
Under review as a conference paper at ICLR 2019

K-NEAREST NEIGHBORS BY MEANS OF SEQUENCE TO
SEQUENCE DEEP NEURAL NETWORKS AND MEMORY
NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

k-Nearest Neighbors is one of the most fundamental but effective classification
models. In this paper, we propose two families of models built on a sequence
to sequence model and a memory network model to mimic the k-Nearest Neigh-
bors model, which generate a sequence of labels, a sequence of out-of-sample
feature vectors and a final label for classification, and thus they could also func-
tion as oversamplers. We also propose ‘out-of-core’ versions of our models which
assume that only a small portion of data can be loaded into memory. Computa-
tional experiments show that our models outperform k-Nearest Neighbors, a feed-
forward neural network and a memory network, due to the fact that our models
must produce additional output and not just the label. As an oversampler on imbal-
anced datasets, the sequence to sequence kNN model often outperforms Synthetic
Minority Over-sampling Technique and Adaptive Synthetic Sampling.

1 INTRODUCTION

Recently, neural networks have been attracting a lot of attention among researchers in both academia
and industry, due to their astounding performance in fields such as natural language processing
Turian et al. (2010) Mikolov et al. (2013) and image recognition Krizhevsky et al. (2012)Deng et al.
(2009). Interpretability of these models, however, has always been an issue since it is difficult to
understand the performance of neural networks. The well-known manifold hypothesis states that
real-world high dimensional data (such as images) form lower-dimensional manifolds embedded
in the high-dimensional space Carlsson et al. (2008), but these manifolds are tangled together and
are difficult to separate. The classification process is then equivalent to stretching, squishing and
separating the tangled manifolds apart. However, these operations pose a challenge: it is quite im-
plausible that only affine transformations followed by pointwise nonlinear activations are sufficient
to project or embed data into representative manifolds that are easily separable by class.

Therefore, instead of asking neural networks to separate the manifolds by a hyperplane or a sur-
face, it is more reasonable to require points of the same manifold to be closer than points of other
manifolds Olah (2014). Namely, the distance between manifolds of different classes should be large
and the distance between manifolds of the same class should be small. This distance property is
behind the concept of k-Nearest Neighbor (kNN) Cover & Hart (1967). Consequently, letting neural
networks mimic kNN would combine the notion of manifolds with the desired distance property.

We explore kNN through two deep neural network models: sequence to sequence deep neural net-
works Sutskever et al. (2014) and memory networks Sukhbaatar et al. (2015). A family of our
models are based on a sequence to sequence network. The new sequence to sequence model has
the input sequence of length one corresponding to a sample, and then it decodes it to predict two
sequences of output, which are the classes of closest samples and neighboring samples not neces-
sarily in the training data, where we call the latter as out-of-sample feature vectors. We also propose
a family of models built on a memory network, which has a memory that can be read and written to
and is composed of a subset of training samples, with the goal of using it for predicting both classes
of close samples and out-of-sample feature vectors. With the help of attention over memory vectors,
our new memory network model generates the predicted label sequence and out-of-sample feature
vectors. Both families of models use loss functions that mimic kNN. Computational experiments

1



Under review as a conference paper at ICLR 2019

show that the new sequence to sequence kNN model consistently outperforms benchmarks (kNN,
a feed-forward neural network and a vanilla memory network). We postulate that this is due to the
fact that we are forcing the model to ‘work harder’ than necessary (producing out-of-sample feature
vectors).

Different from general classification models, our models predict not only labels, but also out-of-
sample feature vectors. Usually a classification model only predicts labels, but as in the case of
kNN, it is desirable to learn or predict the feature vectors of neighbors as well. Intuitively, if a
deep neural network predicts both labels and feature vectors, it is forced to learn and capture rep-
resentative information of input, and thus it should perform better in classification. Moreover, our
models also function as synthetic oversamplers: we add the out-of-sample feature vectors and their
labels (synthetic samples) to the training set. Experiments show that our sequence to sequence kNN
model outperforms Synthetic Minority Over-sampling Technique (SMOTE) Chawla et al. (2002)
and Adaptive Synthetic sampling (ADASYN) He et al. (2008) most of the times on imbalanced
datasets.

Usually we allow models to perform kNN searching on the entire dataset, which we call the full
versions of models, but kNN is computationally expensive on large datasets. We design an algorithm
to resolve this and we test our models under such an ‘out-of-core’ setting: only a batch of data can be
loaded into memory, i.e. kNN searching in the entire dataset is not allowed. For each such random
batch, we compute the K closest samples with respect to the given training sample. We repeat this
R times and find the closestK samples among theseKR samples. These closestK samples provide
the approximate label sequence and feature vector sequence to the training sample based on the kNN
algorithm. Computational experiments show that sequence to sequence kNN models and memory
network kNN models significantly outperform the kNN benchmark under the out-of-core setting.

Our main contributions are as follows. First, we develop two types of deep neural network models
which mimic the kNN structure. Second, our models are able to predict both labels of closest
samples and out-of-sample feature vectors at the same time: they are both classification models and
oversamplers. Third, we establish the out-of-core version of models in the situation where not all
data can be read into computer memory or kNN cannot be run on the entire dataset. The full version
of the sequence to sequence kNN models and the out-of-core version of both sequence to sequence
kNN models and memory network kNN models outperform the benchmarks, which we postulate is
because learning neighboring samples enables the model to capture representative features.

We introduce background and related works in Section 2, show our approaches in Section 3, and
describe datasets and experiments in Section 4. Conclusions are in Section 5.

2 BACKGROUND AND LITERATURE REVIEW

There are several works trying to mimic kNN or applying kNN within different models. Mathy et al.
(2015) introduced the boundary forest algorithm which can be used for nearest neighbor retrieval.
Based on the boundary forest model, in Zoran et al. (2017), a boundary deep learning tree model
with differentiable loss function was presented to learn an efficient representation for kNN. The
main differences between this work and our work are in the base models used (boundary tree vs
standard kNN), in the main objectives (representation learning vs classification and oversampling)
and in the loss functions (KL divergence vs KL divergence components reflecting the kNN strategy
and L2 norm). Wang et al. (2017) introduced a text classification model which utilized nearest
neighbors of input text as the external memory to predict the class of input text. Our memory
network kNN models differ from this model in 1) the external memory: our memory network kNN
models simply feed a random batch of samples into the external memory without the requirement
of nearest neighbors and thus they save computational time, and 2) number of layers: our memory
network kNN models have K layers while the model proposed by Wang et al. (2017) has one layer.
A higher-level difference is that Wang et al. (2017) considered a pure classification setting, while
our models generate not only labels but out-of-sample feature vectors as well. Most importantly, the
loss functions are different: Wang et al. (2017) used KL divergence as the loss function while we
use a specially designed KL divergence and L2 norm to force our models to mimic kNN.

The sequence to sequence model, one of our base models, has recently become the leading frame-
work in natural language processing Sutskever et al. (2014) Cho et al. (2014). In Cho et al. (2014) an

2



Under review as a conference paper at ICLR 2019

RNN encoder-decoder architecture was used to deal with statistical machine translation problems.
Sutskever et al. (2014) proposed a general end-to-end sequence to sequence framework, which is
used as the basic structure in our sequence to sequence kNN model. The major difference between
our work and these studies is that the loss function in our work forces the model to learn from neigh-
boring samples, and our models are more than just classifiers - they also create out-of-sample feature
vectors that improve accuracy or can be used as oversamplers.

In summary, the main differences between our work and previous studies are as follows. First,
our models predict both labels of nearest samples and out-of-sample feature vectors rather than
simply labels. Thus, they are more than classifiers: the predicted label sequences and feature vector
sequences can be treated as synthetic oversamples to handle imbalanced class problems. Second, our
work emphasizes on the out-of-core setting. All of the prior works related to kNN and deep learning
assume that kNN can be run on the entire dataset and thus cannot be used on large datasets. Third,
our loss functions are designed to mimic kNN, so that our models are forced to learn neighboring
samples to capture the representative information.

SEQUENCE TO SEQUENCE MODEL

A family of our models are built on sequence to sequence models. A sequence to sequence (Seq2seq)
model is an encoder-decoder model. The encoder encodes the input sequence to an internal repre-
sentation called the ‘context vector’ which is used by the decoder to generate the output sequence.
Usually, each cell in the Seq2seq model is a Long Short-Term Memory (LSTM) cell Hochreiter &
Schmidhuber (1997) or a Gated Recurrent Unit (GRU) cell Cho et al. (2014).

Given input sequence x1, ..., xT , in order to predict output Y P
1 , ..., Y P

K (where the superscript P
denotes ‘predicted’), the Seq2seq model estimates conditional probability P (Y P

1 , ..., Y P
t |x1, ..., xT )

for 1 ≤ t ≤ K. At each time step t, the encoder updates the hidden state het , which can also include
the cell state, by het = feh(xt, h

e
t−1)where 1 ≤ t ≤ T . The decoder updates the hidden state hdt by

hdt = fdh(Y P
t−1, h

d
t−1, h

e
T ) where 1 ≤ t ≤ K. The decoder generates output yt by

yt = g(Y P
t−1, h

d
t , h

e
T ), (1)

and Y P
t = q(yt) with q usually being softmax function.

The model calculates the conditional probability of output Y P
1 , ..., Y P

K by

Pr(Y P
1 , ..., Y P

K |x1, ..., xT ) =

K∏
t=1

Pr(Y P
t |Y P

1 , ..., Y P
t−1).

END TO END MEMORY NETWORKS

The other family of our models are built on an end-to-end memory network (MemN2N). This model
takes x1, ..., xn as the external memory, a ‘query’ x, a ground truth Y GT and predicts an answer
Y P . It first embeds memory vectors x1, ..., xn and query x into continuous space. They are then
processed through multiple layers to generate the output label Y P .

MemN2N has K layers. In the tth layer, where 1 ≤ t ≤ K, the external memory is converted into
embedded memory vectors mt

1, ...,m
t
n by an embedding matrix At. The query x is also embedded

as ut by an embedding matrix Bt. The attention scores between embedded query ut and memory
vectors (mt

i)i=1,2,...,n are calculated by pt = softmax((ut)Tmt
1, (u

t)Tmt
2, ..., (u

t)Tmt
n). Each

xi is also embedded to an output representation cti by another embedding matrix Ct. The output

vector from the external memory is defined as ot =

n∑
i=1

ptic
t
i. By a linear mapping H , the input

to the next layer is calculated by ut+1 = Hut + ot. Sukhbaatar et al. (2015) suggested that the
input and output embeddings are the same across different layers, i.e. A1 = A2 = ... = AK and
C1 = C2 = ... = CK .

In the last layer, by another embedding matrix W , MemN2N generates a label for the query x by
Y P = softmax(W (HuK + oK)).

3



Under review as a conference paper at ICLR 2019

3 KNN MODELS

Our sequence to sequence kNN models are built on a Seq2seq model, and our memory network kNN
models are built on a MemN2N model. Let K denote the number of neighbors of interest.

Vector to Label Sequence (V2LS) Model

Given an input feature vector x, a ground truth label Y GT (a single class corresponding to x) and
a sequence of labels Y T

1 , Y
T
2 , ..., Y

T
K corresponding to the labels of the 1st, 2nd, ...,Kth nearest

sample to x in the entire training set, V2LS predicts a label Y P and Y P
1 , Y P

2 , ..., Y P
K , the predicted

labels of the 1st, 2nd, ...,Kth nearest samples. Since Y T
1 , Y

T
2 , ..., Y

T
K are obtained by using kNN

upfront, the real input is only x and Y GT .

In the V2LS model, by a softmax operation with temperature after a linear mapping (Wy, by), the
label of the tth nearest sample to x is predicted by Y P

t = softmax((Wyyt + by)/τ) where yt is
as in (1) for t = 1, 2, ...,K and τ is the temperature of softmax. By taking the average of predicted

label distributions, the label of x is predicted by Y P =

K∑
t=1

Y P
t /K. Temperature τ controls the

“peakedness” of Y P
t . Values of τ below 1 push Y P

t towards a Dirac distribution, which is desired
in order to mimic kNN. We design the loss function as

L1 = E{
K∑
t=1

DKL(Y T
t ||Y P

t )/K + αDKL(Y GT ||Y P )}

where the first term captures the label at the neighbor level, the second term for the actual ground
truth and α is a hyperparameter to balance the two terms. The expectation is taken over all training
samples, and DKL denotes the Kullback-Leibler divergence. Due to the fact that the first term
is the sum of KL divergence between predicted labels of nearest neighbors and target labels of
nearest neighbors, it forces the model to learn information about the neighborhood. The second term
considers the actual ground truth label: a classification model should minimize the KL divergence
between the predicted label (average of K distributions) and the ground truth label. By combining
the two terms, the model is forced to not only learn the classes of the final label but also the labels
of nearest neighbors.

In inference, given an input x, V2LS predicts Y P and Y P
1 , Y P

2 , ..., Y P
K , but only Y P is the actual

output; it is used to measure the classification performance.

Vector to Vector Sequence (V2VS) Model

We use the same structure as the V2LS model except that in this model, the inputs are a feature
vector x and a sequence of feature vectors XT

1 , X
T
2 , ..., X

T
K corresponding to the 1st, 2nd, ...,Kth

nearest sample to x among the entire training set (calculated upfront using kNN). V2VS predicts
XP

1 , X
P
2 , ..., X

P
K which denote the predicted out-of-sample feature vectors of the 1st, 2nd, ...,Kth

nearest sample. Since XT
1 , X

T
2 , ..., X

T
K are obtained using kNN, this is an unsupervised model.

The output of the tth decoder cell yt is processed by a linear layer (Wx1, bx1), a ReLU op-
eration and another linear layer (Wx2, bx2) to predict the out-of-sample feature vector XP

t =
Wx2max{Wx1yt + bx1, 0} + bx2, t = 1, 2, ...,K. Numerical experiments show that ReLU works
best compared with tanh and other activation functions. The loss function is defined to be the sum
of L2 norms as

L2 = E{
K∑
t=1

||XP
t −XT

t ||2}.

Since the predicted out-of-sample feature vectors should be close to the input vector, learning near-
est vectors forces the model to learn a sequence of approximations to something very close to the
identity function. However, this is not trivial. First it does not learn an exact identity function, since
the output is a sequence of nearest neighbors to input, i.e. it does not simply copy the input K
times. Second, by limiting the number of hidden units of the neural network, the model is forced
to capture the most representative and condensed information of input. A large amount of studies

4



Under review as a conference paper at ICLR 2019

have shown this to be beneficial to classification problems Erhan et al. (2010)Vincent et al. (2010)He
et al. (2016).

In inference, we predict the label of x by finding the labels of out-of-sample feature vectors XP
t and

then perform majority voting among these K labels.

Vector to Vector Sequence and Label Sequence (V2VSLS) Model

In previous models, V2LS learns to predict labels of nearest neighbors and V2VS learns to predict
feature vectors of nearest neighbors. Combining V2LS and V2VS together, this model predicts both
XP

t and Y P
t . The loss function is a weighted sum of the two loss functions in V2LS and V2VS:

L = L1 + λL2, where λ is a hyperparameter to account for the scale.

The L2 norm part enables the model to learn neighboring vectors. As discussed in the V2VS model,
this is beneficial to classification since it drives the model to capture representative information
of input and nearest neighbors. The KL part of the loss function focuses on predicting labels of
nearest neighbors. As discussed in the V2LS model, the two terms in the KL loss force the model
to learn both neighboring labels and the ground truth label. Combining the two parts, the V2VSLS
model is able to predict nearest labels and out-of-sample feature vectors, as well as one final label
for classification. In inference, given an input x, V2VSLS generates Y P , XP

1 , X
P
2 , ..., X

P
K and

Y P
1 , Y P

2 , ..., Y P
K . Still only Y P is used in measuring classification performance of the model.

Memory Network - kNN (MNkNN) Model

The MNkNN model is built on the MemN2N model, which has K layers stacked together. After
these layers, the MemN2N model generates a prediction. In order to mimic kNN, our MNkNN
model has K layers as well but it generates one label after each layer, i.e. after the tth layer, it
predicts the label of the tth nearest sample. It mimics kNN because the first layer predicts the label
of the first closest vector to x, the second layer predicts the label of the second closest vector to x,
etc.

This model takes a feature vector x, its ground truth label Y GT , a random subset x1, x2, ..., xn from
the training set (to be stored in the external memory) and Y T

1 , Y
T
2 , ..., Y

T
K denoting the labels of the

1st, 2nd, ...,Kth nearest samples to x among the entire training set (calculated upfront using kNN).
It predicts a label Y P and a sequence of K labels of closest samples Y P

1 , Y P
2 , ..., Y P

K .

After the tth layer, by a softmax operation with temperature after a linear mapping (Wy, by), the
model predicts the label of tth nearest sample by Y P

t = softmax((Wy(Hut + ot) + by)/τ) where
t = 1, 2, ...,K. The role of τ is the same as in the V2LS model. Taking the average of the predicted

label distributions, the final label of x is calculated by Y P =

K∑
t=1

Y P
t /K. Same as V2LS, the loss

function of MNkNN is defined as

L1 = E{
K∑
t=1

KL(Y T
t ||Y P

t )/K + αKL(Y GT ||Y P )}.

The first term accounts for learning neighboring information, and the second term forces the model
to provide the best single candidate class.

In inference, the model takes a query x and random samples x1, x2, ..., xn from the training set, and
generates the predicted label Y P as well as a sequence of nearest labels Y P

1 , Y P
2 , ..., Y P

K .

Memory Network - kNN with Vector Sequence (MNkNN VEC) Model

This model is built on MNkNN, but it predicts out-of-sample feature vectors XP
t as well. By a

linear mapping T , a ReLU operation and another linear mapping (Wx, bx), the feature vectors are
calculated by XP

t = Wxmax{T (Hut + ot), 0}+ bx. Same as the V2VSLS model, combining the
L2 norm and the KL divergence together, the loss function is defined as

L = L1 + λE{
K∑
t=1

||XP
t −XT

t ||2}

5



Under review as a conference paper at ICLR 2019

As discussed in the V2VSLS model, having such loss function forces the model to learn both the
feature vectors and the labels of nearest neighbors.

Out-of-Core Models

In the models exhibited so far, we assume that kNN can be run on the entire dataset exactly to
compute the K nearest feature vectors and corresponding labels to an input sample. However, there
are two problems with this assumption. First, this can be very computationally expensive if the
dataset size is large. Second, the training dataset might be too big to fit in memory. When either of
these two challenges is present, an out-of-core model assuming it is infeasible to run a ‘full’ kNN
on the entire dataset has to be invoked. The out-of-core models avoid running kNN on the entire
dataset, and thus save computational time and resources.

Let B be the maximum number of samples that can be stored in memory, where B > K. For a
training sample x, we sample a subset S from the training set (including x) where |S| = B, then
we run kNN on S to obtain the K nearest feature vectors and corresponding labels to x, which are
denoted as Y T (S) = {Y T

1 , Y
T
2 , ..., Y

T
K } and XT (S) = {XT

1 , X
T
2 , ..., X

T
K} for x in the training

process. The previously introduced loss functions L and L depend on x, Y GT , XT (S), Y T (S) and
the model parameters Θ, and thus our out-of-core models are to solve

min
Θ

Ex ES{L̃(x, Y GT , XT (S), Y T (S),Θ)}

where L̃ is either L or L.

Sampling a set of sizeB and then finding the nearestK samples only once, however, are insufficient
on imbalanced datasets, due to the low selection probability for minor classes. To resolve this, we
iteratively takeR random batches: each time a random batch is taken, we update the closest samples
XT (S) by the K closest samples among the current batch and the K previous closest samples.
These resulting nearest feature vectors and corresponding labels are used as XT (S) and Y T (S) for
x in the loss function. Note that we allow the previously selected samples to be selected in later
sampling iterations. The entire algorithm is exhibited in Algorithm 1.

ALGORITHM 1: Out-of-core framework
for epoch = 1,...,T do

for training sample x do
Let XT = ∅;
for r = 1 to R do

Randomly draw B samples from training set;
U = nearest K samples to x among the B samples;
Let XT be the nearest K samples to x among U ∪XT ;

end
Update parameters by a gradient iteration: ΘR= ΘR − α∇L̃(x, Y GT , XT , Y T ,ΘR);

end
end

4 COMPUTATIONAL EXPERIMENTS

Four classification datasets are used: Network Intrusion (NI) Hettich & Bay (1999), Forest Cover-
type (COV) Blackard & Dean (1998), SensIT Duarte & Hu (2004) and Credit Card Default (CCD)
Yeh & hui Lien (2009). Details of these datasets are in Table 1. We only consider 3 classes in NI and
COV datasets due to significant class imbalance. All of the models have been developed in Python
2.7 by using Tensorflow 1.4.

For each dataset we experiment with 5 different seeds. F-1 score is used as the performance measure
and all reported numbers are averages taken over 5 random seeds. We discuss the performance of
the models in two aspects: classification and oversampling.

6



Under review as a conference paper at ICLR 2019

Table 1: Datasets information.
NI COV SensIT CCD

Dataset Size 796,497 530,895 98,528 30,000
Feature Size 41 54 100 23

Number of Classes 3 3 3 2

CLASSIFICATION

As comparisons against memory network kNN models and sequence to sequence kNN models,
we use kNN with Euclidean metric, a 4-layer feed-forward neural network (FFN) trained using
the Adam optimization algorithm (which has been calibrated) and MemN2N (since MNkNN and
MNkNN VEC are built on MemN2N) as three benchmarks. Value K = 5 is used in all models
because it yields the best performance with low standard deviation among K = 3, 4, ..., 10. Increas-
ing K beyond K = 5 is somewhat detrimental to the F-1 scores while significantly increasing the
training time.

In the sequence to sequence kNN models, LSTM cells are used. In the memory network kNN mod-
els, the size of the external memory is 64 since we observe that models with memory vectors of size
64 generally provide the best F-1 scores with acceptable running time. Both sequence to sequence
kNN models and memory network kNN models are trained using the Adam optimization algorithm
with initial learning rate set to be 0.01. Dropout with probability 0.2 and batch normalization are
used to avoid overfitting. Regarding the choices of other hyperparameters, we find that τ = 0.85,
λ = 0.12 and α = 9.5 provide overall the best F-1 scores.

We first discuss the full models that can handle all of the training data, i.e. kNN can be run on the
entire dataset. Figure 1 show that in the full model case, V2VSLS consistently outperforms other
models on all four datasets. t-tests show that it significantly outperforms three benchmarks at the
5% level on all four datasets. Moreover, it can also be seen that predicting not only labels but feature
vectors as well is reasonable, since V2VSLS consistently outperforms V2LS and MNkNN VEC
consistently outperforms MNkNN. Models predicting feature vectors outperform models not pre-
dicting feature vectors on all datasets. These memory based models exhibit subpar performance,
which is expected since they only consider 64 training samples at once (despite using exact labels).
From Figure 1 we also observe that standard deviations do not differ significantly.

Figure 1: Full model F-1 score. Numbers above bars denote the average F-1 scores. The error bars
denote the standard deviations. Note that the y-axis does not start from 0.

In the out-of-core versions of our models, R is set to be 50, since we observe that increasing 50 to,
for instance, 100, only has a slight impact on F-1 scores. However, increasing R from 50 to 100
substantially increases the running time. The batch size B of the out-of-core models is set to be 64
since it is found to provide overall the best F-1 scores with reasonable running time.

Figure 2 shows the results of our models under the out-of-core assumption when R = 50 and
B = 64. The comparison shows that both V2VLSL and MNkNN VEC significantly outperform
the kNN benchmark based on t-tests at the 5% significance level. The kNN benchmark provides
a low score since we restrict the batch size (or memory size) to be 64, and it turns out that kNN
is substantially affected by the randomness of batches. Our models (except V2VS, since it makes

7



Under review as a conference paper at ICLR 2019

Figure 2: Out-of-core model with R=50. Note that the y-axis does not start from 0.

Table 2: Full model and out-of-core (OOC) model comparison on SensIT.
kNN V2LS V2VS V2VSLS MNkNN MNkNN VEC

Full F-1 82.56 84.93 74.84 86.24 79.58 83.41
OOC F-1 61.40 82.47 69.12 83.38 78.80 82.32

Full time (s) 312 443+635 857+1358 1391+1802 443+692 1391+1081
OOC time (s) 193 287+619 488+1316 741+1846 287+703 741+1055

predictions only depending on feature vector sequences) are robust under the out-of-core setting,
because the weight of the ground truth label in the loss function is relatively high so that even if the
input nearest sequences are noisy, they still can focus on learning the ground truth label and making
reasonable predictions.

Table 2 shows a comparison between the full and out-of-core models with R = 50, B = 64 on the
SensIT dataset. The running time of our models are broken down to two parts: the first part is the
time to obtain sequences of K nearest feature vectors and labels and the second part is the model
training time. Under the out-of-core setting, overall the kNN sequence preprocessing time is saved
by approximately 40% while the models perform only slightly worse.

OVERSAMPLING

Since V2VSLS and MNkNN VEC are able to predict out-of-sample feature vectors, we also regard
our models as oversamplers and we compare them with two widely used oversampling techniques:
SMOTE and ADASYN. We only test V2VSLS since it is the best model that can handle all of the
data. In our experiments, we first fully train the model. Then for each sample from the training set,
V2VSLS predicts K = 5 out-of-sample feature vectors which are regarded as synthetic samples.
We add them to the training set if they are in a minority class until the classes are balanced or there
are no minority training data left for creating synthetic samples. In our oversampling experiments,
we use λ = 1.3 and α = 3.

Figure 3: Oversampling: F-1 score comparison.

8



Under review as a conference paper at ICLR 2019

Table 3: Oversampling techniques comparison.
NI COV SensIT CCD

Best model FFN+V2VSLS RF+V2VSLS FFN+V2VSLS RF+V2VSLS
Best F-1 score 90.89 94.36 83.92 68.08

Better than best SMOTE by 1% 0.51% 0.61% 2.28%
Better than best ADASYN by 0.6% 0.56% 0.26% 1.4%

Figure 3 shows the F-1 scores of FFN, extreme gradient boosting (XGB) and random forest (RF)
classification models, with different oversampling techniques, namely, original training set without
oversampling, SMOTE, ADASYN and V2VSLS. V2VSLS performs the best among all combina-
tions of classification models and oversampling techniques, as shown in Table 3. Although most of
the time models on datasets with three oversampling techniques outperform models on datasets with-
out oversampling, the classification performance still largely depends on the classification model
used and which dataset is considered.

Figure 4 shows a t-SNE van der Maaten & Hinton (2008) visualization of the original set and the
oversampled set, using SensIT dataset, projected onto 2-D space. Although SMOTE and ADASYN
overall perform well, their class boundaries are not as clean as those obtained by V2VSLS.

Figure 4: t-SNE visualization of different oversampling methods

SUMMARY

In summary, we find that it is beneficial to have neural network models learn not only labels but
feature vectors as well. In the full models, V2VSLS outperforms all other models consistently; in
the out-of-core models, both V2VSLS and MNkNN VEC significantly outperform the kNN bench-
mark. As an oversampler, the average F-1 score based on the training set augmented by V2VSLS
outperforms that of SMOTE and ADASYN.

We recommend to run V2VSLS with large α and small λ for classification. In the oversampling
scenario, however, we suggest to use small α and large λ so that the model focuses more on the
feature vectors, i.e. synthetic samples.

REFERENCES

Jock A. Blackard and Denis J. Dean. Forest covertype. UCI Machine Learning Repository, 1998.
URL https://archive.ics.uci.edu/ml/datasets/covertype.

Gunnar Carlsson, Tigran Ishkhanov, Vin de Silva, and Afra Zomorodian. On the local behavior of
spaces of natural images. International Journal of Computer Vision, 2008.

Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer. SMOTE:
Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research, 2002.

9



Under review as a conference paper at ICLR 2019

Kyunghyun Cho, Bart van Merrienboer, Çaglar Gülçehre, Fethi Bougares, Holger Schwenk, and
Yoshua Bengio. Learning phrase representations using RNN encoder-decoder for statistical ma-
chine translation. Conference on Empirical Methods in Natural Language Processing, 2014.

Thomas M. Cover and Peter E. Hart. Nearest neighbor pattern classification. Institute of Electrical
and Electronics Engineers Transactions on Information Theory, 1967.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. Conference on Computer Vision and Pattern Recognition, 2009.

Marco F. Duarte and Yu Hen Hu. Vehicle classification in distributed sensor networks. Journal of
Parallel and Distributed Computing, 2004.

Dumitru Erhan, Yoshua Bengio, Aaron C. Courville, Pierre-Antoine Manzagol, Pascal Vincent, and
Samy Bengio. Why does unsupervised pre-training help deep learning? Journal of Machine
Learning Research, 2010.

Haibo He, Yang Bai, Edwardo A. Garcia, and Shutao Li. Adasyn: Adaptive synthetic sampling
approach for imbalanced learning. International Joint Conference on Neural Networks, 2008.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. Conference on Computer Vision and Pattern Recognition, 2016.

S. Hettich and S. D. Bay. Network intrusion. The UCI KDD Archive, 1999. URL http://kdd.
ics.uci.edu.

Sepp Hochreiter and Jrgen Schmidhuber. Long short-term memory. Neural Computation, 1997.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Annual Conference on Neural Information Processing Systems, 2012.

Charles Mathy, Nate Derbinsky, José Bento, Jonathan Rosenthal, and Jonathan S. Yedidia. The
boundary forest algorithm for online supervised and unsupervised learning. Association for the
Advancement of Artificial Intelligence Conference, 2015.

Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. Annual Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, 2013.

Christopher Olah. Neural networks, manifolds, and topology, 2014. URL http://colah.
github.io/posts/2014-03-NN-Manifolds-Topology/.

Sainbayar Sukhbaatar, Arthur Szlam, Jason Weston, and Rob Fergus. Weakly supervised memory
networks. Annual Conference on Neural Information Processing Systems, 2015.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to sequence learning with neural networks.
Annual Conference on Neural Information Processing Systems, 2014.

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word representations: A simple and general
method for semi-supervised learning. Annual Meeting of the Association for Computational Lin-
guistics, 2010.

Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-SNE. Journal of Machine
Learning Research, 2008.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre antoine Manzagol.
Stacked denoising autoencoders: learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research, 2010.

Zhiguo Wang, Wael Hamza, and Linfeng Song. k-nearest neighbor augmented neural networks for
text classification. arXiv Repository, 2017. URL http://arxiv.org/abs/1708.07863.

I-Cheng Yeh and Che hui Lien. The comparisons of data mining techniques for the predictive
accuracy of probability of default of credit card clients. Expert Systems with Applications, 2009.

Daniel Zoran, Balaji Lakshminarayanan, and Charles Blundell. Learning deep nearest neighbor
representations using differentiable boundary trees. arXiv Repository, 2017. URL http://
arxiv.org/abs/1702.08833.

10


