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ABSTRACT

As deep CNN classifier performance using ground-truth labels has begun to
asymptote at near-perfect levels, a key aim for the field is to extend training
paradigms to capture further useful structure in natural image data and improve
model robustness and generalization. In this paper, we present a novel natural im-
age benchmark for making this extension, which we call CIFAR10H. This new
dataset comprises a human-derived, full distribution over labels for each image
of the CIFAR10 test set, offering the ability to assess the generalization of state-
of-the-art CIFAR10 models, as well as investigate the effects of including this
information in model training. We show that classification models trained on
CIFAR10 do not generalize as well to our dataset as it does to traditional ex-
tensions, and that models fine-tuned using our label information are able to gener-
alize better to related datasets, complement popular data augmentation schemes,
and provide robustness to adversarial attacks. We explain these improvements in
terms of better empirical approximations to the expected loss function over natural
images and their categories in the visual world.

1 INTRODUCTION

On natural-image classification benchmarks, state-of-the-art convolutional neural network (CNN)
models have been said to equal or even surpass human performance, measured in terms of the
accuracy of a model’s top category choice for a test set of held-out images. As accuracy gains have
begun to asymptote at near-perfect levels (Gastaldi, 2017), there has been increasing focus on out-
of-training-set performance—in particular, the ability to generalize to related stimuli (Recht et al.,
2018), and robustness to adversarial examples (Kurakin et al., 2016). On these tasks, by contrast,
CNNs tend to perform rather poorly, whereas humans continue to perform well.

These diverging properties are likely closely related; by focusing on the match between a model’s
top output and a single ground-truth category, we are likely overfitting to these benchmarks to the
detriment of generalization and robustness. This observation is supported by emerging empirical
tests of near-in-sample generalization (Recht et al., 2018), as well as results from the theoretical
literature that under current training paradigms CNNs could memorize training examples rather
than learn to generalize from them (Zhang et al., 2017). If we have saturated accuracy as the primary
measure of classification performance, a critical question is what we should turn to next.

One promising candidate is the loss between a model’s distribution over labels y for any image, x,
and the natural distribution of images and their categories, c, in the world, p(c|x); a probabilistic
extension of top-1 accuracy to top-n. The uncertainty over labels inherent in the underlying data dis-
tribution is a rich source of information that can be leveraged not only for explaining how confident
models should be when they are right, but for learning relevant structure in the labels—for example,
cross-category confusions—that can reduce loss when they are wrong. Indeed, there is often a lack
of human consensus on the category of an object, and the way the categorization decisions deviate
from the ground truth often conveys important information about the structure of the visual world
(Lakoff, 2008). This information can potentially be leveraged to discover more generalizable and
more robust perceptual boundaries.

In this paper, we present a novel image database that can support this new objective, which we
call CIFAR10H. This database comprises over 500k human classifications over the test set of the
CIFAR10 natural image dataset (Krizhevsky, 2009), which allows us to train and evaluate models
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on the full probability distribution across categories for all images. We assess the generalization
of pretrained CNN classification models on this new dataset, and show that when such models are
fine-tuned using the full distribution of human labels, their generalization abilities improve. Our key
theoretical contribution is to show that sets of human image classification decisions for an image can
be used as a suitable proxy for the true distribution over labels, and that this is an efficient strategy for
capturing distributional assumptions during training that confer better generalization and robustness.

2 EMPIRICAL RISK MINIMIZATION BEYOND THE MODE

In statistical learning, our goal is to learn the best model of an underlying data distribution over a
set of random variables, for example, features X and labels Y . In general, we are given a family of
models f , and are tasked to find a member of that family, indexed by parameters θ, that minimizes
the expected loss

arg minθ

∫
L(fθ, x, y) p(x, y) dx dy, (1)

where L is a loss function that penalizes deviations of model predictions from the data distribution,
and p(x, y) is the data distribution itself. Since in general, we do not know p(x, y), we approximate
it by the empirical distribution over a set of n samples (x1, y1), · · · , (xn, yn)

arg minθ

∫
L(fθ, x, y) p(x, y) dx dy ≈ arg minθ

∫
L(fθ, x, y) pδ(x, y) dx dy, (2)

where pδ(x, y) is an empirical distribution defined on the set of samples as follows

pδ(x, y) =
1

n

n∑
i=1

δ(x = xi, y = yi) (3)

where δ(x = xi, y = yi) represents a Dirac mass centered at (xi, yi). We can thus define the
empirical risk as

n∑
i=1

L(fθ, xi, yi). (4)

In supervised learning, we use a training subset of samples (xi, yi) to learn parameters θ that min-
imize the loss between model outputs fθ(xi), and the “true” outputs yi associated with them. For
natural image classification, our family of functions f are CNNs parameterized by weights θ, our
inputs x are vectors of pixel intensities, and our targets y are category labels c corresponding to each
image. The probabilistic interpretation of these targets is that of samples drawn from the true p(y|x).
For a given image xi generated from its true category ct in a set of k categories, p(yi = ct|xi) could
take on any value.

The standard practice for computing this loss has been to use “ground truth” labels (in the form
of “one-hot” vectors) provided in common benchmark datasets, for example, ILSVRC15 (Rus-
sakovsky et al., 2015), and CIFAR10 (Krizhevsky, 2009), to train and evaluate models. The single
“true” category for each image is decided through human consensus (taking the mode of the distri-
bution over images), or by the database creators. However, this approximation introduces a bias into
the learning paradigm that has important distributional implications. Instead of a particular image—
-and stimulus vector—-being associated with a probability mass function over labels, all probability
mass is reallocated to the modal category. This forces the network to learn that all instances of a
category are equally likely, and discards information about how likely it is to come from others.

The impact of focusing only on the mode can be seen through a simple Bayesian analysis. Assume
each category c is associated with a distribution over images p(x|c). Given an image xi, the prob-
ability that its label yi should be c is p(c|xi) ∝ p(xi|c)p(c). Assuming the prior probabilities of
categories do not vary wildly, the only way for p(c|xi) to be 1 is if p(xi|c) is infinitely greater than
p(xi|c′) for all c′ 6= c. This removes all supervisory information about the similarity of c to other
classes, and potentially places an artificial bound on the expected risk.

Under what circumstances is this a reasonable assumption or approximation? In some extreme
cases, where p(x|c) is non-overlapping, such an assumption is justified. In the majority of problems,
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however, p(c|x) is clearly not 1 for one particular category, and 0 for all others; nor are all images
x equally likely to be associated with c (for example, some images of dogs are more likely than
others). Without this information, our classifier will not know that the penalty for mistaking a dog
for a cat should be less than mistaking a dog for a car. More importantly, in domains where feature
overlap between categories is common (for example, dogs and cats share many joint features), we
are forcing our classifier to solve the wrong problem. In order to satisfy the constraint of wholly non-
confusable category exemplars, our networks may resort to memorization (which notably satisfies
this condition given any dataset with non-identical exemplars across categories).

How, then, can we reach a more natural approximation of p(y|x)? For some problems, it is easy
to just sample from some real set of data p(x, y). But, for image classification, we must rely on
humans as being the gold standard for estimating labels. If we expect human image labels phum(c|x)
to reflect the natural distribution over categories given an image, we can use these samples to define
a new expected loss as follows:∫

L(fθ, x, y) p(x, y) dx dy ≈ 1

n

n∑
i=1

∑
c

L(fθ, xi, c) phum(c|x). (5)

In the case where fθ(x) is a distribution pθ(y|x) and L(f, x, y) is the log-likelihood log p(y|x)
(or equivalently, cross-entropy to a one-hot vector), the expected loss reduces to the cross-entropy
between the human distribution and that predicted by the classifier:

1

n

n∑
i=1

∑
c

phum(c|xi) log pθ(yi = c|xi). (6)

This approach naturally complements those seeking to improve generalization by using distribu-
tional assumptions around p(x|y) to augment training sets (Zhang et al., 2017)—the human label
distribution acts similarly to a kernel on y that distributes mass over neighboring values, although in
a way that is potentially also informative about x.

3 SELECTION OF AN IMAGE DATASET

As a first test of the impact of incorporating human uncertainty into image classification, we chose
to use the CIFAR10 image dataset (Krizhevsky, 2009). This dataset played a significant role in the
early development of CNNs for image classification. While it has subsequently been replaced by
datasets that are larger and higher resolution such as the ImageNet Large Scale Visual Recognition
Challenge (Russakovsky et al., 2015), CIFAR10 has a number of features that make it attractive for
testing these ideas.

First, the dataset is relatively small. This makes it possible for us to exhaustively collect substantial
amounts of human data on a sizable subset of the dataset. At the same time, it contains a significant
number of images of 10 different categories, making it a meaningful test of the approach.

Second, the low resolution of the images is actually useful for producing variation in human re-
sponses. Human error rates for high resolution images are sufficiently low that is hard to get a
meaningful signal from the responses. Using low-resolution images increases the error rate, and
consequently increases the number of human responses that differ from the modal value.

Finally, CIFAR10 contains a number of examples that are close to the category boundaries, in
contrast with other datasets that are more carefully curated such that each image is selected to be a
good example of the category. Likewise, subsets of the categories themselves are relatively closely
related (e.g., cat, dog, deer, and horse), potentially making human uncertainty informative.

4 DATASET CONSTRUCTION

Human judgments were collected for all 10,000 32× 32 color images in the testing subset of
CIFAR10, which contains 1,000 images for each of the following ten categories: airplane, auto-
mobile, bird, cat, deer, dog, frog, horse, ship, truck. This allows us to evalulate models using the
same large and well-known test set in terms of a different set of targets. The remaining subset of the
data comprises the standard training set of 50,000 images (5,000 per category).
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Figure 1: Estimation of p(c|x) via humans. a. Experiment web interface for our human catego-
rization task. Participants categorized each image from an order-randomized circular array of the
CIFAR10 labels. b. Examples of images and their human choice proportions. For many images
(upper plane and cat), choices are unambiguous, matching the CIFAR10 labels. For others (lower
boat and bird), humans are far less certain, even without time constraints.

5 HUMAN EXPERIMENTS

Our CIFAR10H behavioral dataset consists of 511,400 human categorization decisions (approxi-
mately 50 judgments per image) made over our stimulus set collected via Amazon Mechanical Turk
(Buhrmester et al., 2011)—to our knowledge, the largest reported in a single study to date.

In the experiment (illustrated in Figure 1a), participants saw an image, presented centrally, and
were asked to categorize it by pressing one of the ten labels surrounding the image as quickly and
accurately as possible (but with no time limit). Label positions were shuffled between candidates.
There was an initial training phase, during which candidates had to score at least 75% accuracy,
split into 3 blocks of 20 images taken from the CIFAR10 training set (6 per category, total). If
a candidate failed any block they were asked to redo it until passing the threshold accuracy. For
the main experiment, each participant (2,571 total) categorized 200 images, 20 from each category.
Every 20 trials there was an attention check image—a carefully selected unambiguous member of
a particular category. Participants who scored below 75% on these checks were removed from the
final analysis (only 14 participants failed this test).

The mean number of judgments per image was 51 (range: 47− 63). The mean accuracy per subject
was 95% (range: 71%−100%). The mean accuracy per image was 95% (range: 0%−100%). Aver-
age completion time was 15 minutes, and workers were paid $1.50 total. Examples of distributions
over categorization judgments for a selection of images is shown in Figure 1b.

6 BENCHMARKS

We demonstrate the effectiveness of our dataset as a generalization benchmark by evaluating a range
of pretrained SOTA-level CNNs on it both before and after fine-tuning with a subset of our human
data (training on 90%, validating on 10%). As a control, we also fine-tune and validate using the
corresponding splits of the original CIFAR10 one-hot labels. Finally, we test all models on the
CIFAR10 training set to assess potential overfitting to fine-tuning sets, as well as both CIFAR10.1
v4 and CIFAR10.1 v6, sets of 2,000-image extensions of CIFAR10 designed to test the general-
ization limits of traditionally-trained CNNs using standard one-hot labels (Recht et al., 2018).
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Table 1: Crossentropy and accuracy (parentheses) for each validation set and the original CIFAR10
training set (“c10 50k”). Crossentropy for our human labels decreases substantially after fine-tuning,
especially when using human targets. Fine-tuning on human targets also produces the best gener-
alization in terms crossentropy on CIFAR10.1, whereas using ground truth (modal) labels has a
slight edge in terms of top-1 accuracy.

Pretrained on CIFAR10
c10h val. c10 val. c10.1 v4 c10.1 v6 c10 50k

vgg 0.78 (94%) 0.30 (95%) 0.84 (83%) 0.79 (85%) 0.00 (100%)
densenet 0.61 (96%) 0.15 (96%) 0.51 (88%) 0.54 (89%) 0.00 (100%)
pyramidnet 0.58 (97%) 0.14 (97%) 0.47 (89%) 0.47 (90%) 0.00 (100%)
resnet 0.78 (94%) 0.29 (94%) 0.66 (85%) 0.74 (85%) 0.00 (100%)
wrn 0.44 (96%) 0.15 (96%) 0.40 (90%) 0.38 (91%) 0.00 (100%)
wrn co 0.47 (96%) 0.12 (97%) 0.38 (90%) 0.38 (90%) 0.00 (100%)
rn preact 0.72 (94%) 0.19 (95%) 0.59 (87%) 0.64 (86%) 0.00 (100%)
shake 0.60 (98%) 0.09 (98%) 0.34 (92%) 0.33 (92%) 0.00 (100%)

Fine-tuned on CIFAR10
c10h val. c10 val. c10.1 v4 c10.1 v6 c10 50k

vgg 0.50 (93%) 0.21 (93%) 0.66 (82%) 0.58 (84%) 0.03 (99%)
densenet 0.59 (96%) 0.14 (96%) 0.47 (88%) 0.50 (89%) 0.00 (100%)
pyramidnet 0.50 (97%) 0.11 (98%) 0.37 (90%) 0.38 (91%) 0.00 (100%)
resnet 0.61 (93%) 0.24 (93%) 0.62 (83%) 0.63 (84%) 0.04 (99%)
wrn 0.38 (96%) 0.12 (96%) 0.38 (89%) 0.33 (91%) 0.00 (100%)
wrn co 0.44 (97%) 0.11 (97%) 0.36 (90%) 0.36 (91%) 0.00 (100%)
rn preact 0.65 (94%) 0.17 (94%) 0.56 (87%) 0.56 (87%) 0.00 (100%)
shake 0.50 (98%) 0.07 (98%) 0.28 (92%) 0.28 (93%) 0.00 (100%)

Fine-tuned on CIFAR10H
c10h val. c10 val. c10.1 v4 c10.1 v6 c10 50k

vgg 0.35 (93%) 0.21 (93%) 0.55 (82%) 0.48 (85%) 0.07 (99%)
densenet 0.32 (95%) 0.17 (95%) 0.40 (87%) 0.38 (88%) 0.09 (98%)
pyramidnet 0.28 (97%) 0.11 (97%) 0.32 (89%) 0.30 (90%) 0.04 (100%)
resnet 0.36 (92%) 0.24 (92%) 0.56 (82%) 0.54 (82%) 0.23 (93%)
wrn 0.27 (97%) 0.12 (97%) 0.32 (90%) 0.29 (91%) 0.03 (100%)
wrn co 0.28 (96%) 0.13 (96%) 0.37 (88%) 0.34 (89%) 0.06 (100%)
rn preact 0.33 (94%) 0.18 (94%) 0.45 (85%) 0.43 (86%) 0.08 (99%)
shake 0.26 (97%) 0.10 (98%) 0.28 (91%) 0.27 (91%) 0.04 (100%)

6.1 PRETRAINED MODELS

We pretrained seven CNN architectures (and eight models total) on CIFAR10 (Table 1), including a
number of CIFAR10 benchmark breakers over the last 5 years, as well as the current state-of-the-art
model, shake-shake with cutout (Gastaldi, 2017; Devries & Taylor, 2017):

• VGG: vgg 15 BN 64

• DenseNet: densenet BC 100 12

• PyramidNet: pyramidnet basic 110 270

• ResNet: resnet basic 110

• Wide ResNet: wrn 28 10, wrn 28 10 cutout16

• ResNet Pre-act: resnet preact bottleneck 164

• Shake Shake: shake shake 26 2x64d SSI cutout16

All models were trained using PyTorch (Paszke et al., 2017), using the repository found at
https://github.com/hysts/pytorch_image_classification. We used the de-
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Table 2: Crossentropy and accuracy (parentheses) for each validation set when combining mixup
with original or human targets.

Pretrained on CIFAR10
c10h val. c10 val. c10.1 v4 c10.1 v6 c10 50k

wrn 28 10 co16 .45 (96%) .14 (96%) .37 (90%) .38 (90%) .00 (100%)
shake 26 2x64d SSI co16 .55 (97%) .09 (97%) .34 (92%) .33 (92%) .00 (100%)

Fine-tuned on CIFAR10 with mixup
c10h val. c10 val. c10.1 v4 c10.1 v6 c10 50k

wrn 28 10 co16 .34 (96%) .12 (96%) .37 (89%) .33 (90%) .03 (100%)
shake 26 2x64d SSI co16 .55 (97%) .09 (97%) .34 (92%) .33 (92%) .00 (100%)

Fine-tuned on CIFAR10H with mixup
c10h val. c10 val. c10.1 v4 c10.1 v6 c10 50k

wrn 28 10 co16 .28 (96%) .14 (96%) .36 (89%) .31 (90%) .07 (100%)
shake 26 2x64d SSI co16 .26 (97%) .12 (97%) .30 (91%) .28 (91%) .08 (99%)

fault hyperparameters in the repository for all models, following (Recht et al., 2018) for the sake
of reproducibility.

6.2 MODEL FINE-TUNING

We fine-tuned each pretrained model using our human data. As opposed to traditional one-hot
vectors, our targets were parameter vectors reflecting the aggregate human classifications for each
image, normalized to sum to one. We used 9000 image-label pairs from our CIFAR10H as our
training set, and held out a set of 1000 image-label pairs for validation. As a control, we also trained
using the original CIFAR10 labels for the 9000 images in our training set, and 1000 images in our
validation set. We trained models for 100 epochs using adam (Kingma & Ba, 2014) on the loss
between model predictions and human labels, and performed a grid-search over learning rates (0.1,
0.01, and 0.001), and random seed (3 values).

6.3 EVALUATION MEASURES

In order to examine the effects of tuning CNN classification models on our dataset, we assessed their
performance on our validation and test sets before, during, and after training (Table 1 shows the best
of these scores). We choose crossentropy as our evaluation metric of choice given that our human
targets are meant to capture probabilities for each class given an image. All validation and test sets
are described in detail below.

• c10h val. — 1000-image validation for our CIFAR10H

• c10 val. — 1000-image validation for our control using CIFAR10

• c10.1 v4 — 2000-image test set (Recht et al., 2018)

• c10.1 v6 — 2000-image test set (alternative; Recht et al. (2018))

• c10 50k — Original 50k-image CIFAR10 training set

7 RESULTS

7.1 PERFORMANCE OF PRETRAINED MODELS ON BENCHMARK

Our first finding is that the loss (crossentropy) for models pretrained on CIFAR10 increases sub-
stantially when they are evaluated on our benchmark, CIFAR10H (Table 1, upper section, columns
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1 and 2). Accuracy, by contrast, remains roughly the same. This supports the findings of Recht
et al. (2018), who found that pretrained CIFAR10 CNNs generalize poorly even to validation sets
sampled as closely as possible to the original. We replicate these findings in columns 3 and 4 of the
same table.

7.2 TRAINING (FINE-TUNING) ON CIFAR10H

Our main finding is that models fine-tuned on our set of human labels exhibit generalization
performance—in terms of loss—that is consistently better than our control (Table 1, section 2).
These effects were much more pronounced that those seen with our control training paradigm, in
which we further trained / fine-tuned pretrained networks with the ground-truth labels originally
associated with CIFAR10 test images (Table 1). We can visualize these effects more clearly by
examining individual runs for models, with a representative example shown in Figure 3.

Here, we trained to the full distribution of human guesses for each image, rather than sampling one-
hot labels from the distribution as training input. These paradigms are equivalent mathematically, as
the CNN softmax itself is probabilistic; however, training to samples instead of the full probability
vector takes much longer to train, as it may take some time before multiple modes are sampled.

7.3 COMBINING HUMAN LABEL UNCERTAINTY WITH mixup

Approaching the problem of extending empirical risk minimization paradigms to avoid training and
validation set overfitting in a complementary framework, Zhang et al. and colleagues, 2017, intro-
duced a technique called mixup, in which datasets are augmented by including convex combinations
of image vectors and their labels. This can be thought of as estimating the true distribution p(x, y)
by using a joint kernel over labels and images, with the result that classification model is regularized
to favor simple linear behavior in-between training examples. As adding mixup to several CNN
models on CIFAR10 improves their test set error and robustness to adversarial attacks, we assessed
the performance of using mixup instead of and alongside our labels.

Results are presented in Table 2. We find that using mixup decreases loss, both on validation and
generalization datasets, but, importantly, that combining mixup with our data decreases this loss
further. This is as expected, considering our dataset supplies richer information about labels, with
which the out-of-sample linearizing effects of mixup can utilize.

7.4 IMPLICATIONS FOR ADVERSARIAL DEFENSE

Because our human targets contain information about images near perceptual boundaries, we might
expect that representations learned in service of predicting them would be more robust to adversarial
attacks, particularly in cases where similar categories make for good attack targets. We generally
measure this by looking again at maximized crossentropy after a basic Fast Gradient Sign Method
(FGSM) attack. Results using two of the best models from architecture classes randomly selected
from our total set are presented in Table 3 (no other models were tested at any point). As we might
expect, accuracy after an attack on the entire CIFAR10 test dataset is lower when training on human
targets, because the top-1 choice becomes less confident, however, crossentropy is notably much
lower when using networks supervised to human targets, indicating a trade-off between accuracy
and robustness.

8 DISCUSSION

We have shown that incorporating human uncertainty about the categories that apply to images into
the objective function used for training image classification systems can result in an improvement
in both generalization and robustness. In the remainder of the paper we will briefly discuss some of
the limitations and implications of these results.

We focused on the CIFAR10 dataset in part because its manageable size made it was possible to
obtain human judgments for a reasonable subset of images. Even so, our human dataset covers
only a sixth of the complete dataset. Getting human judgments for any modern dataset in full is
potentially too costly, which places limits on the practical benefits of this approach, but the results
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Figure 2: Change in loss (∆L) for human targets, original CIFAR10 targets, and CIFAR10.1
targets after fine-tuning using original CIFAR10 targets (red) or CIFAR10H targets (blue). Average
∆L across models for each training condition is represented by a dashed horizontal line.

Table 3: FGSM attacks on the CIFAR10-tuned and CIFAR10H-tuned networks. Using human
labels results in lower crossentropy (lower is better), but also lower accuracy (parentheses).

Fine-tuned with CIFAR10
Before FGSM After FGSM

pyramidnet .08 (98%) 5.22 (22%)
shake shake .05 (98%) 4.18 (39%)

Fine-tuned with CIFAR10H
Before FGSM After FGSM

pyramidnet .07 (99%) 3.52 (19%)
shake shake .06 (99%) 2.10 (38%)

we present here are sufficient to demonstrate that human uncertainty carries important information
about the similarity structure of images and categories, and that it can be used as an evaluation where
training itself is not feasible.

To extend these results to a larger scale, it might be possible to build predictive models that extend
the patterns of uncertainty observed in our data to larger datasets. For example, taking a softmax
over a semantic distance measure on category labels might give enough of this type of structure to
improve training. This is essentially a way of constructing a probabilistic kernel on category labels,
complementary to strategies aimed at countering overfitting on image datasets by augmenting them
via sampling extra training inputs using domain-specific alterations—such as slight image rotations
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Figure 3: Representative fine-tuning results for densenet, on our data (left) and original cifar labels
(right). Results are shown for a learning rate of 0.001, and with a seed of 0.

and horizontal reflections—or distributional assumptions over the perceptual space surrounding em-
pirical examples (Schott et al., 2018; Simonyan & Zisserman, 2014).

A second issue with applying this approach to other datasets is that higher-resolution and better-
curated collections of images are less likely to produce human uncertainty. In some ways, careful
selection of good examples of particular categories may undermine the goal of producing robust
image classification systems, because it means that there are few images that are informative about
category boundaries. Having more confusable images, together with the information about exactly
how humans find them confusing, may thus be a way to improve generalization and robustness more
broadly.

Capturing the relationships that exist between categories may also be important in thinking about
the robustness of systems to adversarial examples. For instance, knowing that dogs and cats are
similar means that we should be less concerned when it is easy to make an image classification
system confuse one for the other. However, dogs and cars are very different, and we should hope
that driverless cars are sensitive to that difference.

Human beings remain the best examples we have of systems that are capable of solving certain
problems, including classifying images in a way that is generalizable and robust. Collecting more
information about how people do this can only improve our machine learning systems. In particular,
the patterns of errors that people make and the uncertainty of their display are informative about
the structure of the world around us, and provide an additional source of information that machine
learning systems can exploit.
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