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Abstract
Generating and scheduling activities is particularly chal-
lenging when considering both consumptive resources and
complex resource interactions such as time-dependent re-
source usage. We present three methods of determining valid
temporal placement intervals for an activity in a tempo-
rally grounded plan in the presence of such constraints. We
introduce the Max Duration and Probe algorithms which
are sound, but incomplete, and the Linear algorithm which
is sound and complete for linear rate resource consump-
tion. We apply these techniques to the problem of schedul-
ing awfor a planetary rover where the awake durations are
affected by existing activities. We demonstrate how the
Probe algorithm performs competitively with the Linear al-
gorithm given an advantageous problem space and well-
defined heuristics. We show that the Probe and Linear algo-
rithms outperform the Max Duration algorithm empirically.
We then empirically present the runtime differences between
the three algorithms. The Probe algorithm is currently base-
lined for use in the onboard scheduler for NASA’s next plan-
etary rover, the Mars 2020 rover.

Introduction
In many space missions, consumptive resources such as en-
ergy or data volume limit the number of activities that can be
scheduled. These consumptive resources are oftentimes re-
plenished periodically or gradually over time. For example,
data is downlinked—replenishing data capacity—or energy
is generated by solar panels or radioisotope thermoelectric
generator (RTG) power supplies. The scheduler must there-
fore schedule activities while staying aware of resource re-
plenishment in order to ensure that the resource state does
not violate constraints (e.g. energy below a specified level
or data buffers overflow). We focus on awake and asleep
scheduling for a planetary rover, but our techniques general-
ize scheduling in the presence of complex consumptive re-
source activities.

We focus on the onboard scheduler for NASA’s next plan-
etary rover, the Mars 2020 (M2020) rover (Jet Propulsion
Laboratory 2018a). Since the heart of our paper is awake and
asleep scheduling, we concentrate on energy as the limit-
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ing consumptive resource. The M2020 rover’s power source
is a Multi-Mission Radioisotope Thermoelectric Generator
(MMRTG) (Jet Propulsion Laboratory 2018b). The MM-
RTG constantly generates energy for the rover’s battery, but
the CPU’s awake and “idle” state (i.e. no other tasks) con-
sumes more energy than the MMRTG provides. Therefore,
the rover can only increase its energy, measured as battery
state of charge (SOC), when the rover is asleep. The rover,
however, must stay awake to not only execute activities, but
also (re)-invoke the scheduler to generate a schedule. The
M2020 onboard scheduler is responsible for generating and
scheduling these awake periods.

In order to generate and schedule awakes, the scheduler
must compute valid start times for awakes and activities
jointly to ensure that there is sufficient energy for both the
awake and the activities. Each activity, however, requires
varying awake sizes depending on existing awake periods
and the activity’s scheduled start time. If the activity is close
to an existing awake, it may be necessary to extend an exist-
ing awake rather than generating a new awake as this would
require the rover to shutdown and wakeup in quick succes-
sion (Figure 1) which may lead to issues if the shutdown
runs longer than nominally expected. Due to its varying du-
ration, an awake’s energy consumption and valid start times
are challenging to determine.

The remainder of the paper is organized as follows. First,
we describe the timeline representation, which is also used
by the M2020 onboard scheduler. We discuss calculating
valid start time intervals—intervals in which starting the
activity would not violate any constraints—and define the
problem in relation to the timeline framework. Second, we
discuss a general case-by-case approach to handling au-
tomatically generated awakes and the challenges specific
cases pose. Third, we present three specific approaches to
handling these challenges when generating and scheduling
awakes: a) an over-conservative approach that always uses
the maximum awake period potentially required by the ac-
tivity when calculating valid intervals; b) a “probing” ap-
proach that only considers a single point in time rather than
the entire interval; and c) a linear algebra approach that cal-
culates exact valid intervals given the linear rate of energy
replenishment and consumption. The “probing” approach
is currently base-lined for the M2020 onboard scheduler.
Fourth, we present empirical analysis to compare their de-
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Figure 1: When scheduling activity B, the scheduler should
extend the existing awake rather than creating a new one
to account for the possibility that the shutdown runs longer
than nominally expected. W is a wakeup and S is a shut-
down.

grees of completeness and runtime performance. Lastly, we
reference related works, describe future works, and discuss
conclusions.

Timeline Representation
Timelines are commonly used to model resource utilization
and temporal constraints (Chien et al. 2012) and are used for
the M2020 onboard scheduler as well. The timeline frame-
work used for the M2020 onboard scheduler projects the im-
pact of activities on shared states and resources (Rabideau
and Benowitz 2017). The following is a summary of the
timeline library; more detail can be found in Rabideau and
Benowitz 2017.

A timeline, T1〈N1, C1, B1〉 . . . Tl〈Nl, Cl, Bl〉, is a collec-
tion of:

• Timeline impacts, n ∈ Ni, which are a change in the time-
line at a specific time, t(n), such as a value assignment or
a change in incremental rate.

• Timeline constraints, c ∈ Ci which are maximum or min-
imum limits for timeline values over a period of time; if a
value exceeds the limit then there is a conflict.

• Timeline bounds, b ∈ Bi, which are maximum or mini-
mum range for values. Values that fall outside the range
are truncated, but not conflicts. This is useful to portray
the maximum battery capacity, for example.

• Timeline values—where vi(t(u)) is the value (e.g. SOC,
current state) at time t(u) for timeline Ti—may be calcu-
lated from the timeline impacts, Ni.

Each timeline also has the ability to find a) any conflicts
that currently exist on the timeline and b) valid intervals for
a new set of impacts, N ′. Activities scheduled in their valid
intervals create no new conflicts on the timeline. Methods
(a) and (b) can also be limited to certain intervals.

There are multiple types of timelines based on practical
and specific use cases (Chien et al. 2012; Rabideau et al.
1999; Knight, Rabideau, and Chien 2000), but we focus in
particular on the Cumulative Rate timeline. Cumulative Rate

timelines allow changes in incremental rate in addition to
changes in value. This allows us to represent the incremental
SOC drained and gained from being awake and asleep.

Valid Intervals Typically, valid intervals for a Cumula-
tive Rate timeline are calculated by taking in activities as
a set of impacts, N ′, and temporarily placing N ′ at the time
of each existing impact, n ∈ N . Activities are each rep-
resented as a set of start and end impacts separated by the
duration of the activity. The offset between each impact in
N ′ is fixed in relation to the earliest impact, n′

earliest ∈ N ′.
N ′ is temporarily placed at the time of each impact, n ∈ N ,
such that t(n′

earliest) = t(n). This determines if any con-
flicts are generated and, thus, determines N ′’s valid inter-
vals. The impacts in N ′ are applied based on their offset
from n′

earliest. There are potentially O(N) impacts making
this anO(N ′ ·N) operation. When an impact is applied, the
effects to the timeline must be propagated into the future of
which there are O(N) potential impacts. Thus, the overall
runtime is O(N ′ · N2). N >> N ′ resulting in an effective
runtime of O(N2). Constant time slope and intercept calcu-
lations compute any values between impacts.

These calculations are dependent on fixed impact offsets
in N ′. When impact offsets are not fixed, as is the case with
non-constant awake durations, valid interval calculations are
more complex. At each impact, the offsets in N ′ are derived
from a function rather than a constant. Intercept calculations
further exacerbate this complication as values can change
between impacts. Therefore, we must either heuristically de-
termine fixed offsets or calculate valid intervals using a dif-
ferent algorithm. We present methods for both approaches.

Problem Definition
Assume that the scheduler is given:
• a list of activities

A1〈w1, d1, e1, r1, Z1, S1〉 . . .
Aτ 〈wτ , dτ , eτ , rτ , Zτ , Sτ 〉,

• where wi is the scheduling priority of Ai,
• di is the nominal, or predicted, duration of Ai,
• ei is the rate at which the consumable resource energy is

consumed by Ai,
• ri is the preferred start time for Ai,
• Zi is the set of physical rover zones or instruments (e.g.

arm, mastcam) zi1 . . . zik that Ai requires to be heated
before and during use,

• Si is the set of start time windows si1 . . . siq that Ai must
respect.
The scheduler is also given a global minimum SOC con-

straint, C min
soc . Each activity may also require the auto-

matic generation of: 1) a set of preheat activities, Pi =
{pi1 . . . pik}, 2) a set of maintenance heating activities,
Mi = {mi1 . . .mik}, or 3) an awake activity, ai. Preheats
are setup activities (i.e. they occur before the activity), while
maintenance heating and awakes are companion activities
(i.e. they occur during or with the activity).

Our goal is to calculate valid intervals for activity Ai with
a focus on its required awake activity, ai. For this paper, we



Algorithm 1 General Scheduling Algorithm

Input:
A〈w, d, e, r, Z, S〉: List of activities and their attributes
and resources
C: Constraints for the whole plan (e.g. available cumu-
lative resources)
E: Current state of the spacecraft (state of charge, data
volume, activity status)

Output:
U : Resulting schedule

1: U ← ∅
2: Sort(A) . By highest to lowest priority
3: for each Ai ∈ A do
4: Pi ← ∅
5: Mi ← ∅
6: if Zi 6= ∅ then
7: Pi ← generate preheats(Ai〈Zi〉)
8: Mi ← generate maintenances(Ai〈Zi, di〉)
9: end if

10: // Consider Si as a set of disjoint valid intervals
11: I ← ∅
12: for each Sij ∈ Si do
13: I ← I

⋃
Split(sij ) . Based on four cases

14: end for
15: Sort(I) . By proximity to t
16: for each Ij ∈ I do
17: // Calculate Ij using either
18: // Max Duration, Probe, or Linear
19: Ij , ai ← valid intervals with awake(

Ai〈d, e〉, Ij , Pi,Mi)
20: if Ij 6= ∅ then
21: // start is the scheduled start time for Ai
22: start← schedule activity(Ai, Ij , U)
23: schedule activity(ai, start, Ij , U)
24: for each pik ∈ Pi do
25: schedule activity(pik , start, Ij , U)
26: end for
27: for each mik ∈Mi do
28: schedule activity(mik , start, Ij , U)
29: end for
30: end if
31: end for
32: end for

refer to valid intervals as valid start time intervals for activ-
ity Ai. An awake activity is always composed of a wakeup
and shutdown. When valid interval calculations involve ex-
tending an existing awake rather than creating a new one, an
existing wakeup or shutdown may be shifted to match the
extended awake. Wakeups are all the same duration, as are
shutdowns. If x is the duration:

• The MMRTG generates g(x) SOC consistently.

• The rover consumes f(x) SOC when it is awake and
“idle”.

• Thus, when the rover is awake and “idle” the net change
in SOC is h(x) = g(x)− f(x).

• g(x) ∝ x and f(x) ∝ x.

• g(x) ≥ 0 and f(x) ≤ 0.

• |f(x)| > |g(x)| as more energy is consumed when awake
and idle than can be generated by the MMRTG.

• h(x) is negative since |f(x)| > |g(x)|.
The overall scheduling algorithm is described in Algo-

rithm 1. Scheduling an awake activity mainly involves SOC,
which is represented as a Cumulative Rate Timeline. Re-
call that we can limit the interval considered for valid inter-
val calculations to improve runtime; we consider Si as such
limiting intervals. We assume that Si is computed or given
before the problem begins. In the Mars 2020 use case, Si
is actually the set of intervals after all other resources (e.g.
state, dependencies) are considered. These are computed be-
fore SOC is considered due to their less significant runtime.
As such, they can be generalized as Si, and used to improve
runtime by limiting valid interval calculation ranges.

After valid intervals are calculated, the scheduler will
place the activity according to its preferred time. Each ac-
tivity’s preferred time, ri is a soft constraint for activity, Ai.
The scheduler will prefer to schedule the start of the activity
as close to its preferred time as possible, but is not required
to schedule it at that time. Although the actual M2020 sched-
uler allows multiple preferred times (one for each start time
window), we will assume without a loss in generality that
there is only one preferred time per activity.

Interval Cases
Valid interval calculations for non-constant duration awakes
are complicated for two reasons. a) Standard valid interval
calculations assume that the relative time between impacts is
constant. This allows the same set of input impacts to be eas-
ily and repeatedly applied at different points on the timeline.
b) Knowledge about each activity’s duration is usually prior
knowledge and independent from where the activity will be
scheduled; this allows valid interval calculations to focus on
one variable (e.g. SOC) as a function of time. Determin-
ing valid intervals when duration is dependent on scheduled
time is challenging because the calculation must account for
multiple variables as a function of time.

In order to schedule awakes, an activity’s input intervals,
si, are split into smaller intervals (I in Algorithm 1). Each
smaller interval matches one of the four types dependent on
the activities’ proximity to existing awakes and constraints.
These cases are:

1. Fully Encompassed by an Existing Awake. If the set of
activities can be scheduled entirely within an existing
awake, then there is no need for a new awake activity to
be generated.

2. Disjoint from Existing Awakes. If the set of activities can
be scheduled such that any new awake is completely dis-
joint from an existing awake, then a new awake that en-
compasses all the activities must be generated and sched-
uled.

3. Overlap with an Existing Awake (Straddle). If the set of
activities overlaps with an existing awake, but is not fully



(a) Intervals leading an awake. (b) Intervals trailing an awake

Figure 2: Intervals for each case. The awakes required at the earliest and latest times are shown. Note that these are start time
intervals for activity Ai given the known offset of activities in the set of activities Ai, Pi,Mi, ai

encompassed by the awake, then the overlapped existing
awake must be extended to encompass the set of activities.

4. Overlap with a Minimum Asleep Constraint (Stretch). To
prevent degradation from excessive rover on-off throt-
tling, after each shutdown the rover must stay asleep for a
minimum amount of time before waking up again; there-
fore, there is a minimum asleep constraint both after a
shutdown and before a wakeup. In addition, activities re-
quiring an awake cannot be scheduled during a wakeup or
shutdown. If the set of activities overlaps with a wakeup,
shutdown, or minimum asleep constraint, then the exist-
ing awake nearest to that constraint must be extended to
encompass the set of activities.

Awake duration is independent of an activity’s scheduled
start time for intervals matching cases 1 and 2. Case 1 re-
quires no additional awake since it is fully encompassed by
an existing awake. Case 2 requires an awake that is equal
in duration to the makespan of the set of activities since
there are no nearby awakes to potentially extend off of. Thus,
these intervals can be handled through previously described
valid interval calculations.

For intervals matching cases 3 and 4, the duration of the
awake is dependent on where the activities will be sched-
uled. Case 3 is the straddle case as the activities straddle
an existing awake. Case 4 is the stretch case as the exist-
ing awake must stretch to encompass the activities. Both the
straddle and stretch cases are similar in that they require the
extension of an existing awake, of which the duration (and
therefore energy consumption) will vary depending on the
placement of the activity. In addition, these intervals can
be further categorized depending on if the extension leads
(Figure 2a) or if it trails (Figure 2b) the existing awake.
The scheduling algorithm splits the timeline into intervals
each matching one of the above cases (Line 13 in Algo-
rithm 1) and calculates valid intervals depending on each
case (valid intervals with awake in Algorithm 1).

In the following sections we discuss algorithms specifi-
cally designed to handle the straddle and stretch cases. Each

method describes a way to determine the awake duration.
The first assumes an overestimation, the second determines
exact durations, but only for a certain times, and the third
computes a range of valid durations. The algorithms dis-
cussed are all sound, but some are incomplete. Violating
mission constraints such as minimum battery SOC would
be a significant problem (soundness), and we show in our
empirical results that, for both the mission and in general,
the incomplete solutions perform acceptably.

Max Duration Algorithm
The Max Duration algorithm assumes the maximum awake
duration required to schedule a set of activities. This is
a simple, but over-conservative approach to handling non-
constant awake duration. Let start(Ij) and end(Ij) be
the start and end of the start time interval considered, Ij ,
for activity Ai. Also let start(awake) and end(awake)
be the start and end of the nearest existing awake. The
maximum awake duration is start(awake) − start(Ij) −
max(duration(pik) ∈ Pi) for leading interval cases and is
end(Ij) + di − end(awake) for trailing interval cases. Fig-
ure 2 showcases examples of the maximum awake required
for both leading and trailing interval cases.

The benefit of assuming the maximum awake duration is
that it allows for simpler valid interval calculations. Con-
stant awake duration leads to a constant relative offset be-
tween impacts allowing for previously described valid inter-
val calculations. The downside is that this approach is over-
conservative. Depending on where the activities are to be
scheduled, a portion of the new awake may overlap with an
existing awake resulting in a “double-dipping” of resources.
As the approach is over-conservative, it is sound, but incom-
plete; sometimes it will not find a valid interval to schedule
the activities when such an interval exists.

Probe Algorithm
The Probe approach determines the exact duration of the
awake, but only for specific points of time in the input in-
terval. Instead of computing valid intervals throughout the



entire input interval, the Probe algorithm checks for conflicts
at specific points in time. At each specific point in time, the
exact awake duration needed is known, thus avoiding the
complications of having a non-constant awake duration.

The algorithm’s simplicity is both its strength and weak-
ness. First, the overall runtime is drastically reduced. If k
points in time are checked for conflicts instead of at each ex-
isting impact, then the runtime for valid intervals is O(kN)
rather than O(N2). Usually, only a few specific points are
checked (e.g. earliest, latest, midpoint); hence, k < N . In
our specific approach, we only check at the point nearest to
the activity’s preferred time; thus, the runtime isO(N). Due
to this runtime improvement, the Probe algorithm is also ap-
plied to intervals of cases 1 and 2. Second, while the Max
Duration algorithm is over-conservative in terms of awake
duration, the Probe algorithm is exact. The downside is that
the search does not span the entire interval, only “probing”
certain predetermined points of time; therefore, in a sense
the Probe algorithm is under-conservative in terms of the in-
terval search space. The Probe algorithm is also sound, but
incomplete. While its calculations will be accurate given its
knowledge of the exact awake duration, the Probe algorithm
will miss valid solutions if the probe locations are not well-
defined or unlucky.

Linear
While the other two algorithms are simple or fast, the Linear
algorithm uses the linear increase in energy cost and awake
duration to calculate exact valid intervals. There are two
distinctions to the Linear algorithm. First, the straddle and
stretch cases can be regarded as one singular extension case
because the linear rate of energy does not change between
the stretch and straddle cases. Second, the specific steps of
this algorithm vary slightly depending on whether the exten-
sion leads the existing awake (Figure 2a) or if it trails the
existing awake (Figure 2b); we will discuss the trailing case
first.

For activity Ai and input interval Ij the algorithm is as
follows:

1. Temporarily apply the activities to the start of the interval,
start(Ij), and determine if any conflicts are generated. If
conflicts are generated, then there is no valid solution in
Ij . If no conflicts are generated, then start(Ij) is the start
of the valid interval.

2. Temporarily apply the activities to the end of the interval,
end(Ij), and determine if any conflicts are generated. If
no conflicts are generated, then all of Ij is a valid interval.
If a conflict is generated at end(Ij), then a valid interval
exists between [start(Ij), end(Ij)).

3. Recall that Ni is the set of timeline impacts currently
existing on the timeline Ti, t(n) is the time of im-
pact n, and vi(t) is the value at time t for timeline
Ti. Let l be the point where the asleep begins between
[start(Ij), end(Ij)). Calculate the valid interval between
[start(Ij), end(Ij)).

(a) Determine the point in time, t(u) such that the
SOC at that time, vsoc(t(u)), satisfies both a)

Figure 3: Energy changes from extending an awake. l is the
point where the asleep begins without the awake extension.

min∀n∈Nsoc vsoc(t(n)) and b) t(u) > l). In other
words, t(u) is the lowest point on the energy timeline
after l.

(b) Recall that f(x) is the energy consumed while stay-
ing awake and that C min

soc is the global minimum SOC
constraint. Calculate x 3 f(x) = vsoc(t) − C min

soc −
energy cost(Ai, Pi,Mi).

(c) Determine the point in time, t(u′) such that its SOC,
vsoc(t(u

′)), satisfies both a) min∀n∈Nsoc vsoc(t(n))
and b) start(Ij) ≤ t(u′) ≤ l.

(d) Recall that h(x) = g(x) − f(x) is the net change in
SOC while the rover is awake. Calculate x′ 3 h(x′) =
vsoc(t(u

′))− C min
soc − energy cost(Ai, Pi,Mi).

(e) [start(Ij), start(Ij)+min(x, x′)] is the valid interval
for the activity.

Since steps 1 and 2 are evaluated at a single point in
time—similar to the Probe algorithm—the exact duration of
the awake is known. For step 1, it is the minimum awake
and, thus, if a conflict is generated there is no valid solu-
tion in Ij . For step 2, it is the maximum awake and, thus,
if there is no conflict the entire range must be valid. In
step 3a, we determine the maximum amount of energy that
can be used without violating the minimum soc constraint
as vsoc(t) − C min

soc . In step 3b, we use this and the en-
ergy cost function to determine exactly how long the awake
can potentially be. We can subtract the energy cost of the
other activities (Ai, Pi,Mi) because they are not affected
by their placement. Steps 3c and 3d differ only slightly from
steps 3a and 3b. The difference occurs because of how the
awake affects the SOC timeline. In steps 3a and 3b, any



point (including the minimum point t(u)) after end(Ij) de-
creases by f(x) as seen in Figure 3. Recall that energy is
only gained when the rover is asleep. Staying asleep be-
tween (l, end(Ij)] generates g(end(Ij)− l). For simplicity,
let us temporarily assume end(Ij) − l as x. Any point after
end(Ij) must deduct g(x) since that energy will not be gen-
erated if the awake is extended.−f(x) = h(x)− g(x) is the
resulting energy lost from any point after end(Ij). Between
[start(Ij), l], however, the energy has not been gained yet.
As a result, g(x) does not need to be deducted from any point
in [start(Ij), l]. Using the energy function, we can calculate
how long the maximum awake can be without violating the
minimum SOC constraint. Step 3e simply translates the now
known awake duration into valid intervals.

The main difference when applying this algorithm to
the trailing case is that the existing awake extends in the
opposite direction. This results in several changes. First,
at end(Ij) the awake duration is the minimum, and at
start(Ij) the awake duration is the maximum; therefore,
do steps 2 and then 1. Secondly, steps 3c and 3d can be
eliminated. Extending the awake from end(Ij) makes it
impossible for any point between [start(Ij), end(Ij)] to
violate the minimum SOC constraint without a point af-
ter end(Ij) violating the constraint first. Lastly, in step 3e
[end(Ij)−min(x, x′), end(Ij)] is the valid interval.

This algorithm is both sound and complete. We can
show that it is complete through a proof by contradiction.
Let us assume we are scheduling in a trailing extension
interval and a point, t(u′′), exists between (start(Ij) +
min(x, x′), end(Ij)] such that Ai can be scheduled without
violating C min

soc . The awake extension duration needed is
x′′ = t(u′′) − start(Ij). We know that x′′ > min(x, x′)
otherwise it would have been in our solution. For any
point after end(Ij), the total energy consumed is f(x′′) +
energy cost(Ai, Pi,Mi). Recall that vsoc(t(u)) is the SOC
of the lowest point after end(Ij). Therefore, a) vsoc(t(u))−
(f(x′′) + energy cost(Ai, Pi,Mi)) ≥ C min

soc otherwise
the minimum SOC constraint would be violated. For any
point after end(Ij), the total energy consumed is h(x′′) +
energy cost(Ai, Pi,Mi). Recall that vsoc(t(u′)) is the SOC
of the lowest point between [start(Ij), l]. Therefore, b)
vsoc(t(u

′))− (h(x′′)+ energy cost(Ai, Pi,Mi)) ≥ C min
soc

otherwise the minimum SOC constraint would be vio-
lated. However, both statements (a) and (b) cannot be true
as f(x′′) > f(min(x, x′). Therefore, a point between
(start(Ij) + min(x, x′), end(Ij)] that does not violate the
minimum SOC constraint cannot exist. This proof can be
similarly done for leading extension intervals.

The trade off for completeness, however, is that each valid
interval requires more calculations. As a result, it increases
both code complexity and runtime costs. The question is: Is
the increased completeness worth the costs?

Empirical Results
To evaluate the performance of each method, we apply each
algorithm to various sets of inputs comprised of activities
and their constraints. The inputs are derived from sol types
which are currently the best available data on expected Mars

2020 rover operations (Jet Propulsion Laboratory 2018a).
Each input file contains between 20 and 40 activities, and
our goal is to schedule as many activities as possible. We ap-
ply our algorithms on top of the M2020 surrogate scheduler
- a Linux workstation implementation of the same algorithm
as the M2020 onboard scheduler (Rabideau and Benowitz
2017) - to construct a schedule and simulate plan execution.
The M2020 surrogate scheduler is expected to produce the
same schedules as the operational scheduler, but lends itself
to more rapid research and development on a linux worksta-
tion environment. While the baseline scheduler utilizes the
Probe algorithm, we interchange with the Linear and Max
Duration algorithms; the remainder of the algorithm is iden-
tical to the operational scheduler.

We compare each method against varying incoming SOC
levels to vary the level of difficulty for scheduling. The in-
coming SOC is the SOC remaining after the previous sched-
ule; therefore, it is the SOC that the current schedule begins
with. Since energy consumption is the main constraint and
focus of sleep scheduling, varying the incoming SOC will
vary the set of correct valid intervals and, by extension, the
difficulty of the problem. If the incoming SOC is sufficiently
high, the sleep scheduling problem is easy as there is suffi-
cient energy for the rover to constantly stay awake and activ-
ities can be scheduled more freely. This is because each sol
type was specifically constructed so that all activities would
be schedulable given a reasonable (e.g. 75 percent) incoming
SOC. As the incoming SOC decreases, the sleep schedul-
ing problem gets harder as the algorithms must determine if
there is sufficient energy to schedule a new awake or extend
an existing awake when considering activity placement. We
first analyze which algorithm performs the best as the prob-
lem difficulty increases. Secondly, we evaluate the runtimes
of each algorithm.

Results
Completeness Figure 4a showcases how the scheduler
performs with each respective sleep scheduling algorithm.
As the incoming SOC decreases, the problem difficulty in-
creases and fewer activities are scheduled. While the conser-
vative Max Duration approach clearly performs worse than
the others, the distinction between the Probe and Linear ap-
proaches seems unclear. This may seem surprising given that
the Linear algorithm is more complete than the Probe algo-
rithm; there are, however, multiple reasons as to why the al-
gorithms perform similarly despite their difference in com-
pleteness.

First, the scheduler focuses on finding the locally opti-
mal state—where the local optimal is scheduling the cur-
rent considered activity as close to its preferred time as
possible—but does not focus on global optimality. Due to
the rover’s computational limitations, the M2020 onboard
scheduler is a one-shot, non-backtracking scheduler. When
considering each activity, the scheduler attempts to sched-
ule it as close to the activity’s preferred time as possible, but
does not consider the impact it may have to any future ac-
tivities. Since activities are not moved or removed after they
have been considered for the schedule, the current scheduler
cannot guarantee global optimality, regardless of the valid



(a) Full schedules generated. Baseline wakeup (5 minutes) and
shutdown (10 minutes) durations.

(b) Partial schedules generated. Baseline wakeup (5 minutes)
and shutdown (10 minutes) durations.

(c) Full schedules generated. Extended wakeup (30 minutes) and
shutdown (60 minutes) durations.

(d) Partial schedules generated. Extended wakeup (30 minutes)
and shutdown (60 minutes) durations.

Figure 4: As the Incoming SOC Increases, resources are less constrained and more activities are able to be scheduled. When
generating a schedule for all activities from an empty schedule, the differentiation between the Probe and Linear algorithms
is unclear. When using the baseline wakeup and shutdown durations, it is clear that the Max Duration algorithm performs
the worst; if the wakeup and shutdown durations are extended, however, the Max Duration algorithm starts to perform better.
When scheduling only one activity at a time from a partial schedule, the Linear algorithm strictly outperforms the other two
algorithms. When the wakeup and shutdown durations are extended, the difference becomes even more clear.

interval algorithm chosen. To account for this, the M2020
team has developed Copilot, a ground based tool that uses
Monte Carlo and Squeaky Wheel Optimization (Joslin and
Clements 1999) to adjust scheduling priorities before the
plan is uplinked to the rover. To read more about how ac-
tivity priorities are set, see (Chi et al. 2019).

Take for instance the following example: the Linear algo-
rithm successfully finds valid intervals for a longer activity
for which the Probe algorithm cannot. This may, however,
result in the Linear algorithm being unable to schedule ei-
ther multiple shorter activities or an activity that multiple
future activities depend on, while the Probe algorithm (due
to having excess energy from not scheduling the activity)
may successfully schedule multiple future activities.

To balance the scheduler’s focus on local optimality, we
considered scenarios where only the next activity in the
scheduling algorithm is considered. To do this, we generated
partial schedules where the first i activities are scheduled by
the same algorithm, but the i + 1 activity is scheduled with
the different algorithms and compared. This is repeated for
every i ∈ m so that every activity is scheduled with the
same algorithm for the first i activities. We used the Probe

algorithm to schedule the first i activities as it is the current
baseline for the M2020 scheduler. In Figure 4b, we see that
the Linear algorithm strictly outperforms (although the out-
performance is minimal) the Probe method while the Max
Duration method strictly under-performs. These results reaf-
firm our initial belief that the Linear algorithm is complete
and more locally optimal than the other methods. The fix
to the local vs global optimality issue thus lies more with
the overall scheduling algorithm than with the valid interval
calculations.

Second, the stretch and straddle regions are not large
enough to cause a drastic difference between algorithms.
Currently, wakeups are 5 minutes, shutdowns are 10 min-
utes, and the minimum sleep duration is 20 minutes. The
makespan of meaningful activities in a sol is around 8 to
10 hours of which there are usually only a few wakeups
and shutdowns. Since the algorithms only differ in how the
stretch and straddle regions—regions encompassing wakeup
and shutdowns—are handled, the differences in the algo-
rithms are minute. By increasing the length of the stretch and
straddle regions, the differences between the algorithms be-
come more clear. In Figures 4c (full schedule) and 4d (partial



schedule), we increased the wakeup duration to 30 minutes
and shutdown durations to 60 minutes. Indeed, the Linear al-
gorithm starts to perform better in comparison to the Probe
algorithm with the differences especially evident in Figure
4d. The Max Duration algorithm also performs better than
before as its advantage over the Probe algorithm (it searches
the entire range rather than just one point) is able to be more
utilized.

Figure 5: Left is the runtime for the overall scheduling al-
gorithm. Right is the runtime sleep scheduling part of the
algorithm only (i.e. valid intervals with awake). The Probe
algorithm greatly outperforms the other algorithms while the
Max Duration algorithm greatly underperforms.

Runtime While completeness is important, the runtime
performance of each algorithm is equally critical to deter-
mining which algorithm to use. To accurately compare the
algorithms, we compare both the total scheduling runtime
(left) and the runtime of the algorithms after prior compu-
tations and constant factors are deducted (right). In figure
5, the Probe algorithm significantly outperforms the other
two algorithms as expected. Recall that the Probe algorithm
is an O(N) algorithm while both Linear and Max Duration
are O(N2). Not only that, but the Probe algorithm can be
applied to non stretch and straddle intervals as well, further
speeding up runtime. Despite its simple nature, the Max Du-
ration algorithm is the slowest algorithm by a wide margin.
Since the Max Duration algorithm is often unable to find
valid intervals due to its conservatism, it must often search
through and calculate valid intervals for multiple stretch and
straddle regions. As a result, its simple valid interval calcula-
tions is offset by its need to do this calculation multiple times
for each activity. On the other hand, the Linear algorithm
may take longer per region, but needs to explore less regions
overall. This is further evidenced by the large standard devi-
ation seen in the Max Duration algorithm’s runtime; if it can
find a valid interval within the first few regions it considers
it is fast, but if it cannot then it is incredibly slow. Although
the difference between tenths of a second may seem small,
these computations are done on a linux workstation instead

of onboard the rover; when eventually run onboard, a sin-
gle scheduler run can take up to 1 minute. As a result, the
two factor increase in total runtime between the Probe and
Linear algorithms is substantial.

Future Work
There are a few topics to be considered for future research.
First, preheat and maintenance heating pose a similar energy
management challenge to the scheduler. While they have
been intentionally glossed over for this paper, preheat and
maintenance heating are also dependent on existing preheats
and maintenances; an existing maintenance may be extended
instead of requiring a new preheat. Preheats differ in that
an activity may require preheats for multiple regions on the
rover and preheat durations may vary depending on thermal
conditions (Rabideau and Benowitz 2017). We would like to
analyze the different algorithms used to schedule preheats
and maintenances as well. Second, we would like to analyze
runtimes onboard the rover. In this paper, we analyzed the
runtimes on a linux workstation and compared it against an
estimate of how long a scheduler run takes on a flight-like
processor. The onboard scheduler runtime estimate is, how-
ever, only run with the baseline algorithm (i.e. Probe); our
analysis would be further substantiated if we were able to
run each algorithm onboard a flight-like processor.

Related Work
Schedulers have a long history of handling consumptive re-
sources.

ASPEN-EO-1 not only took into account onboard data
storage (among other constraints) when scheduling plan ob-
servations, but summarized or deleted data depending on on-
board data analysis (Chien et al. 2005a; 2005b; 2010).

MEXAR2 addressed Mars Express’s Spacecraft Mem-
ory Dumping Problem (MEX-MDP) and synthesized data
downlink plans that took into account data storage capacity
(Cesta et al. 2007).

MAPGEN was used to plan operations for Mars Explo-
ration Rovers (MER) Spirit and Opportunity(Bresina et al.
2005). MAPGEN similarly managed battery SOC as a con-
sumptive resource, but MER rovers relied on solar power
rather than a MMRTG. In addition, this system addresses
ground-based rather than onboard planning.

Remote Agent is an onboard autonomous agent archi-
tecture that takes into account consumptive resources such
as energy and data volume (Muscettola et al. 1998). It
mainly utilizes constraint posting and propagation rather
than “fixed” start times and is a more general architecture
compared to our specific solution to scheduling consump-
tive resources.

Conclusion
Generating and scheduling activities in the presence of con-
sumptive regenerative resources is especially challenging
when a driving factor of feasibility of placement is depen-
dent on interactions with the existing schedule. Schedul-
ing activities and their awake periods is particularly chal-
lenging in the context of M2020 because the awake’s



duration is dependent on existing awakes. We presented
three algorithms—Max Duration, Probe, and Linear—for
scheduling awakes and analyzed their completeness and run-
time. Despite being a locally sound and complete algorithm,
the Linear algorithm was not always able to outperform in
the global problem space. We demonstrated how a simple
and incomplete algorithm can perform both suboptimally,
as seen with the Max Duration algorithm, and also close to
optimal, as seen with the Probe algorithm, dependent on the
heuristic and input parameters. We showed that the Probe
algorithm is a fair alternative to a more complete algorithm,
especially considering its ease of implementation and run-
time improvement.
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