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Abstract
Transformer-based neural sequence models ex-
hibit a remarkable ability to perform in-context
learning. Given some training examples, a pre-
trained model can make accurate predictions on
an unseen input. This paper studies why trans-
formers can learn different types of function
classes in-context. We first show by construction
that there exists a family of transformers (with
different activation functions) that implement ap-
proximate gradient descent on the parameters of
neural networks, and we provide an upper bound
for the number of heads, hidden dimensions, and
layers of the transformer. We also show that a
transformer can learn linear functions, the indi-
cator function of a unit ball, and smooth func-
tions in-context by learning neural networks that
approximate them. The above instances mainly
focus on a transformer pre-trained on single tasks.
We also prove that when pre-trained on two tasks:
linear regression and classification, a transformer
can make accurate predictions on both tasks si-
multaneously. Our results move beyond linearity
in terms of in-context learning instances and pro-
vide a comprehensive understanding of why trans-
formers can learn many types of function classes
through the bridge of neural networks.

1. Introduction
In-context learning (ICL) is a phenomenon first observed in
natural language processing (NLP) problems where large
language models (LLM) like GPT-4 can make accurate pre-
dictions based on few prompts without any update on model
parameters. People’s understanding on in-context learning
is still limited. How and why neural sequence models can
learn in-context remain a black box. The training and infer-
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ence stages are two main stages for ICL (Dong et al., 2022).
During the training stage, existing ICL studies mainly take
a pretrained LLM as a backbone, and optionally warmup
the model to strengthen and generalize the ICL ability (Min
et al., 2021; Wei et al., 2021; Chung et al., 2024; Chen et al.,
2022). Towards the inference stage, empirical works study
what an LLM or its cornerstone, the transformer, can infer
(Garg et al., 2022; Fu et al., 2024), while theoretical works
take different measures to explain the mechanism of ICL in-
ference (Von Oswald et al., 2023; Dai et al., 2022; Akyürek
et al., 2022; Xie et al., 2021).

The paper attempts to explain why transformer-based pre-
dictors can learn different function classes in-context. We
interpret in-context learning of a function as learning im-
plicit neural networks that approximate the function. Cur-
rently, there are mainly two understandings of in-context
learning: one is based on gradient descent (Von Oswald
et al., 2023; Dai et al., 2022; Akyürek et al., 2022), and the
other views it as Bayesian inference (Xie et al., 2021). We
adopt the former perspective to prove that, when trained
properly, transformers can perform approximate gradient
descent on the parameters of neural networks without any
parameter updates or fine-tuning. These neural networks
serve as approximators of different functions.

In Section 3, we prove by construction that a family of
transformers, with a wide range of activation functions (not
necessarily restricted to the commonly used ReLU), can
implement a step of approximate gradient descent on the
parameters of neural networks. We start by investigating
2-layer neural networks and then generalize our findings
to the n-layer neural network setting. An upper bound for
the number of heads, hidden dimension, and the number
of layers required for the transformer is provided. Among
these, the number of layers is presented in a recursive fash-
ion for the n-layer neural network setting. Moreover, we
extend our result to multi-step gradient descent and discover
an lµ = Const. relationship between the transformer layer l
and the gradient descent step µ.

In Section 4, we view neural networks as bridges for trans-
formers to learn function classes in-context and provide
an analysis of the resources required for a transformer to
approximate the same function class through neural net-
works of different depths and widths. We showcase that
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for transformers to learn indicator functions in-context, 2-
layer neural networks are not sufficient as bridges because
they would cause the number of heads of the transformer
to be unacceptably large (exponential in the prediction er-
ror). In contrast, deeper and narrower neural networks,
which achieve the same approximation accuracy, require
fewer resources from the transformer. We also present a
condition under which deep networks perform better than
shallow ones in terms of approximating smooth functions
and requiring a smaller transformer size.

In Section 5, we prove that a transformer can perform al-
gorithm selection: when pre-trained on two tasks, linear re-
gression and classification, a transformer can make accurate
predictions on both tasks simultaneously. We demonstrate
this by constructing an indicator function following Bai
et al. 2024 to discriminate between the two tasks and then
perform approximate gradient descent on a neural network
approximating both tasks.

We summarize our contributions as follows:

• We construct explicit weights for transformer attention
layers and feed-forward layers to perform approximate
gradient descent (GD) on mean squared error loss re-
garding an n-layer neural network. Our results are
also suitable to transformers with various activation
functions.

• We theoretically prove that transformers can learn func-
tion classes including linear functions, indicator func-
tions of unit ball and smooth functions in-context by
learning the neural network that approximates them.

• We show that learning 2-layer neural networks is not
sufficient for a transformer to perform in-context learn-
ing on different function classes, as it would cause the
resource requirements (number of heads and hidden
layers) to explode exponentially with the prediction
error.

• Instead of focusing on single task in-context learning,
we also theoretically explain the algorithm selection
phenomenon in in-context learning, in which the trans-
former is pre-trained on both linear regression and
classification tasks yet can make accurate predictions
given prompts regarding each task.

1.1. Related Work

In-context learning In-context learning has been studied
both empirically and theoretically. Garg et al. 2022 em-
pirically show that transformers can learn linear functions,
two-layer ReLU neural networks, and decision trees in con-
text. Min et al. 2022 study what aspects of demonstrations
impact the performance of in-context learning. As for the

theoretical part, Xie et al. 2021 explains ICL as implicit
Bayesian inference despite the difference between pretrain-
ing and inference distributions, while Akyürek et al. 2022,
Von Oswald et al. 2023, and Dai et al. 2022 all interpret
in-context learning as transformers performing gradient de-
scent. These works only focus on linear models or their
variants without providing an error bound for multiple gra-
dient descent steps. A more recent work (Bai et al., 2024)
also investigates gradient descent on more general functions,
like 2-layer neural networks, and demonstrates the model
selection ability of transformers. We extend their result on
2-layer neural networks to an n-layer neural network setting
and also provide a tighter bound on the number of heads
and hidden dimension required for the transformer.

Neural networks and approximation theorems The ap-
proximation abilities of neural networks have long been
studied. Many results have demonstrated the universal ap-
proximation property of neural networks in approximating
different function classes (Hornik et al., 1989; Hornik, 1991;
Barron, 1993). A more recent work (Siegel & Xu, 2020) im-
proved upon Barron 1993 regarding the approximation rate
with general activation functions, and their result is adopted
in our work. While these universal approximation theo-
rems focus on neural networks with certain depths, more
recent work has begun to explore the expressive power of
deep neural networks due to their development and success.
Yarotsky 2017 and Liang & Srikant 2016 both show the
approximation abilities of deep neural networks. Safran &
Shamir 2017 illustrates the width-depth trade-offs of neu-
ral networks by proving the inapproximability with 2-layer
neural networks and the approximability of 3-layer neural
networks in terms of approximating indicator functions.

2. Preliminaries
2.1. Transformers

A Transformer layer contains two sub-layers, the attention
layer and the MLP layer. We denote the input sequence to
the transformer as H = [h1, · · · ,hN ] ∈ RD×N .
Definition 2.1. (Attention layer) An attention layer
with M heads is denoted as Attnθ(·) where θ =
{Vm,Qm,Km}m∈[M ]. The output of this layer on the
input matrix H is:

Attnθ(H) = H+ 1
N

∑M
m=1(VmH)×σ((QmH)⊤(KmH)),

where σ : R → R is an activation function . For each
column, we denote h+

i := [Attnθ(H)]i and get:

h+
i = hi +

1
N

∑M
m=1

∑N
j=1 σ (⟨Qmhi,Kmhj⟩)Vmhj .

The attention layer is followed by the MLP layer.
Definition 2.2. (MLP layer) An MLP layer with hid-
den dimension D′ is denoted as MLPθ(·) where θ =
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(W1,W2) ∈ RD′×D × RD×D′
. The output of this layer

on input H is

MLPθ(H) = H+W2σ(W1H)

where σ : R → R is an activation function. For each
column:

[MLPθ(H)]i = hi +W2σ(W1hi).

Here the activation function σ is applied to each element
of the matrix (vector). We doesn’t require the transformer
activation function be restricted to a specific type. Next
we give a definition on the class of activation functions we
focus on.

Definition 2.3. (General decay condition) We call an
activation function σ satisfies the general decay condi-
tion if σ ∈ Wm,∞(R) is non-zero and there exists a
ν ∈ {

∑n
i=1 βiσ(ωi ·x+bi) : ωi, bi, βi ∈ R} which satisfies

|ν(k)(t)| ≤ Cp(1 + |t|)−p

for 0 ≤ k ≤ m and some p > 1.

Here Wm,∞ denotes the Sobolev space, which is the subset
of functions f in L∞(R) such that f and its weak deriva-
tives up to order m have a finite L∞ norm. Most common
activation functions, such as Sigmoidal, Arctan, ReLU, Soft-
plus etc., do satisfy the general decay condition as stated in
Siegel & Xu 2020.

2.2. Neural Networks

We formulate the mathematical representation of an n-layer
neural network as below:

Definition 2.4. (n-layer neural networks) We denote the
output of an n-layer neural network on the input x ∈ Rd as

predn(w,x) = W(n)(r(W(n−1)(r(· · · r(W(1)x))))),

where r is an activation function (not necessarily the same
as the σ activation in the transformer architecture) and w =
(W(1), · · · ,W(n)), W(i) ∈ RKi×Ki−1 for i = 1, · · · , n
with Kn = 1,K0 = d. We denote the k-th row vector of
the matrices W(i)(i ∈ [n−1]) as vi,k, and the k-th element
in the vector W(n) as uk.

In the n-layer neural network setting above, we omit the
bias terms and let the output be a number instead of a vector
for simplicity. Also, the activation function r act on each
element of the input vector.

2.3. In-context Learning

Here we introduce our in-context learning (ICL) setting. A
complete ICL process contains two stages: pre-training and
inference.

In the pre-training stage, a transformer is trained on meta-
data generated from n different tasks, where each data
point (x, y) is sampled from a distribution Pi, where i =
1, · · · , n.

In the inference stage, the prompts are sampled from a
distribution P′

k corresponding to task k. Here P′
k and the

Pk in pre-training can be different as long as they both
fall into the category of task k. We denote the prompts as
D = (xi, yi)i∈[N ], and a novel input xN+1 is sampled from
Px. So each input is of the form (D,xN+1). Here xi ∈ Rd.

More specifically, we denote the input to the transformer as

H =

 x1, x2, · · · , xN , xN+1

y1, y2, · · · , yN , 0
p1, p2, · · · , pN , pN+1

 ∈ RD×(N+1),

where pi are positional encoding vectors in hidden space of
the form

pi =

 0D−d−3

1
1{i < N + 1}

 ∈ RD−d−1.

A transformer takes the prompt input H and makes a pre-
diction on the label corresponding to xN+1. The prediction
ŷN+1 is stored in the output matrix H̃ in the position next
to yN . We say in-context learning succeeds if ŷN+1 and yN
is close enough, or ϵ-close, under the metric corresponding
to task k.

2.3.1. ALGORITHM-SELECTION MECHANISM

Most theoretical works focus on explaining the in-context
learning ability of transformers pre-trained on a single task,
such as linear regression. However, in real life an LLM
is pre-trained on a mixture of dataset generated from dif-
ferent tasks. Bai et al. 2024 trained a transformer on both
regression and linear classification tasks data and showed
that given prompts on linear regression or classification, the
prediction ability of the transformer approaches the baseline
algorithm on both tasks, as if the transformer automatically
chose the best algorithm for each task. This phenomenon
is called algorithm-selection. Algorithm-selection naturally
fits into our definition of in-context learning by choosing
n = 2 and 1 represents linear regression, 2 represents clas-
sification.

3. Gradient Descent on Multi-layer Neural
Networks

In this section we want to study why can transformers learn
multi-layer neural networks in-context through the scope of
gradient descent. We begin our analysis on 2-layer neural
networks, and then generalize it to the n-layer networks
setting. To perform gradient descent on the neural networks,
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we consider the following optimization problem on the loss
function:

min
w∈W

LN (w) =
1

2N

N∑
i=1

l(pred(xi;w), yi).

Now we present necessary assumptions to begin our analy-
sis.

Following Barron 1993, We define Bs to be the space of
functions f : Rd → R with bounded Barron norm:

∥f∥Bs =

∫
Rd

(1 + |ω|)s|f̂(ω)|dω.

where f̂ denotes the Fourier transform of f .

Assumption 3.1. Both the activation function r in neural
networks and the loss function l has finite Barron norm.

As is discussed in Barron 1993, Bs is closed to multiplica-
tion, linear combination and translation. Thus, sigmoidal
functions, functions with derivatives of sufficiently high
order and Boolean functions are all in Bs, so this should in-
clude most common activation functions and loss functions
in practice. We also point out that Bai et al. 2024 used the
assumption that r, l are both C4 smooth, which is a stricter
assumption since C4 functions do have bounded Barron
norm.

During the process of gradient descent, it is likely that the
neural networks parameter w goes out of its domain W , so
we need the following assumption to project w onto W .

Assumption 3.2. W as the domain of w is compact and
there exists some MLP layer parameter such that the MLP
layer projects w into W .

This assumption states that the MLP layer truncates w
element-wise according to W . Such an MLP layer always
exists in the sense that we can choose proper W1,W2 to
fulfill the truncation task.

3.1. Gradient Descent on 2-layer Neural Networks

A 2-layer neural network can be written as

pred2(w,x) = W(2)(r(W(1)x)),

where x ∈ Rd,W(1) ∈ RK1×d,W(2) ∈ R1×K1 .

We want to show that transformers can implement gradient
descent on 2-layer neural networks in-context without any
parameter update.

We note that

∇wLN (w) = 1
N

∑N
i=1 ∂1l(pred(xi;w), yi)·∇wpred(xi;w),

where ∂1l is the partial derivative of l with respect to the
first component. Furthermore,

∇wpred(xi;w) =


u1 · r′(⟨v1,xi⟩) · xi

r(⟨v1,xi⟩)
...

uK · r′(⟨vK ,xi⟩) · xi

r(⟨vk,xi⟩)

 ∈ Rdim(w).

We show below that a 2-layer transformer can compute one
step of approximate gradient descent, following the intuition
of Siegel & Xu 2020: The first self attention sub-layer
computes and stores approximate pred(xi;w) in hidden
space, and the MLP sub-layer computes and stores ∂1l,
while the second attention sub-layer computes and stores
w−η∇LN (w), and the last MLP sub-layer maps this result
of one step gradient descent to the domain of w. In order for
the attention layer and MLP layer to compute ∇wLN (w),
we need the following neural network approximation lemma
to approximately compute pred(xi;w), ∂1l and r′(t). We
denote Σn

d (σ) = {
∑n

i=1 βiσ(ωi ·x+bi) : ωi ∈ Rd, bi, βi ∈
R} in the following lemma.

Lemma 3.3 (NN approximation). Let Ω ⊂ Rd be a bounded
domain. If the activation function σ ∈ Wm,∞(R) is non-
zero and there exists a ν ∈ Σn0

1 (σ) which satisfies the
polynomial decay condition

|ν(k)(t)| ≤ Cp(1 + |t|)−p

for 0 ≤ k ≤ m and some p > 1, we have

inf
fn∈Σn

d (σ)
∥f − fn∥Hm(Ω)

≤ |Ω| 12
√
n0C(p,m, dim(Ω), σ)n− 1

2 ∥f∥Bm+1

for any f ∈ Bm+1.

Here Hm(Ω) = Wm,2(Ω) is a Sobolev space, which is the
subset of functions f in L2(Ω) such that f and its weak
derivatives up to order m have a finite L2 norm . In this
lemma we assume the activation function satisfies the gen-
eral decay condition in Definition 2.3. Note that when
m = 0, the Sobolev space H0 is in effect the L2 space,
and we only consider m = 0 in the following discussion.
Setting the right hand side to O(ϵ) yields n = ϵ−2, and we
can interpret the lemma into: let n = ϵ−2, for any f ∈ B1,
there exists an fn ∈ Σn

d (σ) such that

∥f − fn∥L2(Ω) ≤ O(ϵ).

Now we are ready to provide our theorem on in-context
learning of 2-layer neural networks.

Theorem 1 (ICGD on 2-layer NNs). Under Assumption 3.1
and Assumption 3.2, there exists a family of 2-layer trans-
formers (with activation functions satisfying the general
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decay condition in Definition 2.3) such that for any input
data (D,xN+1) and any w, a transformer performs approx-
imate gradient descent on the neural networks parameter
w:

w+
η = ProjW (w − η(∇LN(w) + ϵ(w))) , ∥ϵ(w)∥2 ≤ ηϵ.

Furthermore, the upper bound for number of heads and
hidden dimension for the transformer is:

max
l∈[2]

M (l) ≤ O(ϵ−2),max
l∈[2]

D(l) ≤ O(ϵ−2).

Remark 3.4. We note here that in the theorem when
we say a transformer performs approximate gradient de-
scent on the neural networks parameter, we mean that
the transformer maps each column of the input matrix
H: hi = [xi; y

′
i;w;0; 1; ti] to the output vector h′

i =
[xi; y

′
i;w

+
η ;0; 1; ti], where only the parameter w is updated

according to gradient descent and the other parts remain
unchanged.

This theorem improves upon the result in Bai et al. 2024
in two ways: first we relieve the requirement for the trans-
former activation function to be ReLU and allow a wide
range of activation functions, second we achieve a tighter
upper bound on the hidden dimension and number of heads
compared with their O(ϵ−2 log(1/ϵ)) result.

3.2. Gradient Descent on n-layer Neural Networks

Now we tackle the n-layer neural networks setting. As in
Definition 2.4, n-layer neural networks can be formulated
as

predn(w,x) = W(n)(r(W(n−1)(r(· · · r(W(1)x))))).

We theoretically prove that transformers can implement
gradient descent on n-layer neural networks in context. Ad-
ditionally, we provide an upper bound for the number of
heads and the hidden dimension of transformers. We also
present a recurrence relation for the number of transformer
layers.

Theorem 2 (ICGD on n-layer NNs). Under Assumption 3.1
and Assumption 3.2, there exists a family of an-layer trans-
formers (with activation functions satisfying the general
decay condition in Definition 2.3) such that for any input
data (D,xN+1) and any w, a transformer performs ap-
proximate gradient descent on the n-layer neural networks
parameter w:

w+
η = ProjW (w − η(∇LN(w) + ϵ(w))) , ∥ϵ(w)∥2 ≤ ηϵ,

where an satisfies O(an) = O(n)+O(an−1). Furthermore,
the upper bound for number of heads and hidden dimension
for the transformer is :

max
l∈[an]

M (l) ≤ O(nK2ϵ−2), max
l∈[an]

D(l) ≤ O(nK2ϵ−2),

where K denotes the maximum width of the neural networks:
K = max{K0,K1, · · · ,Kn}.

Remark 3.5. We note that an, the number of transformer
layers required in the above theorem is of order O(n2),
which is a decent growth rate considering the fast growth of
neural networks neurons as its depth increases.
Remark 3.6. The result in Section 3.1 is of course a special
case of Theorem 2, but We provide Theorem 1 separately
for two reasons: first it is the most simple and empirically
verified case(Garg et al., 2022), second it is the initial condi-
tion for recursion of the general case in terms of transformer
layers.

Trade-off of width and depth of neural networks People
are interested in the approximation capabilities of neural
networks, and many studies have discussed the how width
and depth mutually affect the approximation ability of neural
networks. Thus it’s worthwhile discussing how the trade-off
between width and depth of neural networks can affect the
error of the approximate gradient descent step. If we control
the error in the approximate gradient descent to be ηϵ, then
in order for the transformer to learn two different neural
networks with the same magnitude of number of heads, we
require nK2 to be a constant. Thus controlling the width
of the network is more efficient than controlling the depth
of the neural networks in terms of maintaining the same
approximation error, indicating that deep and narrow neural
networks may perform better than shallow and wide neural
networks in terms of saving computational resource.

The an layer transformer in Theorem 2 can be stacked l
times to perform l steps of gradient descent. Thus as a
corollary of Theorem 2, we provide the result for multi-
step approximate gradient descent. We say a function f is
strongly convex with modulus m if

mI ⪯ ∇2f.

Now we have the following corollary.

Corollary 3.7 (multi-step ICGD on n-layer NNs). For
l ≥ 1, suppose ∇LN (w) is M -Lipschitz on W and LN (w)
is strongly convex with modulus m. Then under Assump-
tion 3.1 and Assumption 3.2, the (lan)-layer transformers
in Theorem 2 approximates gradient descent and the output
satisfies:

∥ŵl −wTrue∥2 ≤ (M−1(1+ ηM)l +(1− η
2Mm

M +m
)

l
2 )ϵ,

where ŵl is the output of the transformer, wTrue is the true
value of the neural networks parameter.

In the above corollary, we denote f(η) = M−1(1+ηM)l+

(1− η
2Mm

M +m
)

l
2 and solve the optimization problem over
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η. Letting f ′(η) = 0 yields

(1 + ηM)l−1 =
Mm

M +m
(1− η

2Mm

M +m
)

l
2−1.

Notice that η is relatively small, so we use Taylor’s expan-
sion up to order one and get:

[(l − 1)M + (
Mm

M +m
)2(l − 2)]η =

Mm

M +m
− 1.

For l large enough, l ≈ l − 1 ≈ l − 2. This shows when
lη = Const. we achieve a minimum upper bound for ∥ŵl−
wTrue∥2. Although this is mathematically interesting, we
should remind readers that the gradient descent step η is
learned by the transformer during the pre-training process,
not manually set by users. The result may indicate that given
an l layer transformer, it tends to learn gradient descent step
of order O( 1l ). Moreover, it seems that the first term in
f(η) will go to infinity if l → ∞. But if we choose η = 1

l
according to the above analysis, then the term (1+ηM)l →
eM as l → ∞, which is a constant, showing that the error
will not explode as l increases.

4. Transformer Learn Function Classes
In-context

Since neural networks are universal approximators, and
transformers can learn neural networks in context, a natural
question is whether transformers can learn function classes
that neural networks can approximate in context. Theorem 2
bridges the gap between transformers and neural networks,
and previous work on approximation theorems of neural
networks has bridged the gap between neural networks and
function classes, so it is natural to consider the whole path
of transformers learning function classes in-context. But
how much resource does it cost for a transformer (number
of layers of the transformer and number of heads for each at-
tention layer, or equivalently number of parameter matrices)
to approximate a neural network (as an approximator)? We
consider three types of function classes: indicator functions
of L2 balls corresponding to classification problems, linear
functions corresponding to linear regression problems and
smooth functions. In all these instances, the transformer
is pre-trained on different distributions corresponding to a
single task, and the prompts are generated from a distribu-
tion corresponding to the task in pre-training. For example,
we set the task as linear regression, and y = ⟨w,x⟩. In the
pre-training part w is generated from different distributions,
and in the post-training part a new wprompt is generated
from a distribution to form the prompts.

4.1. Indicator Functions of L2 Balls

f(x) = 1(∥Ax+ b∥ ≤ r) is the indicator function of unit
ball. This indication function naturally induces a classifica-
tion problem.

Safran & Shamir 2017 proves the inapproximability of 2-
layer neural networks and the approximability of 3-layer
neural networks. We present them as lemmas below.

Lemma 4.1. The following holds for some positive univeral
constants c1, c2, c3, c4, and any network employing an acti-
vation functioin satisfying Assumptions 1 and 2 in Eldan &
Shamir 2016: For any d > c1, and any non-singular matrix
A ∈ Rd×d,b ∈ Rd and r ∈ (0,∞), there exists a con-
tinuous probability distribution γ on Rd, such that for any
function g computed by a 2-layer network of width at most
c2 exp(c4d), and for the function f(x) = 1(∥Ax+b∥ ≤ r),
we have ∫

Rd

(f(x)− g(x))2 · γ(x)dx ≥ c2
d4

.

Lemma 4.2. Given δ > 0, for any activation function
σ satisfying Assumption 1 in Eldan & Shamir 2016 and
any continuous probability distribution µ on Rd, there
exists a constant cσ dependent only on σ, and a func-
tion g expressible by a 3-layer network of width at most
max{8cσd2/σ, cσ

√
1/2δ}, such that the following holds:∫

Rd

(g(x)− 1(∥x∥2 ≤ 1))2µ(x)dx ≤ δ,

where cσ is a constant depending solely on σ.

These two lemmas reveal that the indicator of the L2 ball
can be better approximated by a 3-layer neural network with
width O(d2) than a 2-layer neural network requiring width
at least exponential in the input dimension.

For a transformer to learn the indicator of unit ball in-
context, we show below that it learns a three layer neural
network that approximates the target function.

Theorem 3. For any given ϵ > 0, let f(x) = 1(∥Ax +
b∥ ≤ r) be the indicator of unit ball. There exists a cL-
layer transformer with

max
l∈[cL]

M (l) ≤ O(
1

δϵ2
), max

l∈[cL]
D(l) ≤ O(

1

δϵ2
),

where c is a constant, such that it performs approximate
gradient descent on a 3-layer, O(δ−1/2)-wide neural net-
work which δ-approximates f(x): the l-th layer’s output is
h
(cl)
i = [xi; y

′
i; ŵ

l;0; 1; ti] for i ∈ [N + 1], and

ŵ(l) = ProjW(ŵ(l−1) − η(∇LN(ŵ
(l−1)) + ϵ(ŵ(l−1)))),

where ∥ϵ(w)∥2 ≤ ϵ. Moreover, the prediction of the trans-
former ŷN+1 satisfies

|ŷN+1 − yN+1| ≤ O(ϵ+ δ).

Remark 4.3. Both the neural networks in Lemma 4.1 and
Lemma 4.2 can δ-approximate the target function f(x), but
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if we substitute the 3-layer neural network in Theorem 3
with the 2-layer neural network in Lemma 4.1, then the
transformer needs to learn an at least O(exp(δ−1/4))-wide
neural network, which will cause the upper bound for the
number of heads and hidden dimension of the transformer
to be O(exp(δ−1/4)ϵ−2).

The observation underscores the potential for an exponential
increase in the size of transformers when a 2-layer neural
network is trained to approximate the indicator function. In-
terestingly, the need for a significantly smaller transformer
size is evident when employing a 3-layer neural network.
This highlights the importance of considering deeper neural
networks, showcasing their relevance in addressing compu-
tational efficiency and resource requirements.

4.2. Linear Functions

A linear function corresponding to the linear regression
problem is f(x) = ⟨w,x⟩. Notice that for ReLU activa-

tion function σ, we have f(x) =
σ(w⊤x)− σ(−w⊤x)

2
.

This is a 2-layer neural network, so we can directly apply
Theorem 1 and get:

Theorem 4. Let f(x) = ⟨w,x⟩ be a linear function. There
exists a 2L-layer transformer with

max
l∈[2L]

M (l) ≤ O(ϵ−2), max
l∈[2L]

D(l) ≤ O(ϵ−2),

such that it performs approximate gradient descent on a
2-layer, width 2 neural network which equals f(x): the l-th
layer’s output is h(2l)

i = [xi; y
′
i; ŵ

l;0; 1; ti] for i ∈ [N+1],
and

ŵ(l) = ProjW(ŵ(l−1) − η(∇LN(ŵ
(l−1)) + ϵ(ŵ(l−1)))),

where ∥ϵ(w)∥2 ≤ ϵ. Moreover, the prediction of the trans-
former ŷN+1 satisfies

|ŷN+1 − yN+1| ≤ O(ϵ).

This theorem is equivalent to Theorem 1 in essence since
f(x) can be exactly represented by the 2-layer neural net-
work. So unlike the case in the classification problem, there
is no neural network approximation involved, and it is equiv-
alent for the transformer to learn the linear function or learn
the 2-layer neural network in-context.

4.3. Smooth Functions

We use the approximation results of deep neural networks
achieved by Yarotsky 2017. We denote by Fd,n the unit ball
in Wn,∞([0, 1]d):

Fd,n = {f ∈ Wn,∞([0, 1]d) : ∥f∥Wn,∞([0,1]d) ≤ 1}.

Lemma 4.4. For any d, n and ϵ ∈ (0, 1), there is a ReLU
network architecture that

• is capable of expressing any function from Fd,n with
error ϵ;

• has the depth at most c(ln(1/ϵ) + 1) and at most
cϵ−d/n(ln(1/ϵ)+1) computation units, with some con-
stant c = c(d, n).

Lemma 4.5. Let f ∈ C2([0, 1]d) be a nonlinear function.
Then, for any fixed L, a depth-L ReLU network approximat-
ing with error ϵ ∈ (0, 1) must have at least cϵ−1/(2(L−1))

computation units, with some constant c = c(f, L) > 0.

Below we state a formal theorem for the resource of a trans-
former it takes to learn the smooth nonlinear function.

Theorem 5. For any d and n > 2, let f ∈ Wn,∞([0, 1]d).
Choose any ϵ > 0, there exists a O(ln2(1/δ)L)-layer (kδL-
layer) transformer with

max
l∈[kδL]

M (l) ≤ O(
1

δ2d/nϵ2
), max

l∈[kδL]
D(l) ≤ O(

1

δ2d/nϵ2
)

such that it performs approximate gradient descent on a
c(ln(1/δ) + 1)-layer, δ−d/n-wide neural network which
δ-approximates f(x): the l-th layer’s output is h

(2l)
i =

[xi; y
′
i; ŵ

l;0; 1; ti] for i ∈ [N + 1], and

ŵ(l) = ProjW(ŵ(l−1) − η(∇LN(ŵ
(l−1)) + ϵ(ŵ(l−1)))),

where ∥ϵ(w)∥2 ≤ ϵ. Moreover, the prediction of the trans-
former ŷN+1 satisfies

|ŷN+1 − yN+1| ≤ O(ϵ+ δ).

Remark 4.6. Linear function is a special case of the smooth
function discussed here, but the result on linear function is
more ’accurate’ in the sense that the upper bound for number
of heads, hidden layer and the prediction error is tighter than
the result in smooth function, and we want to separate them
because linear function is an especially important function
class in the realm of supervised learning.
Remark 4.7. Both the neural networks in Lemma 4.4 and
Lemma 4.5 can δ-approximate the target function f(x),
but if we substitute the deep neural network in Theo-
rem 5 with the shallow network in Lemma 4.5, then the
transformer needs to learn an at least O(δ−1/2(L−1))-wide
neural network, and the upper bound for the number of
heads and hidden dimension of the transformer will become
O(δ−1/(L−1))ϵ−2). If 2(L− 1)d < n, then it costs a trans-
former less resource to learn the deep network than the
shallow network in order to do in context learning on f(x).

Intuitively, the smoother the function is and the lower dimen-
sion the input x is, the better deep neural networks perform
in terms of approximation and transformer resource cost.
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5. Algorithm Selection
Recall our definition of in-context learning in Section 2,
ICL is not limited to transformers pretrained on single task
dataset. Bai et al. 2024 found that a transformer trained on
both linear regression and classification data, when given
prompts on linear regression or classification during the
inference stage, can approach the baseline algorithm on
both tasks. This phenomenon is called algorithm selection.
Now we abstract it as follows: Given data x ∼ Px,w ∈
Pw, the corresponding y is generated as y = ⟨w,x⟩ for
regression tasks and y = sign(⟨w,x⟩) for classification task.
A transformer pretrained on the meta data generated above
can approach task-specific supervised learning algorithm
(least squares for linear regression and logistic regression
for classification) on both tasks.

A pre-trained transformer should automatically categorize
the prompt into two classes: linear regression and classifica-
tion, by utilizing an indicator function Icls. Then the trans-
former only needs to learn the function Icls · sign(⟨w,x⟩) +
(1− Icls) · ⟨w,x⟩. Now we first construct the indicator func-
tion and prove that it can be realized by a single attention
layer following Bai et al. 2024.
Lemma 5.1 (Indicator function). An attention layer with 6
heads can implement the indicator function Icls of the form

Icls(D) =
1

N

N∑
i=1

I(yi),

where

I(y) =


1 y ∈ {0, 1}
0 y ∈ [−ϵ, ϵ] ∪ [1− ϵ, 1 + ϵ]

linear interpolation otherwise
.

When the ys in the prompt are all 0, 1s, we can classify
the problem into a classification problem, otherwise it can
be classified into a linear regression problem. The ϵ in the
indicator function I is to ensure its continuity, and we can
always choose ϵ small enough to ensure the classification
accuracy.

Now we can provide the full theorem for algorithm selec-
tion.
Theorem 6. Given ϵ > 0, δ > 0, there exists a (c+2)L+1-
layer transformer (the constant c is stated in Theorem 3)
with

max
l∈[(c+2)L]

M (l) ≤ O(
1

δϵ2
), max

l∈[(c+2)L]
D(l) ≤ O(

1

δϵ2
)

that can perform In-context algorithm selection on linear
regression and classification tasks, where its output satisfies

|ŷ − yN+1| ≤ O(ϵ+ δ).

Remark 5.2. Algorithm selection is in fact part of in-context
learning according to our definition of ICL in Section 2. This
phenomenon doesn’t have to be limited to 2 training tasks as
in our theorem. A deeper implication of our theorem is its
potential to generalize from the 2-algorithm selection setting
to an n-algorithm selection setting. For n different tasks,
a transformer simply needs to learn n indication functions
Ii for each task i, and the final prediction in the inference
stage is

∑n
i=1 Ii · fi, where each fi is the neural network

which approximates the function corresponding to task i
that transformer learned.

We posit that the essence of In-Context Learning (ICL) lies
in algorithm selection. What distinguishes ICL from super-
vised learning is its unique capability to provide predictions
without necessitating any prior knowledge about the input
data. In ICL, the system autonomously determines the most
suitable algorithm based on the contextual information avail-
able, offering a versatile and adaptive approach to prediction
tasks.

6. Conclusion
We provide results on explaining transformers learning n-
layer neural networks through approximate gradient descent
and view in-context learning of a function as the process of
learning neural networks which approximate this function.
We also provide a theoretical guarantee for transformers to
implement in-context algorithm selection.

Our work shed some light on a comprehensive understand-
ing of in-context learning. In fact, our results suggest that
transformers can in-context learn any function classes that
can be approximated by neural networks. We also present
the resource required for a transformer to learn indicator
functions and smooth functions (in particular Cn functions),
showing 2-layer neural networks aren’t sufficient for in-
context learning due to the explosion of transformer size.
Also, the smoother the function is and the lower dimension
the input is the better deep neural networks perform in terms
of transformer resource cost. We believe our work brings a
new perspective to the understanding of in-context learning
and opens up new directions for empirical exploration of
in-context learning.
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A. Experiment
In Figure 1 and Figure 2, we show that a pretrained transformer can learn a quadratic function and a 3-layer neural network
without any parameter update. In the pretraining stage we set the learning rate of stochastic gradient descent to 3× 10−4 and
train for 100000 steps with batch size 32. In the inference stage we generate prompts (x, y)s according to the corresponding
function (quadratic function and 3 layer neural network in our case) with xs generated from a standard Gaussian distribution.

Model architecture Our experiment setup follows Garg et al. 2022. We train a transformer model (GPT-2 structure) with 12
layers, 8 attention heads and 256 hidden dimensions. Each transformer layer contains an attention layer and an MLP layer
as in Definition 2.1 and Definition 2.2.

Quadratic regression (Figure 1). We consider a d dimensional quadratic regression task with in-context examples of the
form z = (x, y) ∈ Rd × R, where xs are sampled i.i.d. from standard Gaussian distribution, and y = w⊤x⊙2, where
w ∼ N (0,Σ). We set dimension d = 20 in Figure 1.

3 layer neural network (Figure 2). We consider a 3 layer neural network task with in-context examples of the form z =
(x, y) ∈ Rd × R, where xs are sampled i.i.d. from standard Gaussian distribution, and y = W(3)(r(W(2)((r(W(1)x))))).
as in Definition 2.4, where Wij ∼ N (0,Σ), and we set the activation function r to be ReLU activation. We set the width of
each hidden layer to be K = 50, and the input dimension d = 20.

Figure 1. quadratic function Figure 2. 3 layer neural network

Experimental results Our results on the in-context learning ability of transformer is shown in Figure 1 and Figure 2. The
transformer learns quadratic function well as we can see from Figure 1 that the test loss goes to 0 as in-context example
increases and 3-Nearest Neighbors can’t solve quadratic regression. The transformer can also learn the 3-layer neural
network, where the test loss curve matches the gradient descent baseline, supporting our theoretical results.

B. In-context Learning of Neural Networks
We only provide the proof of Theorem 2 here because Theorem 1 is a special case of Theorem 2 thus we only provide the
proof of the more genral case. We provide Theorem 1 separately for two reasons: first it is the most simple and empirically
verified case (transformers can learn 2-layer neural networks in-context), second it is the initial condition for recursion of
the general case in terms of transformer layers.

First we need an approximation theorem of neural networks (Siegel & Xu 2020 corollary 1). We denote Σn
d (σ) =

{
∑n

i=1 βiσ(ωi · x+ bi) : ωi ∈ Rd, bi, βi ∈ R}. We also define Bs to be the space of functions f : Rd → R with bounded
Barron norm

∥f∥Bs =

∫
Rd

(1 + |ω|)s|f̂(ω)|dω.

Lemma 3.3 (NN approximation). Let Ω ⊂ Rd be a bounded domain. If the activation function σ ∈ Wm,∞(R) is non-zero
and there exists a ν ∈ Σn0

1 (σ) which satisfies the polynomial decay condition

|ν(k)(t)| ≤ Cp(1 + |t|)−p

10



In-context Learning on Function Classes Unveiled for Transformers

for 0 ≤ k ≤ m and some p > 1, we have

inf
fn∈Σn

d (σ)
∥f − fn∥Hm(Ω)

≤ |Ω| 12
√
n0C(p,m, dim(Ω), σ)n− 1

2 ∥f∥Bm+1

for any f ∈ Bm+1.

Proof. We first observe that ν ∈ Σn0
1 (σ) implies that

Σn
d (ν) ⊂ Σnn0

d (σ).

So we only need to prove that the result without the
√
n0 term holds for σ satisfying the polynomial decay condition itself.

The decay condition implies that σ ∈ L1(R) and thus the Fourier transform of σ is well-defined. Since σ ̸= 0, we have

0 ̸= σ̂(a) =
1

2π

∫
R
σ(ω · x+ b)e−ia(ω·x+b)db,

so we have

eiaω·x =
1

2πσ̂(a)

∫
R
σ(ω · x+ b)e−iabdb.

Thus

f(x) =

∫
Rd

eiωxf̂(ω)dω

=

∫
Rd

∫
R

1

2πσ̂(a)
σ(

ω

a
x+ a)f̂(ω)e−iabdbdω.

The above integral is on an unbounded domain, but the decay assumption on the Fourier transform of f allows us to
normalize the integral in the ω deriction. By the triangle inequality and the boundedness of x ∈ Ω, we have

|ω
a
· x+ b| ≥ max(0, |b| − R|ω|

|a|
).

where R is the maximum norm of an element of Ω. WLOG, we can translate Ω so that it contains the origin and
R ≤ diam(Ω). Combining this with the polynomial decay of ω implies that

|σ(k)(
ω

a
· x+ b)| ≤ Cp(1 + |ω

a
· x+ b|)−p

≤ Cp(1 + max(0, |b| − R|ω|
|a|

))−p.

Thus the function h defined by

h(b, ω) = (1 + max(0, |b| − R|ω|
|a|

))−p

provides an upper bound on σ(k)(ωa · x+ b) uniformly in x. Moreover, we calculate that∫
R
h(b, ω)db =

∫
|b|≤R|ω|

|a|

db+ 2

∫
b>

R|ω|
|a|

(1 + b− R|ω|
|a|

)−pdb

= 2R|a|−1|ω|+ 2[(1− p)−1 × (1 + b− R|ω|
|a|

)1−p]∞R|ω|
|a|

= 2R|a|−1|ω|+ 2

p− 1

≤ C1(p,diam(Ω), σ)(1 + |ω|).
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Combining the above with our assumption on the Fourier transform we get

I(p,Ω, σ, f) =

∫
Rd

∫
R
(1 + |ω|)mh(b, ω)|f̂(ω)|dbdω (1)

≤ C1(p,diam(Ω), σ)∥f∥Bm+1 . (2)

Now we use this to introduce a probability measure λ on Rd+1 given by

dλ =
1

I(p,Ω, σ, f)
(1 + |ω|)mh(b, ω)|f̂(ω)|dbdω,

using this we write
f(x) = Edλ(J(ω, b)e

iθ(ω,b)σ(
ω

a
x+ b)),

where
θ(ω, b) = θ(f̂(ω))− θ(σ̂(a))− ab

and
J(ω, b) = (2π|σ̂(a)|)−1I(p,Ω, σ, f)(1 + |ω|)−mh(b, ω)−1.

We denote the real part of eiθ(ω,b) as χ(ω, b) ∈ [−1, 1], then we have

f(x) = Edλ(J(ω, b)χ(ω, b)σ(
ω

a
x+ b)).

We denote f(x) = Edλ(fω,b(x)). Then we use Lemma 1 from Barron 1993 to conclude that for each n there exists an fn
which is a convex combination of at most n distinct fω,b, and thus fn ∈ Σn

d (σ), such that

∥f − fn∥Hm(Ω) ≤ Cn− 1
2 , (3)

where C = supω,b ∥fω,b∥Hm(Ω). Now, since Ω is bounded, it has finite measure, and we use Cauchy-Schwartz to get

∥fω,b∥Hm(Ω)∥ ≤ |Ω| 12 ∥fω,b∥Wm,∞(Ω),

so we only need to bound ∥Dα
xfω,b∥L∞(Ω) for each |α| ≤ m.

∥Dα
xfω,b∥L∞(Ω) ≤ ∥J(ω, b)Dα

xσ(a
−1ωx+ b)∥L∞(Ω)

≤ (2π|a|α| ˆσ(a)|−1I(p,Ω, σ, f)(1 + |ω|)−m)× ∥h(b, ω)−1Dα
xσ(a

−1ωx+ b)∥L∞(Ω).

Since |α| ≤ m,σ ∈ Wm,∞, we have

|Dα
xσ(a

−1ωx+ b)| ≤ |a|−|α|(1 + |ω|)mσ(|α|)(a−1ωx+ b).

So we get

∥Dα
xfω,b∥L∞(Ω) ≤ (2π|a|α|σ̂(a)|)−1I(p,Ω, σ, f)× ∥h(b, ω)−1σ(|α|)(a−1ωx+ b)∥L∞(Ω).

What’s more we have
∥h(b, ω)−1σ(|α|)(a−1ωx+ b)∥L∞(Ω) ≤ Cp.

So we obtain
sup
ω,b

∥fω,b∥Hm(Ω) ≤ |Ω| 12 (2π|σ̂(a)|)−1I(p,Ω, σ, f)Cp

∑
|α|≤m

|a|−|α|.

Finally using Equations (1) and (3) we get

inf
fn∈Σn

d (σ)
∥f − fn∥Hm(Ω) ≤ |Ω| 12

√
n0C(p,m, dim(Ω), σ)n− 1

2 ∥f∥Bm+1 .
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Now we are ready to give a proof of Theorem 2.
Theorem 2 (ICGD on n-layer NNs). Under Assumption 3.1 and Assumption 3.2, there exists a family of an-layer
transformers (with activation functions satisfying the general decay condition in Definition 2.3) such that for any input data
(D,xN+1) and any w, a transformer performs approximate gradient descent on the n-layer neural networks parameter w:

w+
η = ProjW (w − η(∇LN(w) + ϵ(w))) , ∥ϵ(w)∥2 ≤ ηϵ,

where an satisfies O(an) = O(n) +O(an−1). Furthermore, the upper bound for number of heads and hidden dimension
for the transformer is :

max
l∈[an]

M (l) ≤ O(nK2ϵ−2), max
l∈[an]

D(l) ≤ O(nK2ϵ−2),

where K denotes the maximum width of the neural networks: K = max{K0,K1, · · · ,Kn}.

Proof. We note that

∇wLN (w) =
1

N

N∑
i=1

∂1l(pred(xi;w), yi) · ∇wpred(xi;w), (4)

where ∂1l is the partial derivative of l with respect to the first component. Recall in Definition 2.4 we denoted vi,j to be the
j-th row of W(i). Then we have

∇vi,j
pred(x;w) =

Kn−1∑
k=1

ukr
′(vn−1,kr(W

(n−2)r(· · · )))∇vi,j
vn−1,kr(W

(n−2)r(· · · )).

for i ∈ [n− 1], j ∈ [Ki] and
∇uk

pred(x;w) = r(v⊤
n−1,kr(· · · )).

We’ll later show that it is this difference in gradient that mainly contributes to the growth of transformer layers required.

Now we use Lemma 3.3 to approximate the functions r(t), ∂1l(t, y) and s · r′(t). Note that in the following we denote
ωi · x+ bi as ⟨ai, [x; 1]⟩.

• The function r(t) is approximated by r̄(t) on [−R1, R1]:

r̄(t) =

M1∑
m=1

β1
mσ(

〈
a1m, [t; 1]

〉
) with M1 ≤ O(ϵ−2

r )

such that ∥r(t)− r̄(t)∥L∞([−R1,R1]) ≤ ϵr.

• The function (t, y) 7→ ∂1l(t, y) is approximated by g(t, y) on [−R2, R2]
2:

g(t, y) =

M2∑
m=1

β2
mσ(

〈
a2m, [t; y; 1]

〉
) with M2 ≤ O(ϵ−2

l )

such that ∥g(t, y)− ∂1l(t, y)∥L∞([−R2,R2]2) ≤ ϵl.

• The function (s, t) 7→ s · r′(t) is approximated by P (s, t) on [−R3, R3]
2:

P (s, t) =

M3∑
m=1

β3
mσ(

〈
a3m, [s; t; 1]

〉
) with M3 ≤ O(ϵ−2

p )

such that ∥P (s, t)− s · r′(t)∥L∞([−R2,R2]2) ≤ ϵp.

• The function (u, v) 7→ u · v is approximated by Q(u, v) on [−R4, R4]
2:

Q(u, v) =

M4∑
m=1

β4
mσ(

〈
a4m, [u; v; 1]

〉
) with M4 ≤ O(ϵ−2

q )

such that ∥Q(u, v)− u · v∥L∞([−R4,R4]2) ≤ ϵq .

13
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n− 2 attention only layers: In the first attention-only layer, the transformer maps

hi = [xi; yi;w;0; 1; ti] 7→ h
(1)
i = [xi; yi;w;W(2)(r̄(W(1)x));0; 1; ti],

in the second attention-only layer, the transformer maps

h
(1)
i 7→ h

(2)
i ,

where
h
(1)
i = [xi; yi;w;W(2)(r̄(W(1)x));0; 1; ti],

and
h
(2)
i = [xi; yi;w;W(3)(r̄(W(2)(r̄(W(1)x))));0; 1; ti].

In the p-th layer, the transformer maps
h
(p−1)
i 7→ h

(p)
i ,

where
h
(p−1)
i = [xi; yi;w;W(2)(r̄(W(1)x)); · · · ;W(p)(r̄(W(p−1) · · · r̄(W(1)x)));0; 1; ti],

and
h
(p)
i = [xi; yi;w;W(2)(r̄(W(1)x)); · · · ;W(p+1)(r̄(W(p) · · · r̄(W(1)x)));0; 1; ti].

We then prove why a transformer can achieve this mapping by taking the p-th layer as an example.

We denote the k-th element of W(p)(r̄(W(p−1) · · · r̄(W(1)x))) as predp,k(x). Consider the matrices

{Q(p)
k′,k,m,K

(p)
k′,k,m,V

(p)
k′,k,m}k′∈[Kp+1],k∈[Kp],m∈[M1] so that for all i, j ∈ N + 1, we have

Q
(p)
k′,k,mhi =

a1m[1] · predp,k(xi)
a1m[2]
0

 , K
(p)
k′,k,mhj =

11
0

 , V
(p)
k′,k,mhj = β1

m · vp+1,k′ [k]eDk′ .

Here Dk′ denotes the place in the column vector h(p)
i where the sum below is stored. Then we compute the update on the

column h
(p−1)
i :

∑
m∈[M1],k∈[Kp],k′∈[Kp+1]

σ(
〈
Q

(p)
k′,k,mhi,K

(p)
k′,k,mhj

〉
)V

(p)
k′,k,mhj =

Kp+1∑
k′=1

Kp∑
k=1

vp+1,k′ [k]r̄(predp,k(x)) · eDk′

 .

This is exactly W(p+1)(r̄(W(p) · · · r̄(W(1)xi))).

The Attention sub-layer of the n− 1th layer: The n− 1-th attention sub-layer follows the protocol of the mapping of the
previous layers.Thus after the n− 1-th attention sub-layer, we have predn(xi;w) stored in the output column h

(n−1.5)
i .

Now we calculate |predn(xi)− predn(xi)|. We first consider:

r(W(2)(r(W(1)x)))− r(W(2)(r(W(1)x))).

Its first element is r(v2,1r(W
(1)x))− r(v2,1r(W

(1)x)), we have

|r(v2,1r(W
(1)x))− r(v2,1r(W

(1)x))| ≤ |r(v2,1r(W
(1)x))− r(v2,1r(W

(1)x))|
+ |r(v2,1r(W

(1)x))− r(v2,1r(W
(1)x))|

≤ ϵr +K1Lrm2,1ϵr,

where Lr = max |r′(t)|, m2,1 is the element with the largest absolute value in v2,1. We denote K :=
max{K0, · · · ,Kn},m := maxi∈[n],j∈Ki

mi,j , and L := mKLr, then by induction we get

|predn(xi)− predn(xi)| ≤
Ln−1 − 1

L− 1
mKϵr.

14
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To clarify, the n here is the depth of the neural network, not the transformer layer.

The MLP sub-layer of the n− 1-th layer: In this feed forward layer we pick matrices W1,W2 such that W1 maps

W1h
(n−1.5)
i = [a2m[1] · pred(xi;w) + a2m[2] · y′i + a2m[3]−R2(1− ti)]m∈[M2],

and the entries of W2 are (W2)(j,m) = β2
m1{j = D0}, where D0 is the place in h

(n−1.5)
i right next to

W(n)(r̄(W(n−1) · · · r̄(W(1)x))). So

W2σ(W1h
(n−1.5)
i ) =

∑
m∈[M3]

σ(
〈
β2
m, [pred(x;w); y′i; 1]

〉
−R2(1− tj)) · β2

meD0

= 1{tj = 1} · g(pred(xi;w), y′i) · eD0
.

So if we abbreviate gi = 1{tj = 1} · g(pred(xi;w), y′i), we get the output of this sub-layer is

h
(n−1)
i = [xi; yi;w;W(2)(r̄(W(1)x)); · · · ;W(n)(r̄(W(n−1) · · · r̄(W(1)x))); gi;0; 1; ti].

|gi − ∂1l(pred(xi;w), yi)| ≤ |g(pred(xi;w), yi)− ∂1l(pred(xi;w), yi)|+ |∂1l(pred(xi;w), yi)− ∂1l(pred(xi;w), yi)|

≤ ϵl +
Ln−1 − 1

L− 1
mKLlϵr

≤ ϵl +
Ll

Lr
Ln−1ϵr.

where Ll = max(t,y)∈[−R2,R2]2 |∂2
ttl(t, y)|.

Other layers to compute the approximate gradient: Now, we look at the gradient of the neural networks again:

∇vi′,j′ pred(x;w) =

Kn∑
k=1

ukr
′(vr

n−1,k(W
(n−2)r(· · · )))∇vi′,j′vn−1,kr(W

(n−2)r(· · · ))

for i′ ∈ [n− 1], j′ ∈ [Ki] and
∇uk

pred(x;w) = r(vn−1,kr(· · · )).

We observe that the term ∇vi′,j′vn−1,kr(W
(n−2)r(· · · )) is in fact the gradient of an n − 1 layer neural network, and

a transformer needs an−1 layers to compute and store these gradients for all i′ ∈ [n − 1], j′ ∈ [Ki′ ]. After these an−1

layers, the approximate gradients are already stored in the hidden space of hi, and we denote the approximation of
∇vi′,j′vn−1,kr(W

(n−2)r(· · · )) as s(n−1)
i′,j′ . Now consider the matrices {Qk,m,Kk,m,Vk,m}k∈[Kn],m∈[M3] so that for all

i, j ∈ [N + 1] we have

Qk,mhi =


a3m[1]

a3m[2] · predn−1,k(xi;w)
a3m[3]
0

 , Kk,mhj =


s
(n−1)
i′,j′

1
1
0

 , Vk,mhj = β3
m · ukeDi′,j′ .

Here Di′,j′ denotes the place where we store the gradient of vi′,j′ . A simple calculation yields

∑
m∈[M1],k∈[Kn]

σ(⟨Qk,mhi,Kk,mhj⟩)Vk,mhj =

Kn∑
k=1

ukP (s
(n−1)
i′,j′ , predn−1,k(xi;w)) · eDi′,j′ ,

which approximates ∇vi′,j′ pred(xi;w).

Now that all the terms that approximate ∇vi,j
pred(xi;w) are stored in the hidden space in a consecutive way, then they

automatically form the approximation of ∇wpred(xi;w), we denote the approximation as bi, we simply need another
attention layer to compute the gradient of loss function.
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Consider the matrices {Qk,m,Kk,m,Vk,m}m∈[M4],k∈[
∑n

i=1 Ki] so that for all i, j ∈ [N + 1] we have

Qmhi =

a4m[1]
a4m[2]
0

 , Kmhj =

 gj
bj [k]
0

 , Vmhj = − (N + 1)ηβ4
m

N
· eDk

.

Now we get

g(w) :=
1

N + 1

N+1∑
j=1

∑
(k,m)

σ(⟨Qk,mhi,Kk,mhj⟩)Vk,mhj

= − η

N

N+1∑
j=1

∑n
i=1 Ki∑
k=1

Q(gj ,bj [k]) · eDk

= − η

N

N+1∑
j=1

approximate(∂1l(pred(xj;w), yj)) · approximate(∇wpred(xj;w)).

Thus η−1g(w) approximates ∇L̂N (w), and requiring ∥η−1g(w)+∇L̂N (w)∥2 ≤ ϵ yields the upper bound for the number
of heads: O(nK2ϵ−2) and hidden dimension: O(nK2ϵ−2).

Total number of layers: From the analysis above, the total number of transformer layers required is O(an) = O(an−1) +
O(n), and it is straightforward to check that an is of order O(n2). This completes the proof.

Corollary 3.7 (multi-step ICGD on n-layer NNs). For l ≥ 1, suppose ∇LN (w) is M -Lipschitz on W and LN (w) is
strongly convex with modulus m. Then under Assumption 3.1 and Assumption 3.2, the (lan)-layer transformers in Theorem 2
approximates gradient descent and the output satisfies:

∥ŵl −wTrue∥2 ≤ (M−1(1 + ηM)l + (1− η
2Mm

M +m
)

l
2 )ϵ,

where ŵl is the output of the transformer, wTrue is the true value of the neural networks parameter.

Proof. we have
∥ŵl −wTrue∥2 ≤ ∥ŵl −wl

GD∥2 + ∥wl
GD −wTrue∥2.

Now we bound the two terms separately.

Let C = 1 + ηM . We prove by induction that

∥ŵl −wl
GD∥2 ≤ Cl − 1

C − 1
· ηϵ.

for all l ≥ 0. l = 0 follows by setting ŵ0 = w0
GD = w0. Suppose the result holds for l. Then for l + 1 we have

∥ŵ(l+1) −w
(l+1)
GD ∥2 ≤ ∥ŵl − η(∇f(ŵl)− ϵl)− (wl

GD − η∇f(wl
GD))∥2 ≤ C∥ŵ −wl

GD∥2 + ηϵ ≤ Cl+1 − 1

C − 1
ηϵ.

Thus we get

∥ŵl+1 −wl+1
GD∥2 ≤ Cl

1 + ηM − 1
· ηϵ = M−1(1 + ηM)lϵ. (5)

For the second term, let c = 1− 2Mmη

M +m
and w∗ = wTrue. Due to the iteration of gradient descent, we have

∥wl+1
GD −w∗∥22 = ∥wl

GD −w∗∥22 − 2η∇L(wl
GD)(w

l
GD −w∗) + η2∥∇L(wl

GD)∥22.

Here we use the inequality

∇L(wl
GD) · (wl

GD −w∗) = (∇L(wl
GD)−∇L(w∗)) · (wl

GD −w∗) ≥
Mm

M +m
∥wl

GD −w∗∥22 +
1

M +m
∥∇L(wl

GD)∥22.
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It then follows that

∥wl
GD −w∗∥22 ≤ (1− 2Mmη

M +m
)∥wl−1

GD −w∗∥22 − (
2η

M +m
− η2)∥∇L(wl

GD)∥22 (6)

≤ c∥wl−1
GD −w∗∥22 (7)

when η is small enough. Combining Equation (5) and Equation (6) immediately yields the result.

C. In-context Learning of Function Classes
We provide the proof of theorems in Section 4 here.

Theorem 3. For any given ϵ > 0, let f(x) = 1(∥Ax + b∥ ≤ r) be the indicator of unit ball. There exists a cL-layer
transformer with

max
l∈[cL]

M (l) ≤ O(
1

δϵ2
), max

l∈[cL]
D(l) ≤ O(

1

δϵ2
),

where c is a constant, such that it performs approximate gradient descent on a 3-layer, O(δ−1/2)-wide neural network
which δ-approximates f(x): the l-th layer’s output is h(cl)

i = [xi; y
′
i; ŵ

l;0; 1; ti] for i ∈ [N + 1], and

ŵ(l) = ProjW(ŵ(l−1) − η(∇LN(ŵ
(l−1)) + ϵ(ŵ(l−1)))),

where ∥ϵ(w)∥2 ≤ ϵ. Moreover, the prediction of the transformer ŷN+1 satisfies

|ŷN+1 − yN+1| ≤ O(ϵ+ δ).

Proof. By Lemma 4.2, there exists a 3-layer neural network with width O(δ−1/2) that δ-approximates f(x). By Theorem 2
we know that for a transformer to learn an n-layer, K-width neural network, the upper bound for the number of heads and
hidden layer is

max
l∈[an]

M (l) ≤ O(nK2ϵ−2), max
l∈[an]

D(l) ≤ O(nK2ϵ−2).

Thus an an layer transformer of the size above can perform one step of approximate gradient decent on the neural network
parameter. Notice that an = O(n2), letting n = 3 and K = O(δ−1/2) immediately yields:

max
l∈[cL]

M (l) ≤ O(δ−1ϵ−2), max
l∈[cL]

D(l) ≤ O(δ−1ϵ−2),

where c = O(9) is a constant. Also, by Corollary 3.7 we have for proper L |ŷN+1 − yNN| ≤ O(ϵ) (see remark), and we
know that yNN δ-approximates yN+1, thus we get

|ŷN+1 − yN+1| ≤ O(ϵ+ δ),

this completes the proof.

Theorem 4. Let f(x) = ⟨w,x⟩ be a linear function. There exists a 2L-layer transformer with

max
l∈[2L]

M (l) ≤ O(ϵ−2), max
l∈[2L]

D(l) ≤ O(ϵ−2),

such that it performs approximate gradient descent on a 2-layer, width 2 neural network which equals f(x): the l-th layer’s
output is h(2l)

i = [xi; y
′
i; ŵ

l;0; 1; ti] for i ∈ [N + 1], and

ŵ(l) = ProjW(ŵ(l−1) − η(∇LN(ŵ
(l−1)) + ϵ(ŵ(l−1)))),

where ∥ϵ(w)∥2 ≤ ϵ. Moreover, the prediction of the transformer ŷN+1 satisfies

|ŷN+1 − yN+1| ≤ O(ϵ).
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Proof. Since ⟨w,x⟩ = σ(w⊤x)− σ(−w⊤x)

2
, we know that a 2-layer, width d neural network exactly represents the linear

function f(x), so the transformer only needs to learn the neural network in-context. By Theorem 1 we know that for a
transformer to learn the 2-layer network, the upper bound for the number of heads and hidden layer is

max
l∈[2L]

M (l) ≤ O(ϵ−2), max
l∈[2L]

D(l) ≤ O(nK2ϵ−2).

Thus a 2 layer transformer of the size above can perform one step of approximate gradient decent on the neural network
parameter.

Also, by Corollary 3.7 we have for proper L |ŷN+1 − yNN| ≤ O(ϵ) (see remark), and we know that yNN equals yN+1, thus
we get

|ŷN+1 − yN+1| ≤ O(ϵ),

this completes the proof.

Theorem 5. For any d and n > 2, let f ∈ Wn,∞([0, 1]d). Choose any ϵ > 0, there exists a O(ln2(1/δ)L)-layer (kδL-layer)
transformer with

max
l∈[kδL]

M (l) ≤ O(
1

δ2d/nϵ2
), max

l∈[kδL]
D(l) ≤ O(

1

δ2d/nϵ2
)

such that it performs approximate gradient descent on a c(ln(1/δ) + 1)-layer, δ−d/n-wide neural network which δ-
approximates f(x): the l-th layer’s output is h(2l)

i = [xi; y
′
i; ŵ

l;0; 1; ti] for i ∈ [N + 1], and

ŵ(l) = ProjW(ŵ(l−1) − η(∇LN(ŵ
(l−1)) + ϵ(ŵ(l−1)))),

where ∥ϵ(w)∥2 ≤ ϵ. Moreover, the prediction of the transformer ŷN+1 satisfies

|ŷN+1 − yN+1| ≤ O(ϵ+ δ).

Proof. By Lemma 4.4, there exists a c(ln(1/δ) + 1)-layer neural network with width O(δ−d/n) that δ-approximates f(x).
By Theorem 2 we know that for a transformer to learn an n-layer, K-width neural network, the upper bound for the number
of heads and hidden layer is

max
l∈[an]

M (l) ≤ O(nK2ϵ−2), max
l∈[an]

D(l) ≤ O(nK2ϵ−2).

Thus an an layer transformer of the size above can perform one step of approximate gradient decent on the neural network
parameter. Notice that an = O(n2), letting n = c(ln(1/δ) + 1) and K = O(δ−d/n) immediately yields:

max
l∈[kδL]

M (l) ≤ O(δ−2d/nϵ−2), max
l∈[kδL]

D(l) ≤ O(δ−2d/nϵ−2),

where kdelta = c2(ln(1/δ) + 1)2. Also, by Corollary 3.7 we have for proper L, |ŷN+1 − yNN| ≤ O(ϵ) (see remark), and
we know that yNN δ-approximates yN+1, thus we get

|ŷN+1 − yN+1| ≤ O(ϵ+ δ),

this completes the proof.

Of course, linear function is a special case of the smooth function, but the result in linear function is more ’accurate’ in
the sense that the upper bound for number of heads, hidden layer and the prediction error is tighter than the result in
smooth function, and we want to separate them since linear function is an especially important function class in the realm of
supervised learning.
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D. In-context Algorithm Selection
Lemma 5.1 (Indicator function). An attention layer with 6 heads can implement the indicator function Icls of the form

Icls(D) =
1

N

N∑
i=1

I(yi),

where

I(y) =


1 y ∈ {0, 1}
0 y ∈ [−ϵ, ϵ] ∪ [1− ϵ, 1 + ϵ]

linear interpolation otherwise
.

The proof of this lemma follow Bai et al. 2024.

Proof. We first notice that

I(y) = σ(
y + ϵ

ϵ
)− 2σ(

y

ϵ
) + σ(

y − ϵ

ϵ
) + σ(

y − (1− ϵ)

ϵ
)− 2σ(

y − 1

ϵ
) + σ(

y − (1 + ϵ)

ϵ
)

:=

6∑
m=1

amσ(bmy + cm).

We can construnct an attention layer with parameters θ = {(Qm,Km,Vm)}6m=1 with 6 heads such that

Qmhi = [bm; cm;0D−2], Kmhj = [yj ; 1;0D−2], Vmhj = [
N + 1

N
am · tj ;0D−1],

then for every i ∈ [N + 1] we have

6∑
m=1

1

N + 1

∑
j∈[N+1]

σ(⟨Qmhi,Kmhj⟩)[Vmhj ]1

=
1

N

N∑
j=1

I(y) = Icls(D).

This completes the proof.

Theorem 6. Given ϵ > 0, δ > 0, there exists a (c+ 2)L+ 1-layer transformer (the constant c is stated in Theorem 3) with

max
l∈[(c+2)L]

M (l) ≤ O(
1

δϵ2
), max

l∈[(c+2)L]
D(l) ≤ O(

1

δϵ2
)

that can perform In-context algorithm selection on linear regression and classification tasks, where its output satisfies

|ŷ − yN+1| ≤ O(ϵ+ δ).

Proof. In the pretraining stage, the transformer already learned a 2-layer NN to represent the linear function ⟨w,x⟩, and
a 3-layer NN to approximate the classification function sign(⟨w,x⟩). We know that by Theorem 4 and Theorem 3 (set
A = w⊤,b = 0, r = 0), we have two transformers with

max
l∈[cL]

≤ O(δ−1ϵ−2), max
l∈[cL]

D(l) ≤ O(δ−1ϵ−2)

max
l∈[2L]

M (l) ≤ O(ϵ−2), max
l∈2L

D(l) ≤ O(ϵ−2)
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that outputs prediction ŷcls and ŷlr respectively. What’s more ,

|ŷcls − yclsN+1| ≤ O(ϵ+ δ),

|ŷls − ylsN+1| ≤ O(ϵ),

where yN+1 represents the real value of y corresponding to xN+1.

These two transformers can be joined into a single transformer by adding the 2 layers of the second transformer below the
first c-layer transformer. The c+ 2 layers together implements one step of approximate gradient descent on both tasks. Now
we join the parameters of the two transformers to get a transformer that outputs

ŷ = Iclsŷcls + (1− Icls)ŷlr.

The number of heads and hidden dimension of the transformer satisfies

max
l∈[(c+2)L]

≤ O(δ−1ϵ−2), max
l∈[(c+2)L]

D(l) ≤ O(δ−1ϵ−2).

We assume for linear regression, the data generated is not concentrated around {0, 1}. Then the indicator function is either
1 or 0. This yields that the final prediction of the transformer ŷ can O(ϵ + δ)-approximate yN+1, which completes the
proof.
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