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ABSTRACT

A popular recent approach to answering open-domain questions is to first search
for question-related passages and then apply reading comprehension models to
extract answers. Existing methods usually extract answers from single passages
independently. But some questions require a combination of evidence from across
different sources to answer correctly. In this paper, we propose two models which
make use of multiple passages to generate their answers. Both use an answer-
reranking approach which reorders the answer candidates generated by an ex-
isting state-of-the-art QA model. We propose two methods, namely, strength-
based re-ranking and coverage-based re-ranking, to make use of the aggregated
evidence from different passages to better determine the answer. Our models
have achieved state-of-the-art results on three public open-domain QA datasets:
Quasar-T, SearchQA and the open-domain version of TriviaQA, with about 8 per-
centage points of improvement over the former two datasets.

1 INTRODUCTION

Open-domain question answering (QA) aims to answer questions from a broad range of domains
by effectively marshalling evidence from large open-domain knowledge sources. Such resources
can be Wikipedia (Chen et al., 2017)), the whole web (Ferrucci et al.|, |2010), structured knowledge
bases (Berant et al., 2013 [Yu et al., 2017) or combinations of the above (Baudi$ & §edivy, 2015)).
Recent work on open-domain QA has focused on using unstructured text retrieved from the web
to build machine comprehension models (Chen et al., 2017} |Dhingra et al. [2017b; [Wang et al.,
2017). These studies adopt a two-step process: an information retrieval (IR) model to coarsely
select passages relevant to a question, followed by a reading comprehension (RC) model (Wang
& Jiang, [2017; |Seo et al., [2017; |Chen et al 2017)) to infer an answer from the passages. These
studies have made progress in bringing together evidence from large data sources, but they predict
an answer to the question with only a single retrieved passage at a time. However, answer accuracy
can often be improved by using multiple passages. In some cases, the answer can only be determined
by combining multiple passages.

In this paper, we propose a method to improve open-domain QA by explicitly aggregating evidence
from across multiple passages. Our method is inspired by two notable observations from previous
open-domain QA results analysis:

e First, compared with incorrect answers, the correct answer is often suggested by more passages
repeatedly. For example, in Figure [[(a), the correct answer “danny boy” has more passages
providing evidence relevant to the question compared to the incorrect one. This observation can
be seen as multiple passages collaboratively enhancing the evidence for the correct answer.

e Second, sometimes the question covers multiple answer aspects, which spreads over multiple
passages. In order to infer the correct answer, one has to find ways to aggregate those multiple
passages in an effective yet sensible way to try to cover all aspects. In Figure[T|b), for example,
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Figure 1: Two examples of questions and candidate answers. (a) A question benefiting from the repetition of
evidence. Correct answer A2 has multiple passages that could support A2 as answer. The wrong answer Al
has only a single supporting passage. (b) A question benefiting from the union of multiple pieces of evidence
to support the answer. The correct answer A2 has evidence passages that can match both the first half and the
second half of the question. The wrong answer A1 has evidence passages covering only the first half.

the correct answer “Galileo Galilei” at the bottom has passages P1, “Galileo was a physicist ...”
and P2, “Galileo discovered the first 4 moons of Jupiter”, mentioning two pieces of evidence to
match the question. In this case, the aggregation of these two pieces of evidence can help entail
the ground-truth answer “Galileo Galilei”. In comparison, the incorrect answer “Isaac Newton”
has passages providing partial evidence on only “physicist, mathematician and astronomer”.
This observation illustrates the way in which multiple passages may provide complementary
evidence to better infer the correct answer to a question.

To provide more accurate answers for open-domain QA, we hope to make better use of multiple
passages for the same question by aggregating both the strengthened and the complementary evi-
dence from all the passages. We formulate the above evidence aggregation as an answer re-ranking
problem. Re-ranking has been commonly used in NLP problems, such as in parsing and trans-
lation, in order to make use of high-order or global features that are too expensive for decoding
algorithms (Collins & Koo, 20055 Shen et al.,|2004; Huang} 2008; |Dyer et al.,2016). Here we apply
the idea of re-ranking; for each answer candidate, we efficiently incorporate global information from
multiple pieces of textual evidence without significantly increasing the complexity of the prediction
of the RC model. Specifically, we first collect the top- K candidate answers based on their probabil-
ities computed by a standard RC/QA system, and then we use two proposed re-rankers to re-score
the answer candidates by aggregating each candidate’s evidence in different ways. The re-rankers
are:

o A strength-based re-ranker, which ranks the answer candidates according to how often their
evidence occurs in different passages. The re-ranker is based on the first observation if an answer
candidate has multiple pieces of evidence, and each passage containing some evidence tends to
predict the answer with a relatively high score (although it may not be the top score), then the
candidate is more likely to be correct. The passage count of each candidate, and the aggregated
probabilities for the candidate, reflect how strong its evidence is, and thus in turn suggest how
likely the candidate is the corrected answer.

e A coverage-based re-ranker, which aims to rank an answer candidate higher if the union of all its
contexts in different passages could cover more aspects included in the question. To achieve this,
for each answer we concatenate all the passages that contain the answer together. The result is a
new context that aggregates all the evidence necessary to entail the answer for the question. We
then treat the new context as one sequence to represent the answer, and build an attention-based
match-LSTM model (Wang & Jiang| 2017)) between the sequence and the question to measure
how well the new aggregated context could entail the question.
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Figure 2: An overview of the full re-ranker. It consists of strength-based and coverage-based re-
ranking.

Overall, our contributions are as follows: 1) We propose a re-ranking-based framework to make use
of the evidence from multiple passages in open-domain QA, and two re-rankers, namely, a strength-
based re-ranker and a coverage-based re-ranker, to perform evidence aggregation in existing open-
domain QA datasets. We find the second re-ranker performs better than the first one on two of the
three public datasets. 2) Our proposed approach leads to the state-of-the-art results on three different
datasets (Quasar-T (Dhingra et al., [2017b), SearchQA (Dunn et al., 2017) and TriviaQA (Joshi
et al., 2017)) and outperforms previous state of the art by large margins. In particular, we achieved
up to 8% improvement on F1 on both Quasar-T and SearchQA compared to the previous best results.

2 METHOD

Given a question q, we are trying to find the correct answer a¢ to q using information retrieved
from the web. Our method proceeds in two phases. First, we run an IR model (with the help of a
search engine such as google or bing) to find the top-N web passages p1, po, ..., Py most related
to the question. Then a reading comprehension (RC) model is used to extract the answer from
these passages. This setting is different from standard reading comprehension tasks (e.g. (Rajpurkar
et al.l [2016))), where a single fixed passage is given, from which the answer is to be extracted.
When developing a reading comprehension system, we can use the specific positions of the answer
sequence in the given passage for training. By contrast, in the open-domain setting, the RC models
are usually trained under distant supervision (Chen et al., [2017; Dhingra et al., |2017b; Joshi et al.,
2017). Specifically, since the training data does not have labels indicating the positions of the answer
spans in the passages, during the training stage, the RC model will match all passages that contain
the ground-truth answer with the question one by one. In this paper we apply an existing RC model
called R® (Wang et al.}2017) to extract these candidate answers.

After the candidate answers are extracted, we aggregate evidence from multiple passages by re-
ranking the answer candidates. Given a question q, suppose we have a baseline open-domain QA
system that can generate the top-K answer candidates a;, ..., ax, each being a text span in some
passage p;. The goal of the re-ranker is to rank this list of candidates so that the top-ranked can-
didates are more likely to be the correct answer a9. With access to these additional features, the
re-ranking step has the potential to prioritize answers not easily discoverable by the base system
alone. We investigate two re-ranking strategies based on evidence strength and evidence coverage.
An overview of our method is shown in Figure
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2.1 EVIDENCE AGGREGATION FOR STRENGTH-BASED RE-RANKER

In open-domain QA, unlike the standard RC setting, we have more passages retrieved by the IR
model and the ground-truth answer may appear in different passages, which means different answer
spans may correspond to the same answer. To exploit this property, we provide two features to
further re-rank the top- K answers generated by the RC model.

Measuring Strength by Count This method is based on the hypothesis that the more passages
that entail a particular answer, the stronger the evidence for that answer and the higher it should be
ranked. To implement this we count the number of occurrences of each answer in the top-K answer
spans generated by the baseline QA model and return the answer with the highest count.

Measuring Strength by Probability Since we can get the probability of each answer span in a
passages based on the RC model, we can also sum up the probabilities of the answer spans that
are referring to the same answer. In this method, the answer with the highest probability is the
final prediction [ﬂ In the re-ranking scenario, it is not necessary to exhaustively consider all the
probabilities of all the spans in the passages, as there may be a large number of different answer
spans and most of them are irrelevant to the ground-truth answer.

Remark: Note that neither of the above methods require any training. Both just take the candidate
predictions from the baseline QA system and perform counting or probability calculations. At test
time, the time complexity of strength-based re-ranking is negligible.

2.2 EVIDENCE AGGREGATION FOR COVERAGE-BASED RE-RANKER

Consider Figure [T] where the two answer candidates both have evidence matching the first half of
the question. Note that only the correct answer has evidence that could also match the second half.
In this case, the strength-based re-ranker will treat both answer candidates the same due to the equal
amount of supporting evidence, while the second answer has complementary evidence satisfying all
aspects of the question. To handle this case, we propose a coverage-based re-ranker that ranks the
answer candidates according to how well the union of their evidence from different passages covers
the question.

In order to take the union of evidence into consideration, we first concatenate the passages contain-
ing the answer into a single “pseudo passage” then measure how well this passage entails the answer
for the question. As in the examples shown in Figure [T{b), we hope the textual entailment model
will reflect (i) how each aspect of the question is matched by the union of multiple passages; and
(i1) whether all the aspects of the question can be matched by the union of multiple passages. In our
implementation an “aspect” of the question is a hidden state of a bi-directional LSTM (Hochreiter
& Schmidhuber; [1997). The match-LSTM (Wang & Jiang, |[2016) model is one way to achieve the
above effect in entailment. Therefore we build our coverage-based re-ranker on top of the concate-
nated pseudo passages using the match-LSTM. The detailed method is described below.

Passage Aggregation We consider the top-K answers, aj, ..., ak, provided by the baseline QA
system. For each answer ay, k € [1, K], we concatenate all the passages that contain ay, {p,|ax €
Pn,n € [1,N]}, to form the union passage py. Our further model is to identify which union
passage, e.g., Px, could better entail its answer, e.g., ai, for the question.

Measuring Aspect(Word)-Level Matching As discussed earlier, the first mission of the
coverage-based re-ranker is to measure how each aspect of the question is matched by the union
of multiple passages. We achieve this with word-by-word attention followed by a comparison mod-
ule.

First, we write the answer candidate a, question q and the union passage p of a as matrices A, Q, f’,
with each column being the embedding of a word in the sequence. We then feed them to the bi-
directional LSTM as follows:

H* = BiLSTM(A), HY=BiLSTM(Q), HP = BiLSTM(P), (1)

This is an extension of the Attention Sum method in (Kadlec et all 2016) from single-token answers to
phrase answers.
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where H? € R*4 | HI € R and HP € R“*¥ are the hidden states for the answer candidate,
question and passage respectively; [ is the dimension of the hidden states, and A, () and P are the
length of the three sequences, respectively.

Next, we enhance the question representation HY with H?:
HY = [H*H], )

where [-; -] is the concatenation of two matrices in row and H* € R!*(4+@) As most of the answer
candidates do not appear in the question, this is for better matching with the passage and finding
more answer-related information from the passageE] Now we can view each aspect of the question
as a column vector (i.e. a hidden state at each word position in the answer-question concatenation)
in the enhanced question representation H*I. Then the task becomes to measure how well each
column vector can be matched by the union passage; and we achieve this by computing the attention
vector |Parikh et al.[(2016) for each hidden state of sequences a and q as follows:

a = SoftMax ((HP)THaq) , H“ = Hro, 3)

where o € RP*(A+Q) is the attention weight matrix which is normalized in column through soft-

max. H'' € RX(A+Q) are the attention vectors for each word of the answer and the question by
weighted summing all the hidden states of the passage p. Now in order to see whether the aspects
in the question can be matched by the union passage, we use the following matching function:

H9 O H"
HY _ H"
H™
H

M = ReLU| W™ +b" ®euto) | - “4)

where - ® e 4 is to repeat the vector (or scalar) on the left A 4 @ times; (- -) and (- — -)
are the element-wise operations for checking whether the word in the answer and question can
be matched by the evidence in the passage. We also concatenate these matching representations
with the hidden state representations H*? and H", so that the lexical matching representations are
also integrated into the the final aspect-level matching representation M € R2X(A+Q) which is
computed through the non-linear transformation on four different representations with parameters
W™ € R2X4 and p™ € R

Measuring the Entire Question Matching Next, in order to measure how the entire question is
matched by the union passage p by taking into consideration of the matching result at each aspect,
we aE(}ld another bi-directional LSTM on top of it to aggregate the aspect-level matching informa-
tion

H™ = BiLSTM(M), h® = MaxPooling(H™), &)

where H™ € R*(A+@) is to denote all the hidden states and h® € R/, the max of pooling of each
dimension of H™, is the entire matching representation which reflects how well the evidences in
questions could be matched by the union passage.

’Besides concatenating HY with H?, there are other ways to make the matching process be aware of an
answer’s positions in the passage, e.g. replacing the answer spans in the passage to a special token like in|Yih
et al.|(2015)). We tried this approach, which gives similar but no better results, so we keep the concatenation in
this paper. We leave the study of the better usage of answer position information for future work.

3Concatenating H* and H™ could help the question-level matching (see Eq. [5|in the next paragraph) by
allowing the BILSTM learn to distinguish the effects of the element-wise comparison vectors with the original
lexical information. If we only use the element-wise comparison vectors, the model may not be able to know
what the matched words/contexts are.

“Note that we use LSTM here to capture the conjunction information (the dependency) among aspects,
i.e. how all the aspects are jointly matched. In comparison simple pooling methods will treat the aspects
independently. Low-rank tensor inspired neural architectures (e.g.,|Lei et al.|(2017)) could be another choice
and we will investigate them in future work.
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Re-ranking Objective Function Our re-ranking is based on the entire matching representation.
For each candidate answer ay, k € [1, K], we can get a matching representation hj, between the
answer ay, question g and the union passage Py, through Eqn. (I}f5). Then we transform all repre-
sentations into scalar values followed by a normalization process for ranking:

R = Tanh (W'[hj;h};..;h% ]+ b"'®ek), o = Softmax(w’R+ b’ ® ex), (6)

where we concatenate the match representations for each answer in row through [-;-], and do a
non-linear transformation by parameters W' € R!*! and b* € R! to get hidden representation
R € R™X . Finally, we map the transformed matching representations into scalar values through
parameters w° € R! and w° € R. o € R¥ is the normalized probability for the candidate answers
to be ground-truth. Due to the aliases of the ground-truth answer, there may be multiple answers in
the candidates are ground-truth, we use KL distance as our objective function:

K
> "k (log(yr) — log(ox)) . (7)
k=1

where y;, indicates whether aj, the ground-truth answer or not and is normalized by Zszl yr, and
oy, is the ranking output of our model for ay.

2.3 COMBINATION OF DIFFERENT TYPES OF AGGREGATIONS

Although the coverage-based re-ranker tries to deal with more difficult cases compared to the
strength-based re-ranker, the strength-based re-ranker works on more common cases according to
the distributions of most open-domain QA datasets. We can try to get the best of both worlds by
combining the two approaches. The full re-ranker is a weighted combination of the outputs of the
above different re-rankers without further training. Specifically, we first use softmax to re-normalize
the top-5 answer scores provided by the two strength-based rankers and the one coverage-based re-
ranker; we then weighted sum up the scores for the same answer and select the answer with the
largest score as the final prediction.

3 EXPERIMENTAL SETTINGS

We conduct experiments on three publicly available open-domain QA datasets, namely, Quasar-
T (Dhingra et al., 2017b), SearchQA (Dunn et al., 2017) and TriviaQA (Joshi et al., 2017)). These
datasets contain passages retrieved for all questions using a search engine such as Google or Bing.
We do not retrieve more passages but use the provided passages only.

3.1 DATASETS

The statistics of the three datasets are shown in Table[I]

Quasar-T E] (Dhingra et al.,[2017b) is based on a trivia question set. The data set makes use of the
“Lucene index” on the ClueWeb(09 corpus. For each question, 100 unique sentence-level passages
were collected. The human performance is evaluated in an open-book setting, i.e., the human sub-
jects had access to the same passages retrieved by the IR model and tried to find the answers from
the passages.

SearchQAE](Dunn et al.,|2017) is based on Jeopardy! questions and uses Google to collect about 50
web page snippets as passages for each question. The human performance is evaluated in a similar
way to the Quasar-T dataset.

TriviaQA (Open-Domain Setting) |'| Joshi et al.l [2017) collected trivia questions coming from
14 trivia and quiz-league websites, and makes use of the Bing Web search API to collect the top 50

Shttps://github.com/bdhingra/quasar
®https://github.com/nyu-dl/SearchQa
"nttp://nlp.cs.washington.edu/triviaga/data/triviaga-unfiltered.tar.gz


https://github.com/bdhingra/quasar
https://github.com/nyu-dl/SearchQA
http://nlp.cs.washington.edu/triviaqa/data/triviaqa-unfiltered.tar.gz

Published as a conference paper at ICLR 2018

#q(train) #q(dev) #q(test) #p #p(truth) #p(aggregated)

Quasar-T 28,496 3,000 3,000 100 14.8 52
SearchQA 99,811 13,893 27,247 50 16.5 5.4
TriviaQA 66,828 11,313 10,832 100 16.0 5.6

Table 1: Statistics of the datasets. #q represents the number of questions for training (not counting
the questions that don’t have ground-truth answer in the corresponding passages for training set),
development, and testing datasets. #p is the number of passages for each question. For TriviaQA,
we split the raw documents into sentence level passages and select the top 100 passages based on the
its overlaps with the corresponding question. #p(golden) means the number of passages that contain
the ground-truth answer in average. #p(aggregated) is the number of passages we aggregated in
average for top 10 candidate answers provided by RC model.

webpages most related to the questions. We focus on the open domain setting (the unfiltered passage
set) of the dataset[ﬂ and our model uses all the information retrieved by the IR model.

3.2 BASELINES

Our baseline modelsﬂinclude the following: GA (Dhingra et al.,|2017aib), a reading comprehension
model with gated-attention; BiDAF (Seo et al.L|2017), a RC model with bidirectional attention flow;
AQA (Buck et all |2017), a reinforced system learning to aggregate the answers generated by the
re-written questions; R” (Wang et al., [2017), a reinforced model making use of a ranker for selecting
passages to train the RC model. As R” is the first step of our system for generating candidate
answers, the improvement of our re-ranking methods can be directly compared to this baseline.

TriviaQA does not provide the leaderboard under the open-domain setting. As a result, there is no
public baselines in this setting and we only compare with the R? baseline@

3.3 IMPLEMENTATION DETAILS

We first use a pre-trained R? model (Wang et al., 2017), which gets the state-of-the-art performance
on the three public datasets we consider, to generate the top 50 candidate spans for the training,
development and test datasets, and we use them for further ranking. During training, if the ground-
truth answer does not appear in the answer candidates, we will manually add it into the answer
candidate list.

For the coverage-based re-ranker, we use Adam (Kingma & Ba,[2015) to optimize the model. Word
embeddings are initialized by GloVe (Pennington et al.,|2014) and are not updated during training.
We set all the words beyond Glove as zero vectors. We set [ to 300, batch size to 30, learning rate
to 0.002. We tune the dropout probability from O to 0.5 and the number of candidate answers for
re-ranking (K) in [3, 5, 10]["1]

4 RESULTS AND ANALYSIS

In this section, we present results and analysis of our different re-ranking methods on the three
different public datasets.

8Despite the open-domain QA data provided, the leaderboard of TriviaQA focuses on evaluation of RC
models over filtered passages that is guaranteed to contain the correct answers (i.e. more like closed-domain
setting). The evaluation is also passage-wise, different from the open-domain QA setting.

® Most of the results of different models come from the public paper. While we re-run model R® (Wang
et al.L|2017) based on the authors’ source code and extend the model to the datasets of SearchQA and TriviaQA
datasets.

To demonstrate that R® serves as a strong baseline on the TriviaQA data, we generate the R results
following the leaderboard setting. The results showed that R* achieved F1 56.0, EM 50.9 on Wiki domain and
F1 68.5, EM 63.0 on Web domain, which is competitive to the state-of-the-arts. This confirms that R® is a
competitive baseline when extending the TriviaQA questions to open-domain setting.

"Our code will be released under https://github.com/shuochangwang/mprc,


https://github.com/shuohangwang/mprc
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Quasar-T  SearchQA  TriviaQA (open)

EM F1 EM F1 EM F1
GA (Dhingra et al., 2017a) 264 264 - - - -
BiDAF (Seo et al.,[2017) 259 28.5 286 346 - -
AQA (Buck et al.,2017) - - 405 474 - -
R3 (Wang et al.;[2017) 353 41.7 490 553 473 53.7
Baseline Re-Ranker (BM25) 336 452 519 60.7 44.6 55.7
Our Full Re-Ranker 423 496 57.0 63.2 50.6 57.3

Strength-Based Re-Ranker (Probability) 36.1 424 504 56.5 49.2 55.1
Strength-Based Re-Ranker (Counting) 37.1 4677 542 616 46.1 55.8
Coverage-Based Re-Ranker 406 49.1 541 614 50.0 57.0

Human Performance 51.5 60.6 439 - - -

Table 2: Experiment results on three open-domain QA test datasets: Quasar-T, SearchQA and Trivi-
aQA (open-domain setting). EM: Exact Match. Full Re-ranker is the combination of three different
re-rankers.

4.1 OVERALL RESULTS

The performance of our models is shown in Table |2} We use F1 score and Exact Match (EM) as our
evaluation metrics From the results, we can clearly see that the full re-ranker, the combination
of different re-rankers, significantly outperforms the previous best performance by a large margin,
especially on Quasar-T and SearchQA. Moreover, our model is much better than the human per-
formance on the SearchQA dataset. In addition, we see that our coverage-based re-ranker achieves
consistently good performance on the three datasets, even though its performance is marginally
lower than the strength-based re-ranker on the SearchQA dataset.

4.2 ANALYSIS

In this subsection, we analyze the benefits of our re-ranking models.

BM25 as an alternative coverage-based re-ranker We use the classical BM25 retrieval
model (Robertson et al., 2009) to re-rank the aggregated passages the same way as the coverage-
based re-ranker, where the IDF values are first computed from the raw passages before aggregation.
From the results in Table [2] we see that the BM25-based re-ranker improves the F1 scores com-
pared with the R? model, but it is still lower than our coverage-based re-ranker with neural network
models. Moreover, with respect to EM scores, the BM25-based re-ranker sometimes gives lower
performance. We hypothesize that there are two reasons behind the relatively poor performance
of BM25. First, because BM25 relies on a bag-of-words representation, context information is not
taken into consideration and it cannot model the phrase similarities. Second, shorter answers tend
to be preferred by BM25. For example, in our method of constructing pseudo-passages, when an
answer sequence A is a subsequence of another answer sequence B, the pseudo passage of A is
always a superset of the pseudo passage of B that could better cover the question. Therefore the F1
score could be improved but the EM score sometimes becomes worse.

Re-ranking performance versus answer lengths and question types Figure [3| decomposes the
performance according to the length of the ground truth answers and the types of questions on
TriviaQA and Quasar-T. We do not include the analysis on SearchQA because, for the Jeopardy!
style questions, it is more difficult to distinguish the questions types, and the range of answer lengths
1S narrower.

Our results show that the coverage-based re-ranker outperforms the baseline in different lengths
of answers and different types of questions. The strength-based re-ranker (counting) also gives im-
provement but is less stable across different datasets, while the strength-based re-ranker (probability)

20ur evaluation is based on the tool from SQuAD (Rajpurkar et al.; 2016).
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Figure 3: Performance decomposition according to the length of answers and the question types.

Quasar-T  SearchQA  TriviaQA (open)

Top-K EM F1 EM F1 EM F1
1 351 416 512 573 476 53.5
3 46.2 535 639 689 54.1 60.4
5 51.0 589 69.1 739 58.0 64.5
10 56.1 648 755 79.6 62.1 69.0

Table 3: The upper bound (recall) of the Top-K answer candidates generated by the baseline R?
system (on dev set), which indicates the potential of the coverage-based re-ranker.

tends to have results and trends that are close to the baseline curves, which is probably because the
method is dominated by the probabilities predicted by the baseline.

The coverage-based re-ranker and the strength-based re-ranker (counting) have similar trends on
most of the question types. The only exception is that the strength-based re-ranker performs signif-
icantly worse compared to the coverage-based re-ranker on the “why” questions. This is possibly
because those questions usually have non-factoid answers, which are less likely to have exactly the
same text spans predicted on different passages by the baseline.

Potential improvement of re-rankers Table[3]shows the percentage of times the correct answer is
included in the top-K answer predictions of the baseline R® method. More concretely, the scores are
computed by selecting the answer from the top-K predictions with the best EM/F1 score. Therefore
the final top-K EM and F1 can be viewed as the recall or an upper bound of the top-K predictions.
From the results, we can see that although the top-1 prediction of R? is not very accurate, there
is high probability that a top-K list with small K could cover the correct answer. This explains
why our re-ranking approach achieves large improvement. Also by comparing the upper bound
performance of top-5 and our re-ranking performance in Table[2] we can see there is still a clear gap
of about 10% on both datasets and on both F1 and EM, showing the great potential improvement for
the re-ranking model in future work.

Effect of the selection of K for the coverage-based re-ranker As shown in Table[3] as K ranges
from 1 to 10, the recall of top-K predictions from the baseline R? system increases significantly.
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Re-Ranker Results Upper Bound

Candidate Set EM F1 EM F1

top-3 40.5 47.8 46.2 53.5
top-5 41.8 50.1 51.0 58.9
top-10 41.3 50.8 56.1 64.8

Table 4: Results of running coverage-based re-ranker on different number of the top-K answer
candidates on Quasar-T (dev set).

Re-Ranker Results Upper Bound

Candidate Set EM F1 EM F1

top-10 37.9 46.1 56.1 64.8
top-50 37.8 47.8 64.1 74.1
top-100 36.4 47.3 66.5 77.1
top-200 33.7 45.8 68.7 79.5

Table 5: Results of running strength-based re-ranker (counting) on different number of top- K answer
candidates on Quasar-T (dev set).

Ideally, if we use a larger K, then the candidate lists will be more likely to contain good answers.
At the same time, the lists to be ranked are longer thus the re-ranking problem is harder. Therefore,
there is a trade-off between the coverage of rank lists and the difficulty of re-ranking; and selecting an
appropriate K becomes important. Table ] shows the effects of K on the performance of coverage-
based re-ranker. We train and test the coverage-based re-ranker on the top-K predictions from the
baseline, where K € {3, 5,10}. The upper bound results are the same ones from Table The results
show that when K is small, like K'=3, the performance is not very good due to the low coverage
(thus low upper bound) of the candidate list. With the increase of K, the performance becomes
better, but the top-5 and top-10 results are on par with each other. This is because the higher upper
bound of top-10 results counteracts the harder problem of re-ranking longer lists. Since there is
no significant advantage of the usage of K=10 while the computation cost is higher, we report all
testing results with K=5.

Effect of the selection of K for the strength-based re-ranker Similar to Table @] we conduct
experiments to show the effects of K on the performance of the strength-based re-ranker. We
run the strength-based re-ranker (counting) on the top-K predictions from the baseline, where
K € {10,50,100,200}. We also evaluate the upper bound results for these Ks. Note that the
strength-based re-ranker is very fast and the different values of K do not affect the computation
speed significantly compared to the other QA components.

The results are shown in Table [5] where we achieve the best results when K'=50. The performance
drops significantly when K increases to 200. This is because the ratio of incorrect answers increases
notably, making incorrect answers also likely to have high counts. When K is smaller, such incorrect
answers appear less because statistically they have lower prediction scores. We report all testing
results with K'=50.

Examples Table [6] shows an example from Quasar-T where the re-ranker successfully corrected
the wrong answer predicted by the baseline. This is a case where the coverage-based re-ranker
helped: the correct answer “Sesame Street” has evidence from different passages that covers the
aspects “Emmy Award” and “children ’s television shows”. Although it still does not fully match
all the facts in the question, it still helps to rank the correct answer higher than the top-1 prediction
“Great Dane” from the R? baseline, which only has evidence covering “TV” and “1969” in the
question.

10
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Q: Which children ’s TV programme , which first appeared in November 1969 , has won a record
122 Emmy Awards in all categories ?

Al:  Great Dane A2:  Sesame Street

P1 The world ’s most famous Great Dane first | P1:  In its long history , Sesame Street has re-
appeared on television screens on Sept. 13, ceived more Emmy Awards than any other
1969 . program, ...

P2 premiered on broadcast television ( CBS ) | P2:  Sesame Street ... is recognized as a pioneer
Saturday morning , Sept. 13, 1969, ... yet of the contemporary standard which com-
beloved great Dane . bines education and entertainment in chil-

dren ’s television shows .

Table 6: An example from Quasar-T dataset. The ground-truth answer is ’Sesame Street”. Q:
question, A: answer, P: passages containing corresponding answer.

5 RELATED WORK

Open Domain Question Answering The task of open domain question answering dates back
to as early as (Green Jr et al., [1961) and was popularized by TREC-8 (Voorhees, [1999). The task
is to produce the answer to a question by exploiting resources such as documents (Voorhees| |1999),
webpages (Kwok et al., [2001) or structured knowledge bases (Berant et al., |2013; Bordes et al.,
2015 Yu et al.| 2017)).

Recent efforts (Chen et al.|[2017; Dunn et al.,|2017; |Dhingra et al.,[2017b; [Wang et al.,2017) benefit
from the advances of machine reading comprehension (RC) and follow the search-and-read QA
direction. These deep learning based methods usually rely on a document retrieval module to retrieve
a list of passages for RC models to extract answers. As there is no passage-level annotation about
which passages entail the answer, the model has to find proper ways to handle the noise introduced
in the IR step. (Chen et al.| (2017) uses bi-gram passage index to improve the retrieval step; |[Dunn
et al.| (2017); Dhingra et al.| (2017b) propose to reduce the length of the retrieved passages. |Wang
et al.| (2017) focus more on noise reduction in the passage ranking step, in which a ranker module is
jointly trained with the RC model with reinforcement learning.

To the best of our knowledge, our work is the first to improve neural open-domain QA systems
by using multiple passages for evidence aggregation. Moreover, we focus on the novel problem
of “text evidence aggregation”, where the problem is essentially modeling the relationship between
the question and multiple passages (i.e. text evidence). In contrast, previous answer re-ranking
research did not address the above problem: (1) traditional QA systems like (Ferrucci et al., [2010)
have similar passage retrieval process with answer candidates added to the queries. The retrieved
passages were used for extracting answer scoring features, but the features were all extracted from
single-passages thus did not utilize the information of union/co-occurrence of multiple passages. (2)
KB-QA systems (Bast & Haussmann, 2015; |Yih et al., 2015} |Xu et al., 2016) sometimes use text
evidence to enhance answer re-ranking, where the features are also extracted on the pair of question
and a single-passage but ignored the union information among multiple passages.

Multi-Step Approaches for Reading Comprehension We are the first to introduce re-ranking
methods to neural open-domain QA and multi-passage RC. Meanwhile, our two-step approach
shares some similarities to the previous multi-step approaches proposed for standard single-passage
RC, in terms of the purposes of either using additional information or re-fining answer predictions
that are not easily handled by the standard answer extraction models for RC.

On cloze-test tasks (Hermann et al., 2015)), Epireader [Trischler et al.| (2016) relates to our work in
the sense that it is a two-step extractor-reasoner model, which first extracts K most probable single-
token answer candidates and then constructs a hypothesis by combining each answer candidate to the
question and compares the hypothesis with all the sentences in the passage. Their model differs from
ours in several aspects: (i) Epireader matches a hypothesis to every single sentence, including all the
“noisy” ones that does not contain the answer, that makes the model inappropriate for open-domain
QA setting; (ii) The sentence matching is based on the sentence embedding vectors computed by
a convolutional neural network, which makes it hard to distinguish redundant and complementary
evidence in aggregation; (iii) Epireader passes the probabilities predicted by the extractor to the
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reasoner directly to sustain differentiability, which cannot be easily adapted to our problem to handle
phrases as answers or to use part of passages.

Similarly, (Cui et al.,[2017) also combined answer candidates to the question to form hypotheses, and
then explicitly use language models trained on documents to re-rank the hypotheses. This method
benefits from the consistency between the documents and gold hypotheses (which are titles of the
documents) in cloze-test datasets, but does not handle multiple evidence aggregation like our work.

S-Net (Tan et al., [2017) proposes a two-step approach for generative QA. The model first extracts an
text span as the answer clue and then generates the answer according to the question, passage and
the text span. Besides the different goal on answer generation instead of re-ranking like this work,
their approach also differs from ours on that it extracts only one text span from a single selected
passage.

6 CONCLUSIONS

We have observed that open-domain QA can be improved by explicitly combining evidence from
multiple retrieved passages. We experimented with two types of re-rankers, one for the case where
evidence is consistent and another when evidence is complementary. Both re-rankers helped to
significantly improve our results individually, and even more together. Our results considerably
advance the state-of-the-art on three open-domain QA datasets.

Although our proposed methods achieved some successes in modeling the union or co-occurrence of
multiple passages, there are still much harder problems in open-domain QA that require reasoning
and commonsense inference abilities. In future work, we will explore the above directions, and we
believe that our proposed approach could be potentially generalized to these more difficult multi-
passage reasoning scenarios.
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