven generation objective. This staged methodology facilitates efficient
 1100 knowledge transfer while ensuring stable training dynamics throughout the multi-condition learning
 1101 process.

1102 E ADDITIONAL DETAILS FOR AUDIO-DRIVEN BASE MODEL DATASET

1104 E.1 DATASET CURATION

1106 We initially filter the T2V data using rules 1 through 6. Following this, we apply rule 7 to further
 1107 refine the audio-driven data.

1108 **1. Video Clip.** We begin by using PySceneDetect (<https://github.com/Breakthrough/PySceneDetect>)
 1109 to identify and trim shot transitions and fades within video clips. After this process, all clips are
 1110 standardized to a duration of 5 to 30 seconds.

1111 **2. Human.** Utilizing the annotated video captions, we implement a rule-based system to detect
 1112 keywords such as “people”, “human”, “men”, “women”, “girl”, and “boy”. If any of these keywords
 1113 are found, the video is categorized as human-related. This technique ensures the dataset is effectively
 1114 filtered to comprise only videos pertinent to human activities and interactions.

1116 **3. Subtitles.** We use PaddleOCR (<https://github.com/PaddlePaddle/PaddleOCR>) to detect subtitles in
 1117 the videos and remove clips where subtitles change. This step guarantees that the dataset emphasizes
 1118 continuous and consistent visual content, reducing distractions from textual variations and improving
 1119 the data quality for subsequent tasks.

1120 **4. Visual Quality.** We utilize Q-align (Wu et al., 2023a) to evaluate the visual quality of the
 1121 videos, filtering out clips that do not meet a predefined threshold. This procedure ensures the dataset
 1122 maintains a high standard of visual clarity, which is essential for accurate analysis and robust model
 1123 performance. By eliminating low-quality segments, we enhance the overall dependability and utility
 1124 of the dataset.

1125 **5. Aesthetics.** We employ Q-align (Wu et al., 2023a) to assess the aesthetic appeal of the videos and
 1126 discard clips falling below a set threshold. Through aesthetic quality assessment, we can filter out
 1127 videos containing post-production elements, thereby improving the quality of the training dataset.
 1128 This measure ensures the dataset is composed of natural and unaltered video content, which better
 1129 represents real-world scenarios and boosts the robustness and generalization of the trained models.

1130 **6. Motion.** We use Raft (Teed & Deng, 2020) to calculate the optical flow of the videos and filter out
 1131 clips exhibiting overly intense motion. This step ensures that the dataset includes only video clips
 1132 with moderate and significant motion, which are more appropriate for analysis and model training.
 1133 By removing clips with extreme motion, we enhance the stability and quality of the dataset, leading
 1134 to more dependable results.

1134 **7. Syncnet.** For audio-driven content, we employ SyncNet (Chung & Zisserman, 2017) to determine if
 1135 the lip movements are synchronized with the audio. Videos displaying considerable asynchronization
 1136 are excluded. This step ensures that the dataset consists only of high-quality, synchronized audio-
 1137 visual data. By removing out-of-sync segments, we improve the overall quality and reliability of the
 1138 dataset. Ultimately, we gather 2,000 hours of audio-driven data.

1139
 1140 **E.2 DATASET ANALYSIS**
 1141

1142 To gain a better understanding of the dataset’s distribution, we perform an analysis across three
 1143 dimensions. Detailed definitions for each dimension are provided below.

1144
 1145 • **Human Size.** Human size indicates the portion of the human body visible within the video
 1146 frame. It is categorized into the following levels: *Portrait* (head and shoulders), *Chest*
 1147 (from head to chest), *Waist* (from head to waist), *Knees* (from head to knees), and *Full*
 1148 *Body* (the entire body is visible). To determine this, we first detect body keypoints using
 1149 RTMpose (Jiang et al., 2023), and then classify the human size based on the confidence
 1150 scores of these keypoints. This method ensures a robust and accurate categorization of the
 1151 visible human body extent in each video.

1152 • **Motion Amplitude.** After extracting body keypoints from the video, the amplitude of
 1153 human motion is computed by measuring the displacement of the chest keypoint over time,
 1154 relative to the width of the shoulders. Based on these calculations, we classify motion
 1155 amplitude into four categories: *Slight*(< 0.1), *Moderate*(0.1 – 0.2), *Significant*(0.2 – 0.3),
 1156 and *Extreme*(> 0.3).

1157 • **Scene.** Using video captioning, we employ Doubao to categorize videos into the following
 1158 scenarios: *Household*, *Work*, *Show*, *Outdoor Adventure*, *transportation*, *Arts and Crafts*,
 1159 *Sports*, and *Others*.

1160 • **Language.** For data containing audio, we use a language detection tool
 1161 (<https://github.com/Mimino666/langdetect>) to identify and count the types of languages
 1162 present. These are categorized as *English*, *Chinese*, *Spanish*, *French*, *German*, *Urdu*, *Hindi*,
 1163 and *Others*.

1164
 1165 **F USER STUDY DETAILS**
 1166

1167 Here we show our questionnaires used in the user study.

1168
 1169 **F.1 MULTI-PERSON AUDIO-DRIVEN VIDEO GENERATION QUESTIONNAIRE**

1170 Please take 10 minutes to complete the following ranking questions. For each question, consider the
 1171 priority of the three videos based on the following dimensions and rank them accordingly:

1172 (1) Lip-sync Accuracy: Based on the audio you hear, do you think the lip movements are accurate?
 1173 Ideally, only one person’s lip movements should correspond to the audio, but it doesn’t matter
 1174 specifically who is speaking. It is considered poor if multiple people are speaking simultaneously or
 1175 if no one is speaking when there is audio. When multiple methods all correctly show only one person
 1176 speaking, rank them based on the quality of lip-sync with the audio. Perfect synchronization is good;
 1177 missing syllables or incorrect lip shapes for certain syllables is poor.

1178 (2) Sense of Dialogue Among Multiple People: Is there a feeling of conversation between the
 1179 individuals? It is considered good if it portrays a natural scenario where one person speaks and
 1180 another listens. The judgment here is based on whether their expressions during the interaction appear
 1181 natural and whether the overall feeling of the conversation is natural.

1182 (3) Video Quality: If all the above criteria are tied, then prioritize the video with higher quality.

1183
 1184 The priority of these three criteria decreases in the order listed. Aspect ratio and resolution should not
 1185 be taken into account; you should not favor a particular aspect ratio or higher resolution, but rather
 1186 focus on the inherent video quality itself.

1188
1189

F.2 MULTI-CONCEPT VIDEO GENERATION QUESTIONNAIRE

1190
1191
1192

Please take 8 minutes to complete the following ranking questions. For each question, consider the priority of the five videos from the perspective of consistency between the reference images and the appearance in the video, and rank them accordingly:

1193
1194
1195

(1) Consistency with Reference Images: Based on the reference images, do you think all the listed reference images appear in the video? And does the appearance of those in the video match the images? Consider the priority in the following order from high to low:

1196
1197

Ranked highest: Appearance is consistent, and all reference images appear.

1198

Next: All reference images appear, but the appearance of some reference images is inconsistent.

1199
1200

Ranked lowest: Some reference images do not appear.

1201
1202

(2) Video Quality: If the above criteria are tied, then prioritize the video with higher quality.

1203
1204

(3) Motion Strength: If all the above criteria are tied, then prioritize the video with a larger motion strength.

1205
1206
1207

The priority of these criteria decreases in the order listed. Aspect ratio and resolution should not be taken into account; you should not favor a particular aspect ratio or higher resolution, but rather focus on the inherent video quality itself.

1208
12091210
12111212
12131214
12151216
12171218
12191220
12211222
12231224
12251226
12271228
12291230
12311232
12331234
12351236
12371238
12391240
1241

Algorithm 1 InterActHuman: Audio-Driven Multi-Concept Video Generation Inference

Require:

1244 Text prompt T , reference images $\{X_i\}_{i=1}^N$, identity-level audio $\{Y_i\}_{i=1}^N$
1245 Total diffusion steps S , mask injection threshold step S_{mask}
1246 VAE Encoder/Decoder, diffusion transformer

Ensure: Generated video V

1: **Preprocessing:**

2: **for** $i \leftarrow 1$ **to** N **do**

3: $T_i \leftarrow \text{Rephrase}(X_i, T)$ ▷ Generate detailed prompt via Qwen2.5-VL.
4: $\mathbf{x}_i \leftarrow \text{VAE_Encoder}(X_i)$ ▷ Encode reference image.
5: $\mathbf{a}_i \leftarrow \text{wav2vec}(Y_i)$ ▷ Extract audio features.

6: **end for**

7: $c_{\text{text}} \leftarrow \{T, T_1, \dots, T_N\}$ ▷ Aggregate text conditions.
8: $z_S \sim \mathcal{N}(0, I)$ ▷ Initialize the noisy video latent.

9: Initialize mask cache: $\{m_i^{\text{prev}}\} \leftarrow 0$

10: **for** $k \leftarrow S$ **downto** 1 **do**

11: **for** each DiT block layer l that we inject conditions **do**

12: **for** $i \leftarrow 1$ **to** N **do**

13: **Reference Injection:** Inject $\{\mathbf{x}_i\}$ via concatenation and self-attention.
14: Compute hidden video feature \mathbf{h}^v and reference feature \mathbf{h}_i^r .
15: $\mathbf{Q}^v \leftarrow \text{Proj}_q(\mathbf{h}^v)$. $[\mathbf{K}_i^r, \mathbf{V}_i^r] \leftarrow \text{Proj}_{k,v}(\mathbf{h}_i^r)$.
16: Apply LayerNorm and 3D RoPE to the features.
17: Compute cross-attention:

18: Predict layer mask:

$$\mathbf{p}_i^{(l)} \leftarrow \text{softmax} \left(\frac{\mathbf{Q}^v(\mathbf{K}_i^r)^\top}{\sqrt{d}} \right) \mathbf{V}_i^r.$$

19: **end for**

20: **end for**

21: **Aggregate Masks:**

22: $m_i \leftarrow \frac{1}{L} \sum_{l=1}^L m_i^{(l)} \quad \forall i \in \{1, \dots, N\}$.

23: Cache current masks: $\{m_i^{\text{prev}}\} \leftarrow \{m_i\}$.

24: **if** $k < S_{\text{mask}}$ **then**

25: **for** $i \leftarrow 1$ **to** N **do**

26: **Audio Injection:** inject local audio by updating the noisy latent \mathbf{h}^v .
27: $\mathbf{Q}^v \leftarrow \text{Proj}_q(\mathbf{h}^v)$. $[\mathbf{K}_i^{\text{mute}}, \mathbf{V}_i^{\text{mute}}] \leftarrow \text{Proj}_{k,v}(\mathbf{a}_i^{\text{mute}})$. $[\mathbf{K}_i, \mathbf{V}_i] \leftarrow \text{Proj}_{k,v}(\mathbf{a}_i)$.
28: Compute cross-attention:

29: $\mathbf{p}_i \leftarrow \text{softmax} \left(\frac{\mathbf{Q}^v(\mathbf{K}_i)^\top}{\sqrt{d}} \right) \mathbf{V}_i, \quad \mathbf{p}_i^{\text{mute}} \leftarrow \text{softmax} \left(\frac{\mathbf{Q}^v(\mathbf{K}_i^{\text{mute}})^\top}{\sqrt{d}} \right) \mathbf{V}_i^{\text{mute}},$

30: Bind audio conditions:

$$\mathbf{h}^v \leftarrow \mathbf{h}^v + m_i \odot \mathbf{p}_i + (1 - m_i) \odot \mathbf{p}_i^{\text{mute}},$$

31: where \odot denotes element-wise multiplication.

32: **end for**

33: **end if**

34: Update latent via diffusion step via flow-matching formulas or custom samplers.

35: **end for**

36: **Decoding:** Decode the final latent via VAE:

$$V \leftarrow \text{VAE_Decoder}(z_0).$$

37: **return** V