ONLINE HYPERPARAMETER ADAPTATION VIA AMORTIZED PROXIMAL OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Effective performance of neural networks depends critically on effective tuning of optimization hyperparameters, especially learning rates (and schedules thereof). We present Amortized Proximal Optimization, which takes the perspective that each optimization step should approximately minimize a proximal objective (similar to the ones used to motivate natural gradient and trust region policy optimization). Optimization hyperparameters are adapted to best minimize the proximal objective after one weight update. We show that an idealized version of APO (where an oracle minimizes the proximal objective exactly) achieves second-order convergence rates for neural networks. APO incurs minimal computational overhead. We experiment with using APO to adapt a variety of optimization hyperparameters online during training, including (possibly layer-specific) learning rates, damping coefficients, and gradient variance exponents. For a variety of network architectures and optimization algorithms (including SGD, RMSprop, and K-FAC), we show that with minimal tuning, APO performs competitively with carefully tuned optimizers.

1 INTRODUCTION

Tuning optimization hyperparameters can be crucial for effective performance of a deep learning system. Most famously, carefully selected learning rate schedules have been instrumental in achieving state-of-the-art performance on challenging datasets such as ImageNet (Goyal et al., 2017) and WMT (Vaswani et al., 2017). Even algorithms such as RMSprop (Tieleman & Hinton, 2012) and Adam (Kingma & Ba, 2015), which are often interpreted in terms of coordinatewise adaptive learning rates, still have a global learning rate parameter which is important to tune. A wide variety of learning rate schedules have been proposed (Schraudolph, 1999; Li & Malik, 2016; Baydin et al., 2017). Seemingly unrelated phenomena have been explained in terms of effective learning rate schedules (van Laarhoven, 2017). Besides learning rates, other hyperparameters have been identified as important, such as the momentum decay factor (Sutskever et al., 2013), the batch size (Smith et al., 2017), and the damping coefficient in second-order methods (Martens & Grosse, 2015; Martens, 2010).

There have been many attempts to adapt optimization hyperparameters to minimize the training error after a small number of updates (Schraudolph, 1999; Andrychowicz et al., 2016; Baydin et al., 2017). This approach faces two fundamental obstacles: first, learning rates and batch sizes have been shown to affect generalization performance because stochastic updates have a regularizing effect (Dinh et al., 2017; Li et al., 2017; Mandt et al., 2017; Smith & Le, 2018; van Laarhoven, 2017). Second, minimizing the short-horizon expected loss encourages taking very small steps to reduce fluctuations at the expense of long-term progress (Wu et al., 2018). While these effects are specific to learning rates, they present fundamental obstacles to tuning any optimization hyperparameter, since basically any optimization hyperparameter somehow influences the size of the updates.

In this paper, we take the perspective that the optimizer’s job in each iteration is to approximately minimize a proximal objective which trades off the loss on the current batch with the average change in the predictions. Specifically, we consider proximal objectives of the form $J(\phi) = h(f(g(\theta, \phi))) + \lambda D(f(\theta), f(g(\theta, \phi)))$, where f is a model with parameters θ, h is an approximation to the objective function, g is the base optimizer update with hyperparameters ϕ, and D is a distance metric. Indeed, approximately solving such a proximal objective motivated the natural
We introduce Amortized Proximal Optimization (APO), an approach which adapts optimization hyperparameters to minimize the proximal objective in each iteration. We use APO to tune hyperparameters of SGD, RMSprop, and K-FAC; the hyperparameters we consider include (possibly layer-specific) learning rates, damping coefficients, and the power applied to the gradient covariances.

Notice that APO has a hyperparameter λ which controls the aggressiveness of the updates. We believe such a hyperparameter is necessary until the aforementioned issues surrounding stochastic regularization and short-horizon bias are better understood. However, in practice we find that there are default settings and schedules for λ which perform well out-of-the-box. Furthermore, APO can automatically adapt tens of optimization hyperparameters with only a single hand-tuned hyperparameter.

We provide theoretical justification for APO by proving strong convergence results for an oracle which solves the proximal objective exactly in each iteration. In particular, we show global linear convergence and locally quadratic convergence under mild assumptions. These results motivate the proximal objective as a useful target for meta-optimization.

We evaluate APO on real-world tasks including image classification on MNIST, CIFAR-10, and SVHN. We show that adapting learning rates online via APO yields faster training convergence than the best fixed learning rates for each task, and is competitive with manual learning rate decay schedules. Although we focus on fast optimization of the training objective, we also find that the solutions found by APO generalize at least as well as those found by fixed hyperparameters or fixed schedules.

2 Amortized Proximal Optimization

We view a neural network as a parameterized function $z = f(x, \theta)$, where x is the input, θ are the weights and biases of the network, and z can be interpreted as the output of a regression model or the un-normalized log-probabilities of a classification model. Let the training dataset be $\{(x_i, t_i)\}_{i=1}^N$, where input x_i is associated with target t_i. Our goal is to minimize the loss function:

$$L(Z, T) = \sum_{i=1}^N \ell(z_i, t_i) = \sum_{i=1}^N \ell(f(x_i, \theta), t_i),$$

where Z is the matrix of network outputs on all training examples x_1, \ldots, x_N, and T is the vector of labels. We design an iterative optimization algorithm to minimize Eq. 1 under the following framework: in the kth iteration, one aims to update θ to minimize the following proximal objective:

$$h_{\text{prox}}(\theta) = h(f(x, \theta)) + \lambda E_{x \sim \mathcal{P}}[D(f(\tilde{x}, \theta), f(\tilde{x}, \theta_k))],$$

where x is the data used in the current iteration, \mathcal{P} is the distribution of data, θ_k is the parameters of the neural network at the current iteration, $h(\cdot)$ is some approximation of the loss function, and $D(\cdot, \cdot)$ represents the distance between network outputs under some metric (for notational convenience, we use mini-batch size of 1 to describe the algorithm). We first provide the motivation for this proximal objective in Section 2.1, then in Section 2.2, we propose an algorithm to optimize it in an online manner.

2.1 Motivation for the Proximal Objective

In this section, we show that by approximately minimizing simple instances of Eq. 2 in each iteration (similar to Schulman et al., 2015), one can recover the classic Gauss-Newton algorithm and Natural Gradient Descent (Amari, 1998). In general, updating θ so as to minimize the proximal objective is impractical due to the complicated nonlinear relationship between θ and z. However, one can find an approximate solution by linearizing the network function:

$$f(x, \theta + \Delta \theta) \approx f(x, \theta) + J \Delta \theta,$$

where $J = \nabla_{\theta} f(x, \theta)$ is the Jacobian matrix. We consider the following instance of Eq. 2

$$h_{\text{prox}}(\theta) = \Delta z^\top \nabla_{z} \ell(f(x, \theta_k), t) + \lambda E_{x \sim \mathcal{P}}[D(f(\tilde{x}, \theta), f(\tilde{x}, \theta_k))],$$

where $\Delta z = f(x, \theta + \Delta \theta) - f(x, \theta)$.
where $\Delta z \triangleq f(x, \theta) - f(x, \theta_k)$ is the change of network output, t is the label of current data x. Here $h(\cdot)$ is defined as the first-order Taylor approximation of the loss function. Using the linear approximation (Eq. 3), and a local second-order approximation of D, this proximal objective can be written as:

$$h_{prox}(\theta) \approx \Delta \theta^T \nabla_\theta \ell(f(x, \theta_k), t) + \lambda \Delta \theta^T E_{\tilde{x} \sim P} \left[J^T \nabla^2 \Delta \tilde{J} \right] \Delta \theta,$$

where $\tilde{J} = \nabla_\theta f(\bar{x}, \theta_k)$ is the Jacobian matrix on data \bar{x}, $\nabla^2 \tilde{D} \triangleq \nabla^2 \tilde{D}(\tilde{z}, f(\bar{x}, \theta_k))$ is the Hessian matrix of the dissimilarity measured at $\tilde{z} = f(\bar{x}, \theta_k)$.

Solving Eq. 5 yields:

$$\Delta \theta = -\frac{1}{\lambda} G^{-1} \nabla_\theta \ell(f(x, \theta), t),$$

where $G \triangleq E_{\tilde{x} \sim P} \left[J^T \nabla^2 \tilde{J} \right]$ is the pre-conditioning matrix. Different settings for the dissimilarity term D yield different algorithms. When

$$D(\tilde{z}, \tilde{z}_k) = ||\tilde{z} - \tilde{z}_k||^2_2$$

is defined as the squared Euclidean distance, Eq. 5 recovers the classic Gauss-Newton algorithm. When

$$D(\tilde{z}, \tilde{z}_k) = \ell(\tilde{z}) - \ell(\tilde{z}_k) - \langle \nabla \ell(\tilde{z}_k), \tilde{z} - \tilde{z}_k \rangle$$

is defined as the Bregman divergence, Eq. 6 yields the Generalized Gauss-Newton (GGN) method. When the output of neural network parameterizes an exponential-family distribution, the dissimilarity term can be defined as Kullback-Leibler divergence:

$$D(\tilde{z}, \tilde{z}_k) = \sum_y p(y|\tilde{z}) \log \frac{p(y|\tilde{z})}{p(y|\tilde{z}_k)},$$

in which case Eq. 6 yields Natural Gradient Descent (Amari [1998]). Since different versions of our proximal objective lead to various efficient optimization algorithms, we believe it is a useful target for meta-optimization.

2.2 Amortized Optimization

Although optimizers including the Gauss-Newton algorithm and Natural Gradient Descent can be seen as ways to approximately solve Eq. 2, they rely on a local linearization of the neural network and usually require more memory and more careful tuning in practice. We propose to instead directly minimize Eq. 2 in an online manner.

Finding good hyperparameters (e.g., the learning rate for SGD) is a challenging problem in practice. We propose to adapt these hyperparameters online in order to best optimize the proximal objective. Consider any optimization algorithm \textit{(base-optimizer)} of the following form:

$$\theta \leftarrow g(x, t, \theta, \xi, \phi).$$

Here, θ is the set of hyperparameters we want to tune, x is the data used in this iteration, t is the corresponding label, ξ is a vector of statistics computed online during optimization, and ϕ is a vector of optimization hyperparameters to be tuned. For example, ξ contains the exponential moving averages of the squared gradients of the parameters in RMSprop. ϕ usually contains the learning rate (global or layer-specific), and possibly other hyperparameters dependent on the algorithm.

For each step, we formulate the meta-objective from Eq. 2 as follows (for notational convenience we omit variables other than θ and ϕ of g):

$$J(\phi) = h\left(f(x, g(\theta, \phi)) + \lambda E_{\tilde{x} \sim P} [D(f(\bar{x}, g(\theta, \phi)), f(x, \theta))]
ight).$$

Here, \bar{x} is a random mini-batch sampled from the data distribution P. We compute the approximation to the loss, h, using the same mini-batch as the gradient of the base optimizer, to avoid the short horizon bias problem [Wu et al. [2018]; we measure D on a different mini-batch to avoid instability that would result if we took a large step in a direction that is unimportant for the current batch, but important for other batches. The hyperparameters ϕ are optimized using a stochastic gradient-based algorithm (the \textit{meta-optimizer}) using the gradient $\nabla_\phi J(\phi)$ (similar in spirit to [Schraudolph [1999], Maclaurin et al. [2015]]). We refer to our framework as Amortized Proximal Optimization (APO). The simplest version of APO, which uses SGD as the meta-optimizer, is shown in Algorithm 1. One can choose any meta-optimizer; we found that RMSprop was the most stable and best-performing meta-optimizer in practice, and we used it for all our experiments.

3
Algorithm 1: Amortized Proximal Optimization (SGD as meta-optimizer)

Input: $\eta, \theta_0, \phi_0, M, T$

Output: θ

$\theta \leftarrow \theta_0$

$\phi \leftarrow \phi_0$

for $i \leftarrow 1, \ldots, M$

sample data (x, t)

for $t \leftarrow 1, \ldots, T$

sample $\tilde{x} \sim P$

$J(\phi) = h(f(x, g(x, t, \theta, \xi, \phi)), f(\tilde{x}, \theta)) + \lambda D(f(\tilde{x}, g(x, t, \theta, \xi, \phi)), f(\tilde{x}, \theta))$

$\phi \leftarrow \phi - \eta \nabla_{\phi} J(\phi)$

end

$\theta \leftarrow \theta + g(x, t, \theta, \xi, \phi)$

end

return θ

3 Analysis of an Idealized Version

When considering optimization meta-objectives, it is useful to analyze idealized versions where the meta-objective is optimized exactly (even when doing so is prohibitively expensive in practice). For instance, Wu et al. (2018) analyzed an idealized SMD algorithm, showing that even the idealized version suffered from short-horizon bias. In this section, we analyze two idealized versions of APO where an oracle is assumed to minimize the proximal objective exactly in each iteration. In both cases, we obtain strong convergence results, suggesting that our proximal objective is a useful target for meta-optimization.

We view the problem in output space (i.e., explicitly designing an update schedule for z_i). Consider the space of outputs on all training examples; when we train a neural network, we are optimizing over a manifold in this space:

$$\mathcal{M} = \{ (f(x_1, \theta), f(x_2, \theta), \ldots, f(x_N, \theta)) \mid \theta \in \mathbb{R}^D \}$$

(12)

We assume that f is continuous, so that \mathcal{M} is a continuous manifold. Given an oracle that for each iteration exactly minimizes the expectation of proximal objective Eq. (2) over the dataset, we can write one iteration of APO in output space as:

$$Z \leftarrow \arg \min_{Z \in \mathcal{M}} \sum_{i=1}^{N} [h(z_i) + \lambda D(z_i, z_{k,i})],$$

(13)

where z_i is the ith column of Z, corresponding to the network output on data x_i after update, $z_{k,i}$ is the current network output on data x_i.

3.1 Projected Gradient Descent

We first define the proximal objective as Eq. (4) using the Euclidean distance as the dissimilarity measure, which corresponds to Gauss-Newton algorithm under the linearization of network. With an oracle, this proximal objective leads to projected gradient descent:

$$Z_{k+1} \leftarrow \arg \min_{Z \in \mathcal{M}} \left\| Z - \left(Z_k - \frac{1}{2\lambda} \nabla Z L(Z_k, T) \right) \right\|_F^2.$$

(14)

Consider a loss function on one data point $\ell(z) : \mathbb{R}^d \rightarrow \mathbb{R}$, where d is the dimension of neural network’s output. We say the loss is μ-strongly convex if:

$$\ell(z) - \ell(z^*) \geq \frac{\mu}{2} \| z - z^* \|^2,$$

(A1)

For convenience of notation, we omit the dependence of loss on the fixed label.
where \(z^* \) is the unique minimizer and \(\mu \) is some positive real number. We say the gradient is \(L \)-Lipschitz if:

\[
\| \nabla_x \ell(z_1) - \nabla_x \ell(z_2) \| \leq L \| z_1 - z_2 \|.
\]

(A2)

When the manifold \(\mathcal{M} \) is dense in the space, we have the following theorem stating the global linear convergence of Eq. 14:

Theorem 1. Assume the loss satisfies A1 and A2. When the manifold \(\mathcal{M} \) is \(\delta \)-dense in the sense that for each \(Z \in \mathbb{R}^{N \times d} \), there is some possible output \(\tilde{Z} \in \mathcal{M} \) such that

\[
\left\| Z - \tilde{Z} \right\|_F \leq \delta,
\]

iteration (14) with \(\lambda \geq \frac{1}{4} (L + \mu) \) converges linearly to a ball centered at minimum:

\[
\left\| Z_k - z^* \right\|_F^2 \leq \left(1 - \frac{L\mu}{2(L + \mu)\lambda} \right)^k \left\| Z_0 - z^* \right\|_F^2 + \left(\frac{4\delta\lambda}{\mu} \right)^2.
\]

It is worth noting that this convergence result differs from usual neural network convergence results, because here the Lipschitz constants are defined for the output space, so they are known and generally nice. For instance, when we use a quadratic loss, we have \(L = \mu = 1 \). In contrast, the gradient is in general not Lipschitz continuous in weight space for deep networks.

3.2 Proximal Newton method

We further replace the dissimilarity term with:

\[
D(z_i, z_{k,i}) = (z_i - z_{k,i})^T \nabla^2 \ell(z_{k,i})(z_i - z_{k,i}),
\]

which is the second-order approximation of Eq. 8. With a proximal oracle, this variant of APO turns out to be Proximal Newton Method in the output space, if we set \(\lambda = \frac{1}{2} \):

\[
Z_{k+1} \leftarrow \arg \min_{Z \in \mathcal{M}} \left(\left\langle \nabla_z L(Z_k), Z - Z_k \right\rangle + \frac{1}{2} \left\| Z - Z_k \right\|_H^2 \right),
\]

(16)

where \(\left\| Z - Z_k \right\|_H^2 \) is the norm with local Hessian as metric. In general, Newton’s method can’t be applied directly to neural nets in weight space, because it is nonconvex (Dauphin et al., 2014). However, Proximal Newton Method in output space can be efficient given a strongly convex loss function.

Consider a loss \(\ell(z) \) with \(L_H \)-smooth Hessian: for any vector \(v \in \mathbb{R}^d \) such that \(\| v \| = 1 \), there is:

\[
\| \nabla^2 \ell(z_1)v - \nabla^2 \ell(z_2)v \| \leq L_H \| z_1 - z_2 \|.
\]

(A3)

The following theorem suggests the locally fast convergence rate of iteration Eq. 16

Theorem 2. Under assumptions A1 and A3, if the unique minimum \(Z^* \in \mathcal{M} \), then whenever iteration (16) converges to \(Z^* \), it converges locally quadratically:

\[
\lim_{k \to \infty} \frac{\| Z_{k+1} - Z^* \|}{\| Z_k - Z^* \|^2} \leq \frac{L_H}{\mu}.
\]

Hence, the proximal oracle achieves second-order convergence for neural network training under fairly reasonable assumptions. Of course, we don’t expect practical implementations of APO (or any other practical optimization method for neural nets) to achieve the second-order convergence rates, but we believe the second-order convergence result still motivates our proximal objective as a useful target for meta-optimization.

2This assumption is motivated by [Zhang et al., 2016], where deep neural networks are shown to easily fit random labels on the training set and achieve near 0 training error.

3It is worth noting that here we don’t need assumptions of manifold \(\mathcal{M} \) being even differentiable. Therefore, the result holds for neural networks where non-smooth activation functions like ReLU are used.
4 RELATED WORK

Finding good optimization hyperparameters is a longstanding problem [Bengio 2012]. Classic methods for hyperparameter optimization, such as grid search, random search, and Bayesian optimization [Snoek et al. 2012; 2015; Swersky et al. 2014], are expensive, as they require performing many complete training runs, and can only find fixed hyperparameter values (e.g., a constant learning rate). Hyperband [Li et al. 2016] can reduce the cost by terminating poorly-performing runs early, but is still limited to finding fixed hyperparameters. Population Based Training (PBT) [Jaderberg et al. 2017] trains a population of networks simultaneously, and throughout training it terminates poorly-performing networks, replaces their weights by a copy of the weights of a better-performing network, perturbs the hyperparameters, and continues training from that point. PBT can find a coarse-grained learning rate schedule, but because it relies on random search, it is far less efficient than gradient-based meta-optimization.

There have been a number of approaches to gradient-based adaptation of learning rates. Gradient-based optimization algorithms can be unrolled as computation graphs, allowing the gradients of hyperparameters such as learning rates to be computed via automatic differentiation. Maclaurin et al. [2015] propagate gradients through the full unrolled training procedure to find optimal learning rate schedules offline. Stochastic meta-descent (SMD) [Schraudolph 1999] adapts hyperparameters online. Hypergradient descent (HD) [Baydin et al. 2017] takes the gradient of the learning rate with respect to the optimizer update in each iteration, to minimize the expected loss in the next iteration. In particular, HD suffers from short horizon bias [Wu et al. 2018], while in Appendix E we show that APO does not.

Some authors have proposed learning entire optimization algorithms [Li & Malik 2016; 2017; Andrychowicz et al. 2016]. Li & Malik [2016] view this problem from a reinforcement learning perspective, where the state consists of the objective function L and the sequence of prior iterates $\{\theta_t\}$ and gradients $\{\nabla \theta L(\theta_t)\}$, and the action is the step $\Delta \theta$. In this setting, the update rule ϕ is a policy, which can be found via policy gradient methods [Sutton et al. 2000]. Approaches that learn optimizers must be trained on a set of objective functions $\{f_1, \ldots, f_n\}$ drawn from a distribution F; this setup can be restrictive if we only have one instance of an objective function. In addition, the initial phase of training the optimizer on a distribution of functions can be expensive. APO requires only the objective function of interest and finds learning rate schedules in a single training run.

In principle, APO could be used to learn a full optimization algorithm; however, learning such an algorithm would be just as hard as the original optimization problem, so one would not expect an out-of-the-box meta-optimizer (such as RMSprop with learning rate 0.001) to work as well as it does for adapting few hyperparameters.

5 EXPERIMENTS

In this section, we evaluate APO empirically on a variety of learning tasks; Table 1 gives an overview of the datasets, model architectures, and base optimizers we consider.

In our proximal objective, $J(\phi) = h(f(x, g(\theta, \phi))) + \lambda \mathbb{E}_{x \sim P}[D(f(x, g(\theta)), f(x, \theta))]$, h can be any approximation to the loss function (e.g., a linearization); in our experiments, we directly used the loss value $h = \ell$, as we found this to work well in many settings. As the dissimilarity term D, we used the squared Euclidean norm.

We used APO to tune the optimization hyperparameters of four base-optimizers: SGD, SGD with Nesterov momentum (denoted SGDm), RMSprop, and K-FAC. For SGD, the only hyperparameter is the learning rate; we consider both a single, global learning rate, as well as per-layer learning rates. For SGDm, the update rule is given by:

$$v_t \leftarrow \mu v_{t-1} + g_t$$

$$\theta_t \leftarrow \theta_{t-1} - \eta (g_t + \mu v_t)$$

where $g = \nabla \ell$. Since adapting μ requires considering long-term performance [Sutskever et al. 2013], it is not appropriate to adapt it with a one-step objective like APO. Instead, we just adapt the learning rate with APO as if there’s no momentum, but then apply momentum with $\mu = 0.9$ on top of the updates.
For RMSprop, recall that the optimizer step is given by:

\[
\begin{align*}
 s_t & \leftarrow \gamma s_{t-1} + (1 - \gamma) g_t^2 \\
 \theta_t & \leftarrow \theta_{t-1} - \frac{\eta}{s_t^\epsilon + \epsilon g_t}
\end{align*}
\]

(19)

We note that, in addition to the learning rate \(\eta \), we can also consider adapting \(\epsilon \) and the power to which \(s \) is raised in the denominator of Eq. (20)—we denote this parameter \(\rho \), where in standard RMSprop we have \(\rho = \frac{1}{2} \). Both \(\epsilon \) and \(\rho \) can be interpreted as having a damping effect on the update.

K-FAC is an approximate natural gradient method (Amari, 1998) based on preconditioning the gradient by an approximation to the Fisher matrix, \(\theta \leftarrow \theta - F^{-1}\nabla \ell \). For K-FAC, we tune the global learning rate and the damping factor.

5.1 Toy Optimization Problems

Rosenbrock. We first validated APO on the two-dimensional Rosenbrock function, \(f(x, y) = (1 - x)^2 + 100(y - x^2)^2 \), with initialization \((x, y) = (1, -1.5) \). We used APO to tune the learning rate of RMSprop, and compared to RMSprop with several fixed learning rates. Because this problem is deterministic, we set \(\lambda = 0 \) for APO. Figure 1(a) shows that RMSprop-APO was able to achieve a substantially lower objective value than RMSprop. The learning rates for each method are shown in Figure 1(b); we found that APO first increases the learning rate to make rapid progress at the start of optimization, and then gradually decreases it as it approaches the local optimum. In Appendix D, we provide additional experiments on Rosenbrock, and show that APO converges quickly from many different locations on the Rosenbrock surface.

Badly-Conditioned Regression. Next, we evaluated APO on a badly-conditioned regression problem (Recht & Rahimi, 2017), which is intended to be a difficult test problem for optimization algorithms. In this problem, we consider a dataset of input/output pairs \(\{(x, y)\} \), where the outputs are given by \(y = Ax \), where \(A \) is an ill-conditioned matrix with \(\kappa(A) = 10^{10} \). The task is to fit a two-layer linear model \(f(x) = W_2 W_1 x \) to this data; the loss to be minimized is \(\mathcal{L} = E_{x \sim \mathcal{N}(0, I)} \left[\|Ax - W_2 W_1 x\|^2 \right] \). Figure 1(c) compares the performance of RMSprop with a hand-tuned fixed learning rate to the performance of RMSprop-APO, with learning rates shown in Figure 1(d). Again, the adaptive learning rate enabled RMSprop-APO to achieve a loss value orders of magnitude smaller than that achieved by RMSprop with a fixed learning rate.

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Architecture</th>
<th>Optimizer</th>
<th>Batch Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosenbrock & 2-Layer Linear</td>
<td>-</td>
<td>RMSprop</td>
<td>-</td>
</tr>
<tr>
<td>MNIST</td>
<td>MLP</td>
<td>SGD, RMSprop</td>
<td>100</td>
</tr>
<tr>
<td>FashionMNIST</td>
<td>2-Layer CNN</td>
<td>RMSprop, K-FAC</td>
<td>100</td>
</tr>
<tr>
<td>CIFAR-10</td>
<td>VGG-11</td>
<td>SGD, RMSprop</td>
<td>64</td>
</tr>
<tr>
<td>SVHN</td>
<td>ResNet-18</td>
<td>RMSprop</td>
<td>64</td>
</tr>
</tbody>
</table>

Table 1: Summary of the datasets, model architectures, and optimizers we investigate.
Figure 2: Experiments on MNIST and CIFAR-10. Upper row: mean loss over the training set. Middle row: accuracy on the test set. Bottom row: learning rate per iteration. (a) Comparison of SGD/SGDm with and without APO on MNIST; (b) Comparison of RMSprop with and without APO on MNIST; (c) Comparison of SGD/SGDm with and without APO on CIFAR-10; (d) Comparison of RMSprop with and without APO on CIFAR-10.

5.2 Real-world Datasets

For each of the real-world datasets we consider—MNIST, CIFAR-10, SVHN, and FashionMNIST—we chose the learning rates for the baseline optimizers via grid searches: for SGD, we performed a grid search over learning rates \{0.1, 0.01, 0.001\}, while for RMSprop, we performed a grid search over learning rates \{0.01, 0.001, 0.0001\}. For APO, we used the same default setting for each experiment: in all cases, we used RMSprop as the meta-optimizer, with learning rate 0.001; for SGD-APO and SGDm-APO, we set the initial learning rate to 0.01, while for RMSprop, we set the initial learning rate to 0.0001. The only parameter we consider for APO is the value of \(\lambda\): for SGD-APO and SGDm-APO, we select the best \(\lambda\) from a grid search over \{0.1, 0.01, 0.001, 0.0001\}; for RMSprop, we choose \(\lambda\) from a grid search over \{0.1, 0.01, 0.001, 0.0001\}.

5.2.1 Multi-layer Perceptron on MNIST

First, we compare SGD and RMSprop with their APO-tuned variants, and show that APO outperforms fixed learning rates. As the classification network for MNIST, we used a two-layer MLP with 1000 hidden units per layer and ReLU nonlinearities. We trained on mini-batches of size 100 for 100 epochs.

SGD with APO. First, we used APO to tune the global learning rate of SGD and SGD with Nesterov momentum (denoted SGDm) on MNIST, where the momentum is fixed to 0.9. For baseline SGDm, we used learning rate 0.01, while for baseline SGD, we used both learning rates 0.1 and 0.01. The training curve of SGD with learning rate 0.1 almost coincides with that of SGDm with learning rate 0.01. For SGD-APO, we used \(\lambda = 0.001\), while for SGDm-APO, we used \(\lambda = 0.01\). The comparison of the algorithms is shown in Figure 2(a). APO substantially improved the training loss for both SGD and SGDm.

RMSprop with APO. Next, we used APO to tune the global learning rate of RMSprop. For baseline RMSprop, the best-performing learning rate was 0.0001, while for RMSprop-APO, the best \(\lambda\) was 0.0001. Figure 2(b) compares RMSprop and its APO-tuned variant on MNIST.

5.2.2 Convolutional Neural Network on CIFAR-10

We trained a VGG-11 convolutional neural network (Simonyan & Zisserman, 2014) on CIFAR-10 (Krizhevsky & Hinton, 2009), using mini-batches of size 64, for 100 epochs.
SGD with APO. For each of SGD and SGDm, we used both learning rates 0.1 and 0.01. For the APO variants, we found that λ = 0.01 was best for SGD, while λ = 0.1 was best for SGDm. As shown in Figure 2(c), APO not only accelerates the training, but also achieves higher accuracy on the test set at the end of training.

RMSprop with APO. For RMSprop, the fixed learning rate 0.0001 achieved the smallest training loss as well as the best test accuracy. For RMSprop-APO, we used λ = 0.001. The training curves, test accuracies, and learning rates for RMSprop and RMSprop-APO on CIFAR-10 are shown in Figure 2(d). Again we found that APO not only achieved lower training loss than the baselines with fixed learning rates, but improved generalization.

5.2.3 ResNet on SVHN

We also used APO to train an 18-layer residual network (ResNet18) with batch normalization, on the SVHN dataset. We show the training loss, test accuracy, and learning rates for each method in Figure 3. Here, APO converged more quickly to a substantially lower loss value, and generalized better than by using a fixed learning rate. In particular, the fixed learning rate that performed best with respect to training loss, 10^{-5}, generalized far worse than the larger fixed learning rates.

5.3 Multiple Optimization Hyperparameters & Per-Layer Tuning

Here we highlight the ability of APO to tune several optimization hyperparameters simultaneously. We used APO to adapt all of the RMSprop hyperparameters \{η, ρ, ϵ\}. As shown in Figure 5(a), tuning ρ and ϵ in addition to the learning rate η can stabilize training. The adaptation of ρ and ϵ during training is shown in Appendix C. We also used APO to adapt per-layer learning rates. Figure 5(b)
Figure 5: SGD with weight decay compared to SGD-APO without weight decay, on CIFAR-10.

shows the per-layer learning rates tuned by APO, when using SGD on MNIST. Figure 5(c) uses APO to tune per-layer learning rate of RMSprop on MNIST.

K-FAC. We also used APO to train a convolutional network on the FashionMNIST dataset (Xiao et al., 2017). The network we use consists of two convolutional layers with 16 and 32 filters respectively, both with kernel size 5, followed by a fully-connected layer. We used APO to tune the learning rate and damping coefficient of K-FAC. We used learning rate 0.001 for K-FAC; for KFAC-APO, we used initial learning rate 0.001 and $\lambda = 0.1$. The results are shown in Figure 5(d), where we also compare K-FAC to hand-tuned RMSprop and RMSprop-APO on the same problem. We find that K-FAC with a fixed learning rate outperforms RMSprop-APO, while K-FAC-APO substantially outperforms K-FAC. We also show the adaptation of both the learning rate and damping coefficient for K-FAC-APO in Figure 5(d); we found that APO simultaneously increased the learning rate and decreased the damping at the start of training to make rapid progress, and then gradually decreased the learning rate and increased the damping.

5.4 **Batch Normalization and Weight Decay**

Batch normalization (BN) (Ioffe & Szegedy, 2015) is a widely used technique to speed up neural net training. Networks with BN are commonly trained with L_2 weight regularization (i.e., weight decay). It was shown by van Laarhoven (2017) and Hoffer et al. (2018) that the effectiveness of weight decay for networks with BN is not due to the regularization, but due to the fact that weight decay affects the scale of the network weights, which changes the effective learning rate. Instead, weight decay decreases the scale of the weights, which increases the effective learning rate; if one uses BN without regularizing the norm of the weights, then the weights can grow without bound, pushing the effective learning rate to 0. Here, we show that using APO to tune learning rates allows for effective training of BN networks without using weight decay. Since weight decay is most effective when a learning rate schedule is used, we further compared SGD with a learning rate schedule to its APO variant with a schedule for λ. We show that by using a schedule for λ analogous to the learning rate schedule, APO behaves better than the baselines, without the need for weight decay. For the baseline learning rate schedule for SGD, we started from learning rate 0.1 and decreased it by a factor of 10 every 20 epochs. We considered a similar schedule for λ in SGD-APO: we started from $\lambda = 0.0001$ and increased it by a factor of 10 every 20 epochs. Figure 5 compares SGD with weight decay and SGD-APO without weight decay.

6 **Conclusions**

We introduced amortized proximal optimization (APO), a method for online adaptation of optimization hyperparameters, including global and per-layer learning rates, and damping parameters for approximate second-order methods. We evaluated our approach on real-world neural network optimization tasks—training MLP and CNN models—and showed that it converges faster and generalizes better than optimal fixed learning rates. Empirically, we showed that our method overcomes short horizon bias and performs well with sensible default values for the initial learning rate of the base optimizer and the meta-learning rate.

When using a fixed learning rate, the decrease in the effective learning rate is not necessarily detrimental when there is no weight decay.
REFERENCES

A Proof of Theorem

Proof. All the matrix norms in this proof represent the Frobenius norm.

Recall the definition of loss function on entire dataset:

\[L(Z) = \sum_{i=1}^{N} \ell(z_i). \]

Obviously, the minimal output \(Z^* \) is the matrix composed of \(z_i^* \).

By the strong convexity of single loss function, we have the strong convexity of entire loss:

\[L(Z) - L(Z^*) = \sum_{i=1}^{N} \ell(z_i) - \ell(z_i^*) \geq \frac{\mu}{2} \sum_{i=1}^{N} \| z_i - z_i^* \|^2 = \frac{\mu}{2} \| Z - Z^* \|^2. \]

Let

\[\alpha = \frac{1}{2\lambda} \]

be the step size of projected gradient descent. Define the projection operator:

\[P(Z) \in \arg \min_{\tilde{Z} \in \mathcal{M}} \| Z - \tilde{Z} \|^2. \]

For one iteration, we have the following result:

\[
\begin{align*}
\| Z_{k+1} - Z^* \|^2 \\
= \| P(Z_k - \alpha \nabla L(Z_k)) - Z^* \|^2 \\
\leq \| Z_k - \alpha \nabla L(Z_k) - Z^* \|^2 + 2 \| Z_k - \alpha \nabla L(Z_k) - Z^* \| \delta + \delta^2 \\
\leq (1 + \gamma) \| Z_k - \alpha \nabla L(Z_k) - Z^* \|^2 + \left(1 + \frac{1}{\gamma} \right) \delta^2 \\
= (1 + \gamma) \left[\| Z_k - Z^* \|^2 - 2\alpha \langle Z_k - Z^*, \nabla L(Z_k) \rangle + \alpha^2 \| \nabla L(Z_k) \|^2 \right] + \left(1 + \frac{1}{\gamma} \right) \delta^2 \\
\leq (1 + \gamma) \sum_{i=1}^{N} \left[\| z_{k,i} - z_i^* \|^2 - 2\alpha \langle z_{k,i} - z_i^*, \nabla \ell(z_{k,i}) \rangle + \alpha^2 \| \nabla \ell(z_{k,i}) \|^2 \right] + \left(1 + \frac{1}{\gamma} \right) \delta^2 \\
\leq (1 + \gamma) \sum_{i=1}^{N} \left\{ \| z_{k,i} - z_i^* \|^2 - 2\alpha \left[\frac{L \mu}{L + \mu} \| z_{k,i} - z_i^* \|^2 + \frac{1}{L + \mu} \| \nabla \ell(z_{k,i}) \|^2 \right] + \alpha^2 \| \nabla \ell(z_{k,i}) \|^2 \right\} + \left(1 + \frac{1}{\gamma} \right) \delta^2 \\
= (1 + \gamma) \left[\left(1 - 2\alpha \frac{L \mu}{L + \mu} \right) \| Z_k - Z^* \|^2 - \left(2\alpha \frac{1}{L + \mu} - \alpha^2 \right) \| \nabla L(Z_k) \|^2 \right] + \left(1 + \frac{1}{\gamma} \right) \delta^2.
\end{align*}
\]
Here γ is any positive real number to be determined later. The first inequality is due to the definition of projection and assumption of δ-density, the second inequality is due to Young’s inequality, and the third inequality is due to Theorem 2.1.11 in [Nesterov (2013)].

By the assumption of the theorem, there is:

$$\lambda \geq \frac{1}{4} (L + \mu),$$

which is equivalent to:

$$\alpha \leq \frac{2}{L + \mu}.$$

As a result, there is:

$$\|Z_{k+1} - Z^*\|^2 \leq (1 + \gamma) \left(1 - 2\alpha \frac{L\mu}{L + \mu} \right) \|Z_k - Z^*\|^2 + \left(1 + \frac{1}{\gamma} \right) \delta^2.$$

Now we set γ such that:

$$(1 + \gamma) \left(1 - 2\alpha \frac{L\mu}{L + \mu} \right) = 1 - \alpha \frac{L\mu}{L + \mu},$$

there is

$$1 + \frac{1}{\gamma} \leq \frac{L + \mu}{\alpha L\mu}.$$

So for one iteration we have:

$$\|Z_{k+1} - Z^*\|^2 \leq \left(1 - \alpha \frac{L\mu}{L + \mu} \right) \|Z_k - Z^*\|^2 + \frac{L + \mu}{\alpha L\mu} \delta^2.$$

Unrolling the iterations for k steps, we have:

$$\|Z_k - Z^*\|^2 \leq \left(1 - \alpha \frac{L\mu}{L + \mu} \right)^k \|Z_0 - Z^*\|^2 + \left(\frac{L + \mu}{\alpha L\mu} \right)^2 \delta^2 \leq \left(1 - \frac{L\mu}{2\lambda (L + \mu)} \right)^k \|Z_0 - Z^*\|^2 + \frac{4}{\alpha^2 \mu^2} \delta^2 = \left(1 - \frac{L\mu}{2\lambda (L + \mu)} \right)^k \|Z_0 - Z^*\|^2 + \frac{16}{\mu^2 \lambda^2} \delta^2.$$

\[\square\]

B Proof of Theorem 2

Proof. For notational convenience, we think of Z as a vector rather than a matrix in this proof.

The Hessian $\nabla^2 L(Z)$ is therefore a block diagonal matrix, where each block is the Hessian of loss on a single data.

First, we notice the following equation:
arg\min_{Z \in \mathcal{M}} \left[\langle \nabla_Z \mathcal{L}(Z_k), Z - Z_k \rangle + \frac{1}{2} \| Z - Z_k \|_H^2 \right]

= arg\min_{Z \in \mathcal{M}} \left[\langle \nabla_Z \mathcal{L}(Z_k), Z - Z_k \rangle + \frac{1}{2} (Z - Z_k)^T \nabla^2 \mathcal{L}(Z_k) (Z - Z_k) \right]

= arg\min_{Z \in \mathcal{M}} \frac{1}{2} \left[\| Z - (Z_k - \nabla^2 \mathcal{L}(Z_k)^{-1} \nabla \mathcal{L}(Z_k)) \|_{\nabla^2 \mathcal{L}(Z_k)}^2 - \| \nabla \mathcal{L}(Z_k) \|_{\nabla^2 \mathcal{L}(Z_k)^{-1}}^2 \right]

= arg\min_{Z \in \mathcal{M}} \| Z - (Z_k - \nabla^2 \mathcal{L}(Z_k)^{-1} \nabla \mathcal{L}(Z_k)) \|_{\nabla^2 \mathcal{L}(Z_k)}^2.

Here

\| v \|_A^2 \triangleq v^T A v

is the norm of vector \(v \) defined by the positive definite matrix \(A \). \([\nabla^2 \mathcal{L}(Z_k)]^{-1}\) is the inverse of positive definite matrix \(\nabla^2 \mathcal{L}(Z_k) \), therefore also positive definite.

As a result of the above equivalence, one step of Proximal Newton Method can be written as:

\[Z_{k+1} = \arg\min_{Z \in \mathcal{M}} \| Z - (Z_k - \nabla^2 \mathcal{L}(Z_k)^{-1} \nabla \mathcal{L}(Z_k)) \|_{\nabla^2 \mathcal{L}(Z_k)}^2. \]

Since \(Z^* \in \mathcal{M} \) by assumption, there is:

\[\| Z_{k+1} - (Z_k - \nabla^2 \mathcal{L}(Z_k)^{-1} \nabla \mathcal{L}(Z_k)) \|_{\nabla^2 \mathcal{L}(Z_k)} \leq \| Z^* - (Z_k - \nabla^2 \mathcal{L}(Z_k)^{-1} \nabla \mathcal{L}(Z_k)) \|_{\nabla^2 \mathcal{L}(Z_k)}. \]

Now we have the following inequality for one iteration:

\[\| Z_{k+1} - Z^* \|_{\nabla^2 \mathcal{L}(Z_k)} \leq \| Z_{k+1} - (Z_k - \nabla^2 \mathcal{L}(Z_k)^{-1} \nabla \mathcal{L}(Z_k)) \|_{\nabla^2 \mathcal{L}(Z_k)} + \| Z^* - (Z_k - \nabla^2 \mathcal{L}(Z_k)^{-1} \nabla \mathcal{L}(Z_k)) \|_{\nabla^2 \mathcal{L}(Z_k)} \]

\[\leq 2 \| Z^* - (Z_k - \nabla^2 \mathcal{L}(Z_k)^{-1} \nabla \mathcal{L}(Z_k)) \|_{\nabla^2 \mathcal{L}(Z_k)} \]

\[= 2 \| Z^* - Z_k + \nabla^2 \mathcal{L}(Z_k)^{-1}(\nabla \mathcal{L}(Z_k) - \nabla \mathcal{L}(Z^*)) \|_{\nabla^2 \mathcal{L}(Z_k)} \]

\[\leq \frac{2}{\sqrt{H}} \| \nabla^2 \mathcal{L}(Z_k)(Z_k - Z_k) - \nabla \mathcal{L}(Z_k) + \nabla \mathcal{L}(Z^*) \| . \]

Here the first inequality is because of triangle inequality, the second inequality is due to the previous result, the equality is because \(\nabla \mathcal{L}(Z^*) = 0 \), the last inequality is because of the strong convexity.

By the Lipschitz continuity of the Hessian, we have:

\[\| \nabla^2 \mathcal{L}(Z_k)(Z_k - Z_k) - \nabla \mathcal{L}(Z_k) + \nabla \mathcal{L}(Z^*) \| \]

\[\leq \sum_{i=1}^{N} \| \nabla^2 \mathcal{L}(z_{k,i})(z_{k,i} - z_{k,i}^*) - \nabla \mathcal{L}(z_{k,i}) + \nabla \mathcal{L}(z_{k,i}^*) \| \]

\[\leq \frac{L_H}{2} \sum_{i=1}^{N} \| z_{k,i} - z_{k,i}^* \|^2 \]

\[= \frac{L_H}{2} \| Z_k - Z^* \|^2. \]
Therefore, we have:

$$\|Z_{k+1} - Z^*\| \leq \frac{1}{\sqrt{\mu}} \|Z_{k+1} - Z^*\|_{\nabla^2 L(Z_k)} \leq \frac{L_H}{\mu} \|Z_k - Z^*\|^2.$$

\[\square\]

C Tuning RMSProp Hyperparameters

Figure 6 shows the adaptation of the additional ρ and ϵ hyperparameters of RMSProp, for training an MLP on MNIST.

![Figure 6: Adaptation of ρ and ϵ using RMSprop-APO on MNIST.](image)

D Additional Experiments on Rosenbrock

In this section, we present additional experiments on the Rosenbrock problem. We show that APO converges quickly from different starting points on the Rosenbrock surface.

![Figure 7: RMSprop-APO convergence from different initializations on the Rosenbrock surface.](image)

E The Noisy Quadratic Problem

In this section we apply APO to the noisy quadratic problem investigated in (Wu et al., 2018; Schaul et al., 2013), and demonstrate that APO overcomes the short horizon bias problem. We optimize a quadratic function

$$f(x) = x^T H x,$$
where \(x \in \mathbb{R}^{1000} \), \(H \) is a diagonal matrix \(H = \text{diag}\{h_1, h_2, \ldots , h_{1000}\} \), with eigenvalues \(h_i \) evenly distributed in interval \([0.01, 1]\). Initially, we set \(x \) with each dimension being 100. For each iteration, we can access the noisy version of the function, i.e., the gradient and function value of function

\[
\tilde{f}(x) = (x - c)^T H (x - c).
\]

Here \(c \) is the vector of noise: each dimension of \(c \) is independently randomly sampled from a normal distribution at each iteration, and the variance of dimension \(i \) is set to be \(\frac{1}{h_i} \). For SGD, we consider the following four learning rate schedules: optimal schedule, exponential schedule, linear schedule and a fixed learning rate. For SGD with APO, we directly use function \(\tilde{f} \) as the loss approximation \(h \), use Euclidean distance norm square as the dissimilarity term \(D \), and consider the following schedules for \(\lambda \): optimal schedule(with \(\lambda \geq 0 \)), exponential schedule, linear schedule and a fixed \(\lambda \). We calculate the optimal parameter for each schedule of both algorithms so as to achieve a minimal function value at the end of 300 iterations. We optimize the schedules with 10000 steps of Adam and learning rate 0.001 after unrolling the entire 300 iterations.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Optimal</th>
<th>Exponential</th>
<th>Linear</th>
<th>Fix</th>
</tr>
</thead>
<tbody>
<tr>
<td>SGD</td>
<td>3.3</td>
<td>4.6</td>
<td>12.5</td>
<td>81.9</td>
</tr>
<tr>
<td>SGD + APO</td>
<td>4.69</td>
<td>6.73</td>
<td>15.6</td>
<td>80.8</td>
</tr>
</tbody>
</table>

Table 2: Loss at the end of 300 iterations with optimized schedules.

The function values at the end of 300 iterations with each schedule are shown in Table 2.

Figure 8 plots the training loss and learning rate of SGD during the 300 iterations under optimal schedule, figure 9 plots the training loss and \(\lambda \) under optimal schedule for SGD with APO. It can be seen that SGD with APO achieves almost the same training loss as optimal SGD for noisy quadratics task. This indicates that APO doesn’t suffer from the short-horizon bias mentioned in [Wu et al., 2018].
F CIFAR-100 EXPERIMENTS

In this section, we evaluate APO on the CIFAR-100 dataset. We used an 16-layer VGG convolutional neural network with batch-normalization and data augmentation for CIFAR-100 image classification. We trained on mini-batches of size 64.

We compared SGD and its APO variant. For SGD, we chose both a learning rate of 0.1 and 0.01. For SGD-APO variants, we used initial learning 0.01 and meta learning rate 0.001, and tried λ of 0.01 and 0.001. Figure 10 shows the training loss, test accuracy, and the tuned learning rate. It can be seen that APO generally achieves smaller training loss and higher test accuracy.

![Figure 10: Comparison of SGD and SGD-APO on CIFAR-100](image)

(a) Mean CIFAR-100 training loss over the training set.
(b) Accuracy on the test set.
(c) Learning rate per iteration.