Under review as a conference paper at ICLR 2019

PoLICY OPTIMIZATION VIA STOCHASTIC RECURSIVE
GRADIENT ALGORITHM

Anonymous authors
Paper under double-blind review

ABSTRACT

In this paper, we propose the StochAstic Recursive grAdient Policy Optimiza-
tion (SARAPO) algorithm which is a novel variance reduction method on Trust
Region Policy Optimization (TRPO). The algorithm incorporates the StochAstic
Recursive grAdient algoritHm(SARAH) into the TRPO framework. Compared
with the existing Stochastic Variance Reduced Policy Optimization (SVRPO), our
algorithm is more stable in the variance. Furthermore, by theoretical analysis the
ordinary differential equation and the stochastic differential equation (ODE/SDE)
of SARAH, we analyze its convergence property and stability. Our experiments
demonstrate its performance on a variety of benchmark tasks. We show that our
algorithm gets better improvement in each iteration and matches or even outper-
forms SVRPO and TRPO.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton et al., [1998) is a dynamic learning approach to interact with
the environment and make actions so certain measure of cumulative rewards is maximized. It
achieves remarkable performance in several tasks including continuous control, video games, etc.
Among all existing RL algorithms, policy gradient (Sutton et al., [1999) is the most fundamental
method for RL.

However, policy gradient suffers from sample inefficiency and high variance during the train-
ing phase. We could use reward shaping techniques such as, REINFORCE(Williams, {1992),
GAE(Schulman et al., 2015b), etc., as an variance reduction. Besides, trust region policy opti-
mization (TRPO) was proposed by (Schulman et al., [2015a)) to remedy this problem. It merges the
trust region method (Nocedal & Wright, 2006) and the natural gradient theory (Amari, |1998) into
the policy gradient framework. The basic idea is to make the policy move toward the direction that
improves mean episode rewards under the constraint of the Kullback-Leibler (KL) divergence with
the old policy distribution.

Compared to traditional gradient descent which corresponds to the L? constraint, constraints that
uses KL distance has been widely adopted as an alternative choice. The KL constraint results a
natural gradient update firstly proposed by |Amari (1998). Later |Kakade| (2001) merges the natu-
ral gradient into the policy gradient (See [Martens| (2014) for further extensions). Natural gradient
attempts to solve the problem of vanishing gradients in the so-called plateau areas. TRPO which
strictly constrain the KL distance achieves a more robust performance on continuous control tasks.

Policy gradient optimization method shares similar structure with traditional optimization thus can
be powerfully augmented by variance reduced gradient methods. For example, SVRG (Johnson
& Zhang, 2013)) is a kind of stochastic variance reduced method that overcomes the fallback of
SGD of large variance and potentially accelerates the RL training. Previous works use SVRG to
accelerate policy gradient (SVRPG) and its TRPO variants (SVRPO) (Xu et al., 2017} |Papini et al.,
2018). The variance reduced version of policy gradient allows a multi-step optimization for each
batch of data, while the vanilla policy gradient optimizes the policy once each iteration. In theory,
SVRG accommodates with larger stepsize for each iteration and observably outperforms traditional
PG and TRPO, respectively. Furthermore, the introduction of stochastic variance reduction not only
improves sample efficiency but also stabilizes the training process by reducing the variance and
accommodate larger stepsize.

Under review as a conference paper at ICLR 2019

In this paper, we focus on studying variance reduction method on TRPO. We discussed an alterna-
tive variance reduction method called SARAH, recently proposed by (Nguyen et al., 2017) whose
convergence rate matches that of SVRG in the convex case and has the inner-loop convergence
property that SVRG does not possess. We propose a new algorithm named SARAPO which hybrids
the SARAH method with TRPO and analyze the dynamics of SVRG/SARAH on natural gradient
updates via its approximating ordinary and stochastic differential equation (ODE/SDE).

In experiments, we test the performance and sample efficiency of SARAPO, SVRPO, and TRPO. To
allow larger steps in SVRPO/SARAPO, we remove the KL constraint in the line search of TRPO.
We verify that variance reduction enables a larger leap towards the optima and find that SARAPO
outperforms TRPO and matches the performance of SVRPO in most of the tasks.

The rest of this paper is organized as the following: we introduce some background, propose and
analyze our algorithm in Section 2. In Section 3, we theoretically analyze our proposed SARAPO
algorithm from a dynamical system viewpoint. We present the numerical results of experiments in
Section 4 and conclude our paper in Section 5.

2 PRELIMINARIES AND METHODOLOGY

The reinforcement learning task can be considered as solving a discrete time Markov Decision
Process (MDP) M = {S, A,P,R,v,p}, where S is the set of states, 4 is the set of actions,
R : S x A — Ris the reward function, ~ is the discount factor and p the initial state distribu-
tion. The policy gradient method take steps by directly maximizing the expected sum of discounted
rewards:

L(my) =En, [Z vtn(st,ao]

t=0

with respect to the parameters w of the stochastic policy 7, (a|s). The gradient of the objective
function V,, L is given by:

Vol(w)=E;,

va 10gﬁ<at|5t)Qﬁ(3taat)1 s (D

t=0

where Q™ is the state-action function (i.e., the Q function) defined as the expected return when taking
action a; from state s;. The expectatioin is calculated by Monte-Carlo simulation by sampling n
timesteps {s¢, at, 1+ }7—; of policy my,.

2.1 TRUST REGION POLICY GRADIENT

As the policy gradient is highly unstable and sample inefficient, TRPO introduces the trust region
method to policy gradient to limit how far the new policy is deviated from the old policy. Instead
of the L2 norm in trust region method, TRPO takes KL as the measure of distance. Furthermore,
to make computation easy, the algorithm turns the KL constraint problem into a penalized problem.
TRPO optimizes the surrogate loss at every iteration:

mw(als)
T, (a]S)

max Ly, (w)=E ATvoia(s,a) | — BD L (Tw,s Tw))

W Tword

At every iteration, TRPO takes an update of:
Wi = wy + e F oy (3)
where v; = V,, L and F' is the Fisher Information Matrix (FIM)
F = Eq oupi, [Vlogmy,(als) - Viog m,(als)T].

The initial step size 7 is calculated by limiting the KL distance within the range 9:

m = \/2(5/(?],5F_11}t) (4)

Under review as a conference paper at ICLR 2019

Algorithm 1 SARAPO

Initialization:
Initialize wy = wy to be a randomized parameter.
fort =1toT do
if t%m == 0 then
Set w = Wt
Run policy 7, for N timesteps. Store a batch of trajectories D. Calculate the baseline
gradients:

B 1
Vg = ﬁ Z VL, (w)

z€D

else
Draw a mini-batch D; of size M from D
Calculate the estimated gradient wy:

- - 1
V¢ = V-1 + @ Z (VLz(wt) — VLI(’U}tfl))

z€Dy
end if
Update policy parameter with Algorithm 2]
end for

Ensure: w + w7’

2.2 SARAH AND SVRG FOR NATURAL GRADIENT

SARAH (Nguyen et al.| 2017) and SVRG (Johnson & Zhang, 2013) are among the recently popu-
larized variance reduced gradient algorithms in optimization. They reduce the variance during the
optimization process and achieve a faster convergence rate. Instead of calculating the full gradient
VL.

Recall that SVRG calculate a mini batch of size m in each inner loop, and it updates the weights as
follows:

V41 = v+ vam (wf) - vam(ﬁ))
Wepr = wy — NF v

where v and w stores the full gradient and weight parameters as the output of the previous loop, and
L,, is the objective function estimated using m samples. Here the update rule of w, involves the
inverse of the Fisher information matrix as in TRPO, which is computed via CG method. Also, v;
provides an unbiased estimation of the true gradient while the variance is much reduced when w; is
close to w

SARAH, on the other hand, estimates each gradients using a recursive gradient update rule. It
adds the gradient estimated one step before v; by the difference of gradients between the current
parameter and the previous parameter V., L, (w;) — V. Ly, (wi—1) estimated over a mini batch.
The core update rule is as follows:

Vt+1 = V¢ + VwLm(wt) - vam(wt—l)
Wir1 = wy — NF g

In SARAH, the algorithm exchanges unbiasedness of the gradient with a much reduced variance of
such. We will analyze the iteration in Section 3.

2.3 STOCHASTIC GRADIENT RECURSIVE POLICY OPTIMIZATION

Our goal in this section is to combine the SARAH with TRPO for natural gradient and formally
propose the SARAPO algorithm. The details of calculating the estimated gradients are listed in
Algorithm[I] There, we use @ to denote the old policy parameters saved at the beginning of each
outer loop. After calculating the estimate of the gradient, we conduct a TRPO step. We note that as
the Fisher Information Matrix can be approximated by Hessian matrix of the KL divergence when

Under review as a conference paper at ICLR 2019

Algorithm 2 Inner loop details

Estimate the Fisher Information Matrix F' = ﬁﬁ(wwt (118n), T (1] $n)) 1w,
Update policy parameter with mini-batch /;:

Wi41 < Wt + mﬁ_l(wt) . ﬁt.

where the F‘l(wt) - ¢ is computed using the conjugate gradient method
Initialize 1), according to equation [4]
Line-search n;,1;/2,1;/4, - -- for improving L (7w)

the current distribution exactly matches that of the base distribution. As a consequence, we should
use the second derivative of the KL distance between the current parameters and the parameters one

step before to estimate F', which is to penalize the KL between each inner loop updates, instead of
the outer loop updates in TRPO. The Fisher information matrix is only estimated using a mini batch
of the data. And the inverse Fisher vector product is calculated by the conjugate gradients algorithm.

Different from the line-search process in TRPO, we do line-search only to find the stepsize n that
can improve the policy loss. Due to the fact that the variance is reduced, we can take a larger step
away. So we remove the KL condition in the line-search and let the algorithm to find the KL distance
of the outer loop updates itself. Detailed description is in Sec[d}

3 THEORY OF DYNAMICAL SYSTEMS

Recall that the core inner-loop update rule of Stochastic Recursive Gradient Method (SARAH)
(Nguyen et al., 2017) is, assuming the minibatch size is 1,

V41 =Vt + VLit+1 (’U}t) - VLit+1 (wt_l),
W41 =W¢ — NU41-

Here we provide a simple alternative viewpoint of (random) dynamical systems. The method of
using dynamical systems and continuous-time framework have been adopted to characterize variants
of gradient descent algorithms (Su et al., 2016} [Li et al.| [2017), but to our best knowledge, it has
never been used to analyze variance reduced gradient methods before this work.

As we could see from Algorithm[I] we applied a scaled-form of SARAH in combination with Trust
Region Policy Optimization by the inverse Fisher Information matrix F~!. Seeing this, the inner
loop update has the essential form of

V41 =0t + VLiHl (wt) — VLi,Jrl (wt_l),)

-1

Wil =wy — NFT vy
For simplicity of analysis, we consider the quadratic approximation approach. Let the quadratic
objective function L(w) := = > | L;(w), with

1

We sketch the analysis using ODE and SDE, in order to better understand the dynamics.

3.1 ODE ANALYSIS

1

By rescaling the time ¢ = 1" s according to the stepsize 7, we define a new process

V(s) = vy and X(s) = wpy .

Then the newly defined process is converted from equation [5|and has the form
V(s +n) =V(s) + VL, (X(s)) = VL, (X(s —n))
=V(s)+ HX(s) — HX (s — 1) + nestn,

Under review as a conference paper at ICLR 2019

where e, is a martingale difference noise term of O(1), and
X(s+1) =X(s) —nF V(s +1n).
Substituting X (s) — X (s — n) with —nF~1V (s), we derive the update rule for V(s)
N (V(s+n) = V(s)) = —HF 'V (s) + €spy.

From the standard weak convergence theory, one easily conclude the following:

Theorem 1 Whenn — 07, the scaled SARAH update rule (5)) can be approximated by the following
ODE system

d -1
d -1

(6)

Note in (@) the dynamics of V (s) forms an autonomous ODE, which is independent of the dynamics
of X (s).
Left multiplying both sides of the first line of equation E]by F~1, one obtains
d
d—(F*V(s)) = -F 'H(F'V(s)).
s

Noticing V' (0) = H X, we can easily verify that the V() can be solved as
V(s)=F(F'V(s)) = Fexp(—s- F"'"H)F"'"HXo = Hexp(—s- F"'H)Xo. (7)

By combining V'(s)’s solution with the update rule for X (s), we have
d
ds

and has the expressed solution

X(s) =X — (I —exp(—s- F~1H))X,.

X(s) = —exp(—s- F'H)F 'HX,,

As a result, we reach the following solution to (6)):
X (s) = exp(—s- F~'H)Xo. (8)

From (7) and (8), both the vectors X (s) and V'(s) exponentially decays with rate matrix F'~'H
which is consistent with the theory of natural gradient ascent (Kakade} 2001).

3.2 SDE ANALYSIS

The ODE analysis simply neglects the effect of noise. Here we turns to develop a stochastic differ-
ential equation approximation tool to exploit the effect of noise. Denote H; = H + E;, H being
the Hessian for L(w). Further assume that the noise term F; is adiag(x!, ..., x?) where x' are
i.i.d. standard normal, for simplicity.

Define the coordinate-wise product of two vectors (x1,...,74)" ® (y1,...,yq) =
(T1y1, - zaya) . Let W(s) = (Wy(s),...,Wy(s))" be a d-dimensional standard Wiener pro-
cesses. Then under standard assumptions, the inner loop has an update rule for V'(s) which can be

written as
V(s+n)=V(s)=—nHF 'V (s) —no x e (F~'V(s))
= —nHF 'V (s) = n'%c (W(s +n) = W(s)) o (F'V(s)).
Asn — 07, it becomes a SDE system

%V(s) = —HF'V(s) —n'%0 ((ZW(S)) o (F7V(5)),

Under review as a conference paper at ICLR 2019

which can be simplified as
dV(s) = —HF 'V (s)ds — n*/2c(F~'V (s)) e dW (s).)

From the above analysis, one can verify that the approximating SDE in (9) introduces a small (size
of 0(771/ 2)) noise deviation from its ODE curve, and hence enjoys similar property as the natural
gradient descent update. In the case where H is convex, the dynamics validates the property of inner-
loop convergence in (Nguyen et al.,[2017) [Theorem la & 1b], and hence the multi-loop geometric
convergence [Theorem 2]. The per-step cost, however, turns to be evaluations of two individual
gradients instead of the whole-batched gradients.

Remark 1 One may also conduct a similar analysis for SVRG and conclude the same approximat-
ing ODE for scaled SVRG. The approximating SDE, nevertheless, shall differ by an extra noise
term that is proportional to the distance between the current iterate and the control point. This
well-explains the inner-loop convergence and stability properties that SARAH enjoy upon SVRG.

4 EXPERIMENTS

In this section, we design a set of experiments to investigate the following questions:
e Does the performance of SARAPO matches the performance of SVRPO or even better?
Which algorithm trains faster and achieves better mean episode reward?
e What happens in the inner loop? Does the variance reduction methods reaches a better
optimum than gradient descent?
e What is the actual KL divergence between the updated policy and the old policy?

Our implementation is based on the modular_ri. We choose the commonly used MuJoCo (Todorov
et al., |2012) environment on several tasks: Swimmer, Half-Cheetah, Walker, and Hopper, and we
also test the algorithms on two classic continuous control tasks: Pendulum and CartPole. We com-
pare our implementation of SARAPO with SVRPO and the original TRPO. The result is shown in

Figure[]
4.1 EXPERIMENTAL SETTINGS

We follow the settings of [Xu et al.|(2017) and [Schulman et al.| (2015a)) to fix part of our parameters.
We set the number of steps per iteration to be 50000 and the discount factor to be 0.995. We use a
gaussian policy with a diagonal covariance matrix, whose mean is parameterized by a multi-layer
perceptron (MLP). For all tasks, we use two hidden layers of size (64,64) with tanh activation
function. We fine-tuned other parameters as follows: minibatch size chosen in {1000, 5000}, the
number of inner loop iteration in {20, 50}, inner loop max Kullback-Leibler divergence being in
[0.005,0.01], and the Conjugate Gradient damping factor is 0.1. We list the detailed parameters of
each experiment in the Appendix.

For comparing fairly, we chose five different random seeds and plotted our result as the average of
the five runs. As the number of the outer loop iteration is fixed, the z-axis is proportional to the
number of samples we have drawn and the curve corresponds to the sample efficiency.

4.2 COMPARISON BETWEEN SARAPO, SVRPO AND TRPO

In Figure [T, we compared the learning curve of three algorithms which are SARAPO, SVRPO
and TRPO. On the classic continuous control tasks such as Pendunlum and CartPole which are
2D balancing tasks, SARAPO outperforms other two algorithms. Specifically, SARAPO converges
faster than SVRPO and TRPO and gets high mean episode reward at the end stage of the training
process. We see that in Half-Cheetah environment which is a 3D continuous-control locomotion
task, SARAPO observably performs better than other two algorithms and achieves a high score in
500 epochs. In Walker and Hopper (3D continuous-control locomotion task), the three algorithms
exhibits comparable performance. SARAPO converges faster in Swimmer but SVRPO reaches a
better score.

We make two more tables to get a clearer view of our result. Table[T|presents the number of iterations
needed to cross the threshold of 90 percent of the best score. In four of the tasks, SARAPO reaches

Under review as a conference paper at ICLR 2019

Pendulum Swimmer Hopper
o 200 - \\:_—-w____ o TP S,
3
= -600 = 200 - -
@ @
g 800 - —— SARAPO 7 0 1000 - —— SARAPO
g 1000 - —— SVRPO g —— SVRPO —— SVRPO
b J TRPO L TRPO TRPO
~1200 -) o
0 5 50 7 100 125 150 o s 100 150 200 250 o s 100 130 200 20
CartPole HalfCheetah Walker2d
300 f—r g —
B “’/ % vt
@ 400 oo
/2 300
=
& 200 —— SARAFO —— BARAPO
@ 1ag — SVRFO — SVRPO
‘:\". TRPO TRPO
o | ' ' ' ' ' | | ' ' ' ' ' |
(10 20 a0 1) (10C 200 300 100 500 a 10€ 200 00 400 500
Iteration Iteration Iteration

Figure 1: A comparison of variance reduced policy optimization and traditional TRPO. The result
is the mean of five runs on different random seeds.

Tasks Threshold SARAPO SVRPO TRPO
Pendulum —250 23 27 34
CartPole 450 5 10 18
Swimmer 302 52 72 71
Half-Cheetch 4561 216 251 402
Walker 4669 343 274 330
Hopper 3198 74 65 78

Table 1: Number of Iteration Below the Threshold

Tasks SARAPO SVRPO TRPO
Pendulum —149.4 —-167.9 —147.1
CartPole 500 500 500
Swimmer 343.0 355.7 336.5
Half-Cheetch 6845.1 5291.4 5080.9
Walker 5232.9 5529.2 5265.2
Hopper 3578.1 3625.8 3692.8

Table 2: Performance of Policy

the threshold the fastest and in the other two tasks, SVRPO outperforms the other two algorithms.
In Table 2] on HalfCheetah task, SARAPO outperforms other two algorithms.

Table 2] shows the final performance of policy which is the average of best reward over five different
seeds.

4.3 DETAILS

We perform further experiments to investigate the phenomenon during the training process. By ana-
lyzing on statistics of the small step updates and the outer loop updates respectively, we summarize
three meaningful statistics: The norm of estimated gradients in each small step gives us a glimpse on
how the gradient value is changing. The policy loss improvement is the absolute difference between
the objective function value before and after an outer loop update, which intuitively visualize the
expected increase in the mean episode reward. And the KL divergence between outer loop updates
illustrates the difference between the old policy and the updated policy. Larger KL divergence and
loss improvement are indicators of a good policy update.

Figure[.3|incorporates the result of all three statistics of three different tasks. The first row shows the
training process of Swimmer, the second row is the Hopper task and the third row is Half-Cheetah.

Under review as a conference paper at ICLR 2019

Swimmer) Swimmer
0020 —
w03 .
]
E o0z —— SARAFO
I~ —— SVRFO
2 | — sararo |
E 01
5 —— SVRFO
= TRPO
0.0 0.00C
5 2 27 2 20 3] 5 00 150 200 250 AR A L]
Hopper Hopper
0.3 - —
_ —— SARAPO —— SARAFO —
] —— SVRFO —— SVRFO
& 02 - TRFO —
_é 0.1
0.0 1 1 1 [0o 1 1 1 1 1
0 52.5 55 57.5 i 100 150 250 50 52.5 55 57.5 i)
HalfCheetah HalfCheetah HalfCheetah
8-
—— SARAFO —— SARAFO [
g —— SVRFOD ~ 0.03- — SVRFO
j TRPO g TRPO
3 il
5% —— BARAPO sl
' —— SVRPO
o 000 -
00 202 204 206 208 210] 200 100 600 W00 202 204 206 208 210
Iteration Iteration Iteration

Figure 2: An illustration of the policy loss improvement, the estimated gradients norm and the KL
divergence during training. The first row is the results on the Swimmer task. The second row is the
results on the Hopper task. The third row is the results on the HalfCheetah. The pictures are zoomed
in to show more details and the x-axis is normalized to be the number of outer loop iterations.

We zoom in the plot and choose the range of our x-axis to be in an interval that the mean episode
reward is increasing. Note that this is a result of one single random run. The training curve of this
run is shown in the Appendix.

In the first column, we plot the L? norm of the estimated gradient of SVRG and SARAH. Then
the second column is the loss function both before and after an outer loop update. For SARAPO
and SVRPO, this statistics is the sum of the increase in each small step update. We compare the
result with the policy loss improvement in TRPO. From this, we verify our conjecture that both
SARAH and SVRG reach a better optimum than SGD. Generally, a more significant increase in loss
corresponds to a higher mean episode rewards.

The third column shows the KL divergence between the old policy and the updated policy. We ob-
serve that although we do not constrain the KL strictly in the line search, the KL of TRPO stays
under the given threshold. In the interval to plot the result, KL. constraint is set to be 0.01, TRPO
stays under 0.01, SARAPO stays under 0.02, and SVRPO stays under 0.03. This is a good illus-
tration that KL divergence won’t step two far away after several inner loop updates. The variance
reduced gradient finds a better solution slightly outside the KL range.

5 CONCLUSION

In this work, we propose a sample-efficient and variance reduction method for reinforcement learn-
ing called Stochastic Recursive Gradient Policy Optimization (SARAPO) algorithm. We hybrid
the recently proposed SARAH algorithm which is a kind of variance reduction method with TRPO,
which is the state-of-the-art model-free policy gradient methods in continuous control tasks together.
We also provide theory which presents our algorithm enjoys the better properties by using ordinary
and stochastic differential equations. Our experiments show its advantage over existing policy op-
timization methods such as TRPO and SVRPO. We hope this work can inspire future works and
ultimately achieve higher performance in the reinforcement learning tasks.

Under review as a conference paper at ICLR 2019

REFERENCES

Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):251-
276, 1998.

Rie Johnson and Tong Zhang. Accelerating stochastic gradient descent using predictive variance
reduction. In Advances in Neural Information Processing Systems, pp. 315-323, 2013.

Sham Kakade. A natural policy gradient. In Proceedings of the 14th International Conference
on Neural Information Processing Systems: Natural and Synthetic, NIPS’01, pp. 1531-1538,
Cambridge, MA, USA, 2001. MIT Press. URL http://dl.acm.org/citation.cfm?
1d=2980539.2980738.

Qianxiao Li, Cheng Tai, and Weinan E. Stochastic modified equations and adaptive stochastic
gradient algorithms. arXiv preprint arXiv:1511.06251v3, 2017.

James Martens. New perspectives on the natural gradient method. arXiv preprint arXiv:1412.1193,
2014.

Lam M Nguyen, Jie Liu, Katya Scheinberg, and Martin Takd¢. SARAH: A novel method for ma-
chine learning problems using stochastic recursive gradient. In International Conference on Ma-
chine Learning, pp. 2613-2621, 2017.

Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer, New York, NY, USA,
second edition, 2006.

Matteo Papini, Damiano Binaghi, Giuseppe Canonaco, Matteo Pirotta, and Marcello Restelli.
Stochastic variance-reduced policy gradient. In Jennifer Dy and Andreas Krause (eds.), Pro-
ceedings of the 35th International Conference on Machine Learning, volume 80 of Proceedings
of Machine Learning Research, pp. 40264035, Stockholm Sweden, 10-15 Jul 2018. PMLR.
URLhttp://proceedings.mlr.press/v80/papinil8a.html.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In International Conference on Machine Learning, pp. 1889-1897, 2015a.

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-
dimensional continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015b.

Weijie Su, Stephen Boyd, and Emmanuel J Candes. A differential equation for modeling Nesterov’s
accelerated gradient method: theory and insights. Journal of Machine Learning Research, 17
(153):1-43, 2016.

Richard S Sutton, Andrew G Barto, Francis Bach, et al. Reinforcement learning: An introduction.
MIT press, 1998.

Richard S. Sutton, David McAllester, Satinder Singh, and Yishay Mansour. Policy gradient meth-
ods for reinforcement learning with function approximation. In Proceedings of the 12th Inter-
national Conference on Neural Information Processing Systems, NIPS’99, pp. 1057-1063, Cam-
bridge, MA, USA, 1999. MIT Press. URL http://dl.acm.org/citation.cfm?id=
3009657.3009806.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on, pp. 5026—
5033. IEEE, 2012.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229-256, 1992.

Tianbing Xu, Qiang Liu, and Jian Peng. Stochastic variance reduction for policy gradient estimation.
CoRR, abs/1710.06034, 2017.

http://dl.acm.org/citation.cfm?id=2980539.2980738
http://dl.acm.org/citation.cfm?id=2980539.2980738
http://proceedings.mlr.press/v80/papini18a.html
http://dl.acm.org/citation.cfm?id=3009657.3009806
http://dl.acm.org/citation.cfm?id=3009657.3009806

Under review as a conference paper at ICLR 2019

A HYPERPARAMETERS

Here, we present the hyper-parameters that get the best results for all tasks. We tune hyper-parameter
by using grid search and record the hyper-parameter in Table [3|and Table] Specifically, the mini-
batch size is searched in {1000, 5000}, the inner loop iterations is in {20, 50}, the max KL is be-
tween 0.005 and 0.01, and the Conjugate Gradient (CG) damping factor is 0.1.

Tasks Minibatch Size Inner Loop Iteration Max KL CG Damping Factor
Pendulum 5000 50 0.005 0.1
CartPole 5000 50 0.006 0.1
Swimmer 5000 20 0.005 0.1
Half-Cheetch 5000 50 0.005 0.1
Walker 1000 20 0.005 0.1
Hopper 1000 20 0.005 0.1

Table 3: The Best Hyper-Parameter of SARAPO

Tasks Minibatch Size Inner Loop Iteration Max KL CG Damping Factor
Pendulum 5000 50 0.01 0.1
CartPole 5000 50 0.01 0.1
Swimmer 1000 20 0.01 0.1
Half-Cheetch 5000 50 0.01 0.1
Walker 5000 50 0.01 0.1
Hopper 5000 20 0.01 0.1

Table 4: The Best Hyper-Parameter of SVRPO

B THE MEAN EPISODE REWARD OF THE EXPERIMENTS IN FIGURE

We provided the learning curve for the experiments in Figure We only plot the statistics using
a single run. We see that for this random seed, SARAPO achieve best performance on Swimmer
and HalfCheetah tasks. SARAPO and SVRPO get similar performance on Walk2d task and both
outperform than TRPO except Hopper task.

C EXPERIMENT ON AN ADAPTIVE PENALTY VARIANT OF THE PROXIMAL
POLICY MAPPING

To find out more about applying stochastic gradient in policy gradient algorithms and its variants.
We also proposed an algorithm on the Proximal Policy Gradient (PPO). We use the adaptive KL
penalty version of PPO because the clipped objective function is not differentiable. We list our
algorithm that combined SVRG and PPO in our appendix. And did experiments on Swimmer to
compare the performance of SARAPPO and SVRPPO. Both SARAPPO and SVRPPO reaches a
better reward than PPO.

10

Under review as a conference paper at ICLR 2019

Swimmer
350
e porra
3500 -
300 -
3000
B 250-
o
2500
% 200-
e~ 2000 -
U L=
150 -
g 1500 -
© 100 -
E 1000 -
- —— SARAPO
—— SVRPO 500 -
a —— TRPO o
0 50 100 150 200 250 0 50 100 150 200 250
HalfCheetah Walker2d
8000
5000
6000
=] 4000
o
5
e 4000 - 3000
@
g
2000 -
o 2000 -
£
—— SARAPO 1000 - —— SARAPO
o —— SVRPO —— SVRFO
—— TRPO o —— TRPO
I!j 160 ZDIO JDIO 460 SDIO [I, 160 ZDIO 3!‘30 460 SDIO
Iteration Iteration

Figure 3: The Mean Episode Reward of the experiments in Figure f.3]

350 -
300 -
250 -
200 -
150 -

100 -

0 100 200 00 400 500

Figure 4: Comparison of Stochastic Recursive Proximal Policy Gradient to PPO

11

	Introduction
	Preliminaries and Methodology
	Trust Region Policy Gradient
	SARAH and SVRG for Natural Gradient
	Stochastic Gradient Recursive Policy Optimization

	Theory of Dynamical Systems
	ODE analysis
	SDE analysis

	Experiments
	Experimental Settings
	Comparison between SARAPO, SVRPO and TRPO
	Details

	Conclusion
	Hyperparameters
	The Mean Episode Reward of the experiments in Figure 4.3
	Experiment on an adaptive penalty variant of the proximal policy mapping

