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ABSTRACT

Gaussian processes are the leading class of distributions on random functions, but
they suffer from well known issues including difficulty scaling and inflexibility with
respect to certain shape constraints (such as nonnegativity). Here we propose Deep
Random Splines, a flexible class of random functions obtained by transforming
Gaussian noise through a deep neural network whose output are the parameters
of a spline. Unlike Gaussian processes, Deep Random Splines allow us to readily
enforce shape constraints while inheriting the richness and tractability of deep
generative models. We also present an observational model for point process data
which uses Deep Random Splines to model the intensity function of each point
process and apply it to neuroscience data to obtain a low-dimensional representation
of spiking activity. Inference is performed via a variational autoencoder that uses a
novel recurrent encoder architecture that can handle multiple point processes as
input.

1 INTRODUCTION

Gaussian Processes (GPs) are one of the main tools for modeling random functions (Rasmussen,
2004). They allow control of the smoothness of the function by choosing an appropriate kernel
but have the disadvantage that, except in special cases (for example Gilboa et al. (2015); Flaxman
et al. (2015)), inference in GP models scales poorly in both memory and runtime. Furthermore,
GPs cannot easily handle shape constraints. It can often be of interest to model a function under
some shape constraint, for example nonnegativity, monotonicity or convexity/concavity (Møller et al.,
1998; Schmidt & Hess, 1988; Ramsay, 1988; Mammen, 1991). While some shape constraints can be
enforced by transforming the GP or by enforcing them at a finite number of points, doing so cannot
always be done and usually makes inference harder, see for example Lin & Dunson (2014).

Splines are another popular tool for modeling unknown functions (Wahba, 1990). When there are
no shape constraints, frequentist inference is straightforward and can be performed using linear
regression, by writing the spline as a linear combination of basis functions. Under shape constraints,
the basis function expansion usually no longer applies, since the space of shape constrained splines is
not typically a vector space. However, the problem can usually still be written down as a tractable
constrained optimization problem (Schmidt & Hess, 1988). Furthermore, when using splines to model
a random function, a distribution must be placed on the spline’s parameters, so the inference problem
becomes Bayesian. DiMatteo et al. (2001) proposed a method to perform Bayesian inference in a
setting without shape constraints, but the method relies on the basis function expansion and cannot be
used in a shape constrained setting. Furthermore, fairly simple distributions have to be placed on
the spline parameters for their approximate posterior sampling algorithm to work adequately, which
results in the splines having a restrictive and oversimplified distribution.

On the other hand, deep probabilistic models take advantage of the major progress in neural networks
to fit rich, complex distributions to data in a tractable way (Rezende et al., 2014; Mohamed &
Lakshminarayanan, 2016; Kingma & Welling, 2013; Gao et al., 2016; Johnson et al., 2016). However,
their goal is not usually to model random functions.
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In this paper, we introduce Deep Random Splines (DRS), an alternative to GPs for modeling random
functions. DRS are a deep probabilistic model in which standard Gaussian noise is transformed
through a neural network to obtain the parameters of a spline, and the random function is then the
corresponding spline. This combines the complexity of deep generative models and the ability to
enforce shape constraints of splines.

We use DRS to model the nonnegative intensity functions of Poisson processes (Kingman, 1992). In
order to ensure that the splines are nonnegative, we use a parametrization of nonnegative splines that
can be written as an intersection of convex sets, and then use the method of alternating projections
(von Neumann, 1950) to obtain a point in that intersection (and differentiate through that during
learning). To perform scalable inference, we use a variational autoencoder (Kingma & Welling, 2013)
with a novel encoder architecture that takes multiple, truly continuous point processes as input (not
discretized in bins, as is common).

Our contributions are: (i) Introducing DRS, (ii) using the method of alternating projections to
constrain splines, (iii) proposing a variational autoencoder model whith a novel encoder architecture
for point process data which uses DRS, and (iv) showing that our model outperforms commonly
used alternatives in both simulated and real data.

The rest of the paper is organized as follows: we first explain DRS, how to parametrize them and
how constraints can be enforced in section 2. We then present our model and how to do inference in
section 3. We then compare our model against competing alternatives in simulated data and in two
real spiking activity datasets in section 4, and observe that our method outperforms the alternatives.
Finally, we summarize our work in section 5.

2 DEEP RANDOM SPLINES

Throughout the paper we will consider functions on the interval [T1, T2) and will select I + 1 fixed
knots T1 = t0 < · · · < tI = T2. We will refer to a function as a spline of degree d and smoothness
s < d if the function is a d-degree polynomial in each interval [ti, ti+1) for i = 0, . . . , I − 1, is
continuous, and s times differentiable. We will denote the set of splines of degree d and smoothness s
by Gd,s = {gψ : ψ ∈ Ψd,s}, where Ψd,s is the set of parameters of each polynomial in each interval.
That is, every ψ ∈ Ψd,s contains the parameters of each of the I polynomial pieces (it does not
contain the locations of the knots as we take them to be fixed since we observed overfitting when not
doing so). While the most natural ways to parametrize splines of degree d are a linear combination
of basis functions or with the d+ 1 polynomial coefficients of each interval, these parametrizations
do not lend themselves to easily enforce constraints such as nonnegativity (Schmidt & Hess, 1988).
We will thus use a different parametrization which we will explain in detail in the next section. We
will denote by Ψ ⊆ Ψd,s the subset of spline parameters that result in the splines having the shape
constraint of interest, for example, nonnegativity.

DRS are a distribution over Gd,s. To sample from a DRS, a standard Gaussian random variable
Z ∈ Rm is transformed through a neural network parametrized by θ, fθ : Rm → Ψ. The DRS is then
given by gfθ(Z) and inference on θ can be performed through a variational autoencoder (Kingma &
Welling, 2013). Note that f maps to Ψ, thus ensuring that the spline has the relevant shape constraint.

2.1 CONSTRAINING SPLINES

We now explain how we can enforce piecewise polynomials to form a nonnegative spline. We add the
nonnegativity constraint to the spline as we will use it for our model in section 3, but constraints such
as monotonicity and convexity/concavity can be enforced in an analogous way. In order to achieve
this, we use a parametrization of nonnegative splines that might seem overly complicated at first.
However, it has the critical advantage that it decomposes into the intersection of convex sets that are
easily characterized in terms of the parameters, which is not the case for the naive parametrization
which only includes the d+ 1 coefficients of every polynomial. We will see how to take advantage of
this fact in the next section.

A beautiful but perhaps lesser known spline result (see Lasserre (2010)) gives that a polynomial p(t)
of degree d, where d = 2k + 1 for some k ∈ N, is nonnegative in the interval [l, u) if and only if it
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can be written down as follows:

p(t) = (u− t)[t]>Q1[t] + (t− l)[t]>Q2[t] (1)

where [t] = (1, t, t2, . . . , tk)> and Q1 and Q2 are (k+ 1)× (k+ 1) symmetric positive semidefinite
matrices. It follows that a piecewise polynomial of degree d with knots t0, . . . , tI defined as p(i)(t)
for t ∈ [ti−1, ti) for i = 1, . . . , I is nonnegative if and only if it can be written as:

p(i)(t) = (ti − t)[t]>Q(i)
1 [t] + (t− ti−1)[t]>Q

(i)
2 [t] (2)

for i = 1, . . . , I , where each Q(i)
1 and Q(i)

2 are (k + 1)× (k + 1) symmetric positive semidefinite
matrices. We can thus parametrize every piecewise nonnegative polynomial on our I intervals with
(Q

(i)
1 , Q

(i)
2 )Ii=1. If no constraints are added on these parameters, the resulting piecewise polynomial

might not be smooth, so certain constraints have to be added in order to guarantee that we are
parametrizing a nonnegative spline and not just a nonnegative piecewise polynomial. To that end, we
define C1 as the set of (Q

(i)
1 , Q

(i)
2 )Ii=1 such that:

p(i)(ti) = p(i+1)(ti) for i = 1, . . . , I − 1 (3)

That is, C1 is the set of parameters whose resulting piecewise polynomial as in equation 2 is continuous.
Analogously, let Cj for j = 2, 3, . . . be the set of (Q

(i)
1 , Q

(i)
2 )Ii=1 such that:

∂j−1

∂tj−1
p(i)(ti) =

∂j−1

∂tj−1
p(i+1)(ti) for i = 1, . . . , I − 1 (4)

So that Cj is the set of parameters whose corresponding piecewise polynomials have matching left
and right (j − 1)-th derivatives. Let C0 be the set of (Q

(i)
1 , Q

(i)
2 )Ii=1 which are symmetric positive

semidefinite. We can then parametrize the set of nonnegative splines on [T1, T2) by Ψ = ∩s+1
j=0Cj .

Note that the case where d is even can be treated analogously (see supplementary material).

2.2 THE METHOD OF ALTERNATING PROJECTIONS

In order to use a DRS, fθ has to map to Ψ, that is, we need to have a way for a neural network to map to
the parameter set corresponding to nonnegative splines. We achieve this by taking fθ(z) = h(f̃θ(z)),
where f̃θ is an arbitrary neural network and h is a surjective function onto Ψ. The most natural choice
for h is the projection onto Ψ. However, while computing the projection onto Ψ (for Ψ as in section
2.1) can be done by solving a convex optimization problem, it cannot be done analytically. This is
an issue because when we train the model, we will need to differentiate fθ with respect to θ. Note
that Amos & Kolter (2017) propose a method to have an optimization problem as a layer in a neural
network. One might hope to use their method for our problem, but it cannot be applied due to the
semidefinite constraint on our matrices.

The method of alternating projections (von Neumann, 1950; Bauschke & Borwein, 1996) allows us
to approximately compute such a function h analytically. If C0, . . . , Cs+1 are closed, convex sets in
RD, then the sequence ψ(k) = Pk mod (s+2)(ψ

(k−1)) converges to a point in ∩s+1
j=0Cj for any starting

ψ(0), where Pj is the projection onto Cj for j = 0, . . . , s+ 1. The method of alternating projections
then consists on iteratively projecting onto each set in a cyclic fashion. We call computing ψ(k) from
ψ(k−1) the k-th iteration of the method of alternating projections. This method can be useful to obtain
a point in the intersection if each Pj can be easily computed.

In our case, projecting onto C0 can be done by doing eigenvalue decompositions of Q(i)
1 and Q(i)

2
and zeroing out negative elements in the diagonal matrices containing the eigenvalues. While this
might seem computationally expensive, the matrices are small and this can be done efficiently. For
example, for cubic splines (d = 3), there are 2I matrices each one of size 2 × 2. Projecting onto
Cj for j = 1, . . . s+ 1 can be done analytically as it can be formulated as a quadratic optimization
problem with linear constraints. Furthermore, because of the local nature of the constraints where
every interval is only constrained by its neighboring intervals, this quadratic optimization problem
can be reduced to solving a tridiagonal system of linear equations of size I − 1 which can be solved
efficiently in O(I) time with simplified Gaussian elimination. While the derivation of this fact is a
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straightforward application of the KKT conditions, the algebra is cumbersome, so we omit it here to
include it in the supplementary material.

By letting h be the first M iterations of the method of alternating projections, we can ensure that fθ
maps (approximately) to Ψ, while still being able to compute∇θfθ(z). Note that we could find such
an h function using Dykstra’s algorithm (not to be confused with Dijkstra’s shortest path algorithm),
which is a modification of the method of alternating projections that converges to the projection of
ψ(0) onto ∩s+1

j=0Cj (Dykstra, 1983; Boyle & Dykstra, 1986; Tibshirani, 2017)), but we found that
the method of alternating projections was faster to differentiate when using reverse mode automatic
differentiation packages (Abadi et al., 2016).

Another way of finding such an h would be unrolling any iterative optimization method that solves
the projection onto Ψ, such as gradient-based methods or Newton methods. We found the alternating
projections method more convenient as it does not involve additional hyperparameters such as learning
rate that drastically affect performance. Furthermore, the method of alternating projections is known
to have a linear convergence rate (as fast as gradient-based methods) that is independent of the starting
point (Bauschke & Borwein, 1996). This last observation is important, as the starting point in our
case is determined by the output of f̃θ, so that the convergence rate being independent of the starting
point ensures that f̃θ cannot learn to ignore h, which is not the case for gradient-based and Newton
methods (for a fixed number of iterations and learning rate, there might exist an initial point that is
too far away to actually reach the projection). Finally, note that if we wanted to enforce, for example,
that the spline be monotonic, we could parametrize its derivative and force it to be nonnegative or
nonpositive. Convexity or concavity can be enforced analogously.

3 DEEP RANDOM SPLINES AS INTENSITY FUNCTIONS OF POINT PROCESSES

Since we will use DRS as intensity functions for Poisson processes, we begin this section with a brief
review of these processes.

3.1 POISSON PROCESSES

An inhomogeneous Poisson process in a set S is a random subset of S. The process can (for our
purposes) be parametrized by an intensity function g : S → R+ and in our case, S = [T1, T2). We
write S ∼ PPS(g) to denote that the random set S, whose elements we call events, follows a Poisson
process on S with intensity g. If S = {xk}Kk=1 ∼ PPS(g), then |S ∩ A|, the number of events in
any A ⊆ S, follows a Poisson distribution with parameter

∫
A
g(t)dt and the log likelihood of S is

given by:

log p({xk}Kk=1|g) =

K∑
k=1

log g(xk)−
∫
S
g(t)dt (5)

Splines have the very important property that they can be analytically integrated (as the integral of
polynomials can be computed in closed form), which allows to exactly evaluate the log likelihood in
equation 5 when g is a spline. As a consequence, fitting a DRS to observed events is more tractable
than fitting models that use GPs to represent g, such as log-Gaussian Cox processes (Møller et al.,
1998). Inference in the latter type of models is very challenging, despite some efforts by Cunningham
et al. (2008); Adams et al. (2009); Lloyd et al. (2015). Splines also vary smoothly, which incorporates
the reasonable assumption that the expected number of events changes smoothly over time. These
properties were our main motivations for choosing splines to model intensity functions.

3.2 OUR MODEL

Suppose we observe N simultaneous point processes in [T1, T2) a total of R repetitions (we will
call each one of these repetitions/samples a trial). Let Xr,n denote the n-th point process of the r-th
trial. Looking ahead to an application we study in the results, data of this type is a standard setup for
microelectrode array data, where N neurons are measured from time T1 to time T2 for R repetitions,
and each event in the point processes corresponds to a spike (the time at which the neurons “fired”).
Each Xr,n is also called a spike train. The model we propose, which we call DRS-VAE, is as follows:
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Zr ∼ N (0, Im) for r = 1, . . . , R

ψr,n = f
(n)
θ (Zr) for n = 1, . . . , N

Xr,n|ψr,n ∼ PP [T1,T2)(gψr,n)

(6)

where each f (n)θ : Rm → Ψ is obtained as described in section 2.2. The hidden state Zr for the r-th
trial Xr := (Xr,1, . . . , Xr,N ) can be thought as a low-dimensional representation of Xr. Note that
while the intensity function of every point process and every trial is a DRS, the latent state Zr of each
trial is shared among the N point processes.

Once again, one might think that our parametrization of nonnegative splines is unnecessarily compli-
cated and that having f (n)θ in equation 6 be a simpler parametrization of an arbitrary spline (e.g. basis
coefficients) and using τ(gψr,n) instead of gψr,n , where τ is a nonnegative function, might be a better
solution to enforcing nonnegativity constraints. The function τ would have to be chosen in such a
way that the integral of equation 5 can still be computed analytically, making τ(t) = t2 a natural
choice. While this would avoid having to use the method of alternating projections, we found that
squared splines perform very poorly as they oscillate too much.

3.3 INFERENCE

Autoencoding variational Bayes (Kingma & Welling, 2013) is a technique to perform inference in the
following type of model: {

Zr ∼ pθ(z) for r = 1, . . . , R

Xr ∼ pθ(x|zr)
(7)

where each Zr ∈ Rm is a local hidden variable which we do not observe, θ are the model parameters
and Xr is the data that we actually observe, whose distribution depends on Zr. A variational
autoencoder estimates θ and approximates the posterior p(z|x) by a distribution qφ(z|x) parametrized
by φ. Further simplifying assumptions are made and qφ(z|x) is taken such that it respects conditional
independence:

qφ(z|x) =

R∏
r=1

qφ(zr|xr) (8)

where each qφ(zr|xr) is taken to be normal with mean and variance depending on Rm valued
nonlinear functions (usually taken to be neural networks) of xr:

qφ(zr|xr) = N
(
µφ(xr),diag

(
σ2
φ(xr)

))
(9)

where diag
(
σ2
φ(xr)

)
is a diagonal matrix whose diagonal elements are given by σ2

φ(xr). Performing
(approximate) Bayesian inference becomes finding values of φ that adequately approximate the true
posterior. To achieve this task, the ELBO L, which is given by the following expression, is jointly
maximized over (θ, φ):

L(θ, φ) =

R∑
r=1

−KL(qφ(zr|xr)||pθ(zr))

+ Eqφ(zr|xr)[log pθ(xr|zr)] (10)

Maximizing the ELBO over φ is equivalent to minimizing the KL of the approximate posterior to the
true posterior (for a fixed θ), while maximizing it over θ is equivalent to maximizing a lower bound
on the log likelihood. This lower bound is close to the actual log likelihood when the true posterior is
correctly approximated. Furthermore, the first term in the sum in equation 10 can be written down in
closed form as it is just the KL divergence between two normal random variables, while the second
term in the sum can be written using the reparametrization trick:

Eqφ(zr|xr)[log pθ(xr|zr)] =

Eε∼N (0,Im)[log pθ(xr|µφ(xr) + σφ(xr)� ε)] (11)

where � refers to coordinate-wise multiplication. This allows for straightforward differentiation with
respect to φ, and thus stochastic gradient methods can be used.
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In order to perform inference, we use autoencoding variational Bayes. Because of the point
process nature of the data, µφ and σφ require a recurrent architecture, since their input xr =
(xr,1, xr,2, . . . , xr,N ) consists of N point processes. This is challenging because the input is not just
a sequence, but N sequences of different lengths (numbers of events). In order to deal with this,
we use N separate LSTMs (Hochreiter & Schmidhuber, 1997), one per point process. Each LSTM
takes as input the events of the corresponding point process. The final states of each LSTM are then
concatenated and transformed through a dense layer (followed by an exponential activation in the
case of σφ to ensure positivity) in order to map to the hidden space Rm. We also tried bidirectional
LSTMs (Graves & Schmidhuber, 2005) but found regular LSTMs to be faster while having similar
performance. The architecture is depicted in figure 1. Combining equations 10 and 11 for our model
of equation 6, we approximate the ELBO at each stochastic gradient step by:

L(θ, φ) ≈ R

|B|
∑
r∈B
−KL(qφ(zr|xr)||pθ(zr))

+
1

L

L∑
l=1

log pθ(xr|µφ(xr) + σφ(xr)� εl)

=
R

|B|
∑
r∈B

1

2

m∑
j=1

(
1 + log σ2

φ,j(xr) (12)

− µφ,j(xr)2 − σ2
φ,j(xr)

)
+

R

|B|
∑
r∈B

1

L

L∑
l=1

N∑
n=1

Kr,n∑
k=1

log gψr,n,l(xr,n,k)

−
∫ T2

T1

gψr,n,l(t)dt

where B is a randomly selected subset of trials, ε1, . . . εL are iid N (0, Im), µφ,j(xr) and σ2
φ,j(xr)

are, respectively, the j-th coordinates of µφ(xr) and σ2
φ(xr), Kr,n is the number of events in the n-th

point process of the r-th trial, ψr,n,l = f
(n)
θ (µφ(xr) + σφ(xr)� εl) and xr,n,k is the k-th event of

the n-th point process of the r-th trial.

Gao et al. (2016) have a similar model, where a hidden Markov model is transformed through a
neural network to obtain event counts on time bins. The hidden state for a trial in their model is then
an entire hidden Markov chain, which will have significantly higher dimension than our hidden state.
Also, their model can be recovered from ours if we change the standard Gaussian distribution of Zr
in equation 6 to reflect their Markovian structure and choose G to be piecewise constant, nonnegative
functions. We also emphasize the fact that our model is very easy to extend: for example, it would
be straightforward to extend it to multi-dimensional point processes (not neural data any more) by
changing G and its parametrization. It is also straightforward to use a more complicated point process
than the Poisson one by allowing the intensity to depend on previous event history. Furthermore,
DRS can be used in settings that require random functions, even if no point process is involved.

4 EXPERIMENTS

4.1 SIMULATED DATA

We simulated data with the following procedure: First, we set 2 different types of trials. For each
type of trial, we sampled one true intensity function on [0, 10) for each of the N = 2 point processes
by sampling from a GP and exponentiating the result. We then sampled 600 times from each type of
trial, resulting in 1200 trials. We randomly selected 1000 trials for training and set aside the rest for
testing. We then fit the model described in section 3.2 and compared it against the PfLDS model of
Gao et al. (2016) and the GPFA model of Yu et al. (2009). Both of these methods discretize time into
B time bins and have a latent variable per time bin and per trial (as opposed to our model which is
only per trial). They do this as a way of enforcing temporal smoothness by placing an appropriate
prior over their latent trajectories, which we do not have to do as we implicitly enforce temporal
smoothness by using splines to model intensity functions. PfLDS uses Gaussian linear dynamics
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Figure 1: Each point process xr1, . . . , xrN is processed by its corresponding LSTM and everything
is joined by a fully-connected layer at the end.

for their latent space and a Poisson distribution on the number of events per time bin, while GPFA
places a GP distribution on the latent space and a Gaussian distribution on the square-rooted number
of events per time bin. We compare these methods against DRS-VAE since both were designed to
analyze the same type of point process data and, inference wise, PfLDS uses a similar autoencoding
variational Bayes algorithm whereas GFPA uses GPs to model random functions.

We used a uniform grid with 11 knots (resulting in I = 10 intervals), picked d = 3, s = 2, used a
mini-batch size of 2 and used L = 2. The state of each LSTM has 100 units, and f̃ is a feed-forward
neural network with ReLU activations and with 3 hidden layers, each one with 100 units. We apply
102 iterations of the method of alternating projections. Since a twice-differentiable cubic spline
on I intervals has I + 3 degrees of freedom, when discretizing time for PfLDS and GPFA we use
B = I+3 = 13 time bins. This way the distribution recovered by PfLDS also hasB = 13 degrees of
freedom, while the distribution recovered by GPFA has even more, as each Gaussian has a covariance
in addition to the mean. We set the latent dimension m in our model to 2 and we also set the latent
dimension per time bin in PfLDS and GPFA to 2, meaning that the overall latent dimension for an
entire trial was 2B = 26. These two choices make the comparison conservative as they allow more
flexibility for the two competing methods than for ours. For the feed-forward architecture in PfLDS,
we also used 3 hidden layers, each with 100 units.

The left panel of figure 2 shows the posterior means of the hidden variables in our model for each
of the 200 test trials. Each posterior mean is colored according to its type of trial. We can see
that different types of trials form separate clusters, meaning that our model successfully obtains
low-dimensional representations of the trials. Note that the model is trained without having access to
the type of each trial; colors are assigned in the figure post hoc.

The right panel of figure 2 shows the events (in red) for a particular point process on a particular
trial, along with the true intensity (in green) that generated the events and posterior samples from our
model (in purple) and from PfLDS (in blue) of the corresponding intensities. Note that since PfLDS
parametrizes the number of counts on each time bin, it does not have a corresponding intensity. We
plot instead a piecewise constant intensity on each time bin in such a way that the resulting Poisson
process has the same count distribution as the distribution that is parametrized by PfLDS. We can see
that our method recovers a smoother function that is closer to the truth than PfLDS.

Table 1: Quantitative comparison of our method (DRS-VAE) against PfLDS and GPFA on simulated
data.

METHOD ELBO L2 p-VALUE

DRS-VAE 57.17 0.11± 0.086 −
PfLDS 52.32 0.21± 0.103 6.6× 10−45

GPFA − 0.21± 0.097 4.7× 10−46
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Figure 2: Posterior means of the hidden variables of DRS by type of trial on simulated data (left
panel) and comparison of posterior intensities of our method (DRS-VAE) against PfLDS (right panel).

Table 1 shows performance from our model compared against PfLDS and GPFA. The second column
shows the per-trial ELBO on test data, and we can see that our model has a larger ELBO than PfLDS.
While having a better ELBO does not imply that our log likelihood is better, it does suggest that it is.
Since both PfLDS and GPFA put a distribution on event counts on time bins instead of a distribution
on event times as our models does, the log likelihoods are not directly comparable. However, in
the case of PfLDS, we can easily convert from the Poisson likelihood on time bins to the piecewise
constant intensity Poisson process likelihood, so that the numbers become comparable. In order to get
a quantitative comparison between our model and GPFA, we take advantage of the fact that we know
the true intensity that generated the data and compare average L2 distance, across point processes
and trials, between posterior intensity samples and actual intensity function. Once again, we can see
that our method outperforms the alternatives. Table 1 also includes the standard deviation of these L2

distances. Since the standard deviations are somewhat large in comparison to the means, for each of
the two competing alternatives, we carry out a two sample t-test comparing the L2 distance means
obtained with our method against the alternative. The p-values indicate that our method recovers
intensity functions that are closer to the truth in a statistically significant way.

4.2 REAL DATA

4.2.1 REACHING DATA

We also fit our model to the dataset collected by Churchland et al. (2012). The dataset, after
preprocessing (see supplementary material for details), consists of measurements of 20 neurons for
3590 trials on the interval [−100, 300) (in ms) of a primate. In each trial, the primate reaches with
its arm to a specific location, which changes from trial to trial (we can think of the 40 locations as
types of trials), where time 0 corresponds to the beginning of the movement. We randomly split the
data into a training set with 3000 trials and a test set with the rest of the trials.

We chose d = 3, s = 2, L = 2, applied 102 iterations of the method of alternating projections, set
the state of each LSTM to have 25 units and f̃ is a feed-forward network with ReLU activations and
with 3 hidden layers, each one with 10 units (we tried more complicated architectures but saw no
improvement). We used 18 uniformly spaced knots (that is, 17 intervals). For the comparison against
PfLDS, we split time into 20 bins, resulting in time bins of 20ms (which is a standard length), once
again making sure that the degrees of freedom are comparable. Since we do not have access to the
ground truth, we do not compare against GPFA as the L2 metric computed in the previous section
cannot be used here. Again, we used a hidden dimension m = 2 for our model, resulting in hidden
trajectories of dimension 40 for PfLDS. We experimented with larger values of m but did not observe
significant improvements in either model.

Figure 3 shows the spike train (red) for a particular neuron on a particular trial, along with posterior
samples from our model (in purple) and from PfLDS (in blue) of the corresponding intensities. We
can see that the posterior samples look like plausible intensities to have generated the corresponding
spike trains and that our posterior intensities look smoother than the ones obtained by PfLDS.

8



Published as a workshop paper at ICLR 2019

100 50 0 50 100 150 200 250 300
time (ms)

0.000

0.002

0.004

0.006

0.008

0.010

0.012

in
te

ns
ity

DRS-VAE posterior samples
PfLDS posterior samples
spike train

Figure 3: Comparison of posterior intensities of our method (DRS-VAE) against PfLDS on reaching
data.

Table 2: Quantitative comparison of our method (DRS-VAE) against PfLDS on reaching data.

MODEL ELBO 15-NN SSG/SST

DRS-VAE −500.77 23.73% 73.94%
PfLDS −505.68 3.05% 6.23%

Table 2 shows the per-trial ELBO on test data for our model and for PfLDS. Again, our model has a
larger ELBO than PfLDS, even when PfLDS has access to 20 times more hidden dimensions: our
method is more successful at producing low-dimensional representations of trials than PfLDS. The
table also shows the percentage of correctly predicted test trial types when using 15-nearest neighbors
on the posterior means of train data (the entire trajectories are used for PfLDS). While 23.73% might
seem small, it should be noted that it is significantly better than random guessing (which would have
2.5% accuracy) and that the model was not trained to minimize this objective. Regardless, we can see
that our method also outperforms PfLDS in this metric, even when using a much lower-dimensional
representation of each trial. The last entry in the table shows the percentage of explained variation
when doing ANOVA on the test posterior means (denoted SSG/SST), using trial type as groups. Once
again, we can see that our model recovers a more meaningful representation of the trials.

4.2.2 CYCLING DATA

We also fit our model to a not yet published dataset collected by our collaborators from the Churchland
lab at Columbia University. After preprocessing (see supplementary material), it consists of 1300
and 188 train and test trials, respectively. During each trial, 20 neurons of a primate are measured as
it pedals for approximately 8s. There are 8 types of trials, based on whether the primate is pedaling
forwards or backwards and at which speed.

We use the same hyperparameter settings as for the reaching data, except we use 26 uniformly spaced
knots (25 intervals) and 28 bins for PfLDS, as well as a hidden dimension m = 10, resulting in
hidden trajectories of dimension 280 for PfLDS. Table 3 quantitatively compares our method against
PfLDS. The ELBO is actually higher for PfLDS, which appears (in preliminary analysis not shown)
to be caused by an artifact of preprocessing the data rather than any essential performance loss.

While the ELBO was better for PfLDS, the quality of our latent representations is significantly better,
as shown by the accuracy of 15-nearest neighbors to predict test trial types (random guessing would
have 12.5% accuracy) and the ANOVA percentage of explained variation of the test posterior means.
This is particularly impressive as our latent representations have 28 times fewer dimensions. We did
experiment with different hyperparameter settings, and found that the ELBO of PfLDS increased
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Table 3: Quantitative comparison of our method (DRS-VAE) against PfLDS on cycling data.

MODEL ELBO 15-NN SSG/SST

DRS-VAE 6372.5 55.85% 70.03%
PfLDS 6532.5 11.70% 3.17%

slightly when using more time bins (at the cost of even higher-dimensional latent representations),
whereas our ELBO remained the same when increasing the number of intervals. However, even in
this setting the accuracy of 15-nearest neighbors and the percentage of explained variation did not
improve for PfLDS.

5 CONCLUSIONS

In this paper we introduced Deep Random Splines, an alternative to Gaussian processes to model
random functions. Owing to our key modeling choices and use of results from the spline and
optimization literatures, fitting DRS is tractable and allows one to enforce shape constraints on
the random functions. While we only enforced nonnegativity and smoothness in this paper, it
is straightforward to enforce constraints such as monotonicity (or convexity/concavity). We also
proposed a variational autoencoder that takes advantage of DRS to accurately model and produce
meaningful low-dimensional representations of neural activity.

Future work includes using DRS-VAE for multi-dimensional point processes, for example spatial
point processes. While splines would become harder to use in such a setting, they could be replaced
by any family of easily-integrable nonnegative functions, such as, for example, conic combinations
of Gaussian kernels. Another line of future work involves using a more complicated point process
than the Poisson, for example a Hawkes process, by allowing the parameters of the spline in a certain
interval to depend on the previous spiking history of previous intervals. Finally, DRS can be applied
in more general settings than the one explored in this paper since they can be used in any setting
where a random function is involved, having many potential applications beyond what we analyzed
here.
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Supplementary Material

Parametrization for nonnegative splines of even degree
As mentioned on section 2.1, there is an alternative characterization of nonnegative polynomials of even degree
d = 2k on an interval [l, u) that is analogous to equation 1 of the manuscript, which says that the polynomial p is
nonnegative on the interval if and only if it can be written as:

p(t) = [t]>Q1[t] + (u− t)(t− l)[̃t]
>
Q2 [̃t]

where again, [t] = (1, t, t2, . . . , tk)> and Q1 is a (k + 1)× (k + 1) symmetric positive semidefinite matrix. In this
case Q2 is now a k × k symmetric positive semidefinite matrix and [̃t] = (1, t, t2, . . . , tk−1)>. Again, it follows
that a piecewise polynomial of degree d with knots t0, . . . , tI defined as p(i)(t) for t ∈ [ti−1, ti) for i = 1, . . . , I is
nonnegative if and only if it can be written as:

p(i)(t) = [t]>Q
(i)
1 [t] + (ti − t)(t− ti−1)[̃t]

>
Q

(i)
2 [̃t]

for i = 1, . . . , I, where each Q(i)
1 is a (k + 1)× (k + 1) symmetric positive semidefinite matrix and each Q(i)

2 is a
k × k symmetric positive semidefinite matrix.

Projecting onto the space of smooth splines
As mentioned in section 2.2, mapping to Ψ = ∩s+1

j=0Cj can be achieved through the method of alternating
projections. As mentioned previously, projecting onto C0 can be easily done through eigen-decomposition. We now
go through the details on how to project onto the other Cj sets. We will only cover C1, C2 and C3 for odd-degree
splines as we used splines of degree 3 and smoothness 2, but projecting onto Cj for j ≥ 4 for higher degree splines
can be done in an analogous way. Projections for even degree splines can also be derived in an analogous way.

Continuity projection for splines of odd degree

Suppose we are given (Q
(i)
1 , Q

(i)
2 )Ii=1, which are (k+1)×(k+1) matrices (not necessarily in Ψ), defining a piecewise

polynomial as in equation 2 of the manuscript. Computing the projection (X
(i)
∗ , Y

(i)
∗ )Ii=1 of (Q

(i)
1 , Q

(i)
2 )Ii=1 onto

C1 can be done by solving the following optimization problem:

(X
(i)
∗ , Y

(i)
∗ )Ii=1 = arg min

(X(i),Y (i))Ii=1

I∑
i=1

||X(i) −Q(i)
1 ||2F + ||Y (i) −Q(i)

2 ||2F

s.t. (ti − ti−1)[ti]
>Y (i)[ti] = (ti+1 − ti)[ti]>X(i+1)[ti], for i = 1, . . . , I − 1

where || · ||F denotes the Frobenius norm and each constraint is merely forcing the piecewise function to be
continuous at knot i for i = 1, . . . , I−1. Note that this is a quadratic optimization problem with linear constraints,
and can be solved analytically. The corresponding Lagrangian is:

L((X(i), Y (i))Ii=1, λ) =

I∑
i=1

||X(i) −Q(i)
1 ||2F + ||Y (i) −Q(i)

2 ||2F

+

I−1∑
i=1

λi

(
(ti − ti−1)[ti]

>Y (i)[ti]− (ti+1 − ti)[ti]>X(i+1)[ti]
)

1



where λ = (λ1, . . . , λI−1)> ∈ RI−1. By solving the KKT conditions, it can be verified that:
X

(i)
∗ = Q

(i)
1 +

λ∗i−1

2 Ai−1 , for i = 1, . . . , I

Y
(i)
∗ = Q

(i)
2 −

ciλ
∗
i

2 Ai , for i = 1, . . . , I

λ∗i = 2
1+c2i

[ti]
>(ciQ

(i)
2 −Q

(i+1)
1 )[ti]

([ti]>[ti])2
, for i = 1, . . . , I − 1

where ci = ti−ti−1

ti+1−ti for i = 1, . . . , I − 1, cI = 0, λ∗0 = 0, λ∗I = 0 and Ai = [ti][ti]
> for i = 0, . . . , I.

Differentiability projection for splines of odd degree

Analogously, computing the projection (X
(i)
∗ , Y

(i)
∗ )Ii=1 of (Q

(i)
1 , Q

(i)
2 )Ii=1 onto C2 can be done by solving the

following optimization problem:

(X
(i)
∗ , Y

(i)
∗ )Ii=1 = arg min

(X(i),Y (i))Ii=1

I∑
i=1

||X(i) −Q(i)
1 ||2F + ||Y (i) −Q(i)

2 ||2F

s.t. − [ti]
>X(i)[ti] + [ti]

>Y (i)[ti]

+ (ti − ti−1)[t′i]
>Y (i)[ti] + (ti − ti−1)[ti]

>Y (i)[t′i]

= −[ti]
>X(i+1)[ti] + (ti+1 − ti)[t′i]>X(i+1)[ti]

+ (ti+1 − ti)[ti]>X(i+1)[t′i] + [ti]
>Y (i+1)[ti], for i = 1, . . . , I − 1

where [t′] = (0, 1, 2t, 3t2, . . . , ktk−1)> and each constraint is now forcing the values of the left and right derivatives
of the piecewise function to match at knot i for i = 1, . . . , I − 1. Again, this is a quadratic optimization problem
with linear constraints. By writing the Lagrangian and solving the KKT conditions, we get:{

X
(i)
∗ = Q

(i)
1 +

λ∗i
2 Ai −

λ∗i−i

2 (Ai−1 − (ti − ti−1)Mi−1) , for i = 1, . . . , I

Y
(i)
∗ = Q

(i)
2 −

λ∗i
2 (Ai + (ti − ti−1)Mi) +

λ∗i−1

2 Ai−1 , for i = 1, . . . , I

where Mi = [ti][t
′
i]
> + [t′i][ti]

> for i = 0, . . . , I and:

λ∗i−1

(
[ti]
>(Ai−1 −

ti − ti−1
2

Mi−1)[ti] + (ti − ti−1)[t′i]
>Ai−1[ti]

)
+ λ∗i

(
[ti]
>(−2Ai −

ti+1 − 2ti + ti−1
2

Mi)[ti]

+ (ti+1 − 2ti + ti−1 − (ti − ti−1)2 − (ti+1 − ti)2)[t′i]
>Mi[ti]

)
+ λ∗i+1

(
[ti]
>(Ai+1 +

ti+1 − ti
2

Mi+1)[ti]− (ti+1 − ti)[t′i]>Ai+1[ti]
)

= [ti]
>(Q

(i)
1 −Q

(i+1)
1 −Q(i)

2 +Q
(i+1)
2 )[ti] + 2[t′i]

>((ti+1 − ti)Q(i+1)
1 − (ti − ti−1)Q

(i)
2 )[ti]

for i = 1, . . . , I − 1 and again, λ∗0 = 0 and λ∗I = 0. This is a tridiagonal system of I − 1 linear equations with
I − 1 unknowns and can be solved efficiently in O(I) time with simplified Gaussian elimination.

Second differentiability projection for splines of odd degree

Finally, computing the projection (X
(i)
∗ , Y

(i)
∗ )Ii=1 of (Q

(i)
1 , Q

(i)
2 )Ii=1 onto C2 can be done by solving the following

optimization problem:

(X
(i)
∗ , Y

(i)
∗ )Ii=1 = arg min

(X(i),Y (i))Ii=1

I∑
i=1

||X(i) −Q(i)
1 ||2F + ||Y (i) −Q(i)

2 ||2F

s.t. − 2[t′i]
>X(i)[ti]− 2[ti]

>X(i)[t′i] + 2[t′i]
>Y (i)[ti] + 2[ti]

>Y (i)[t′i]

+ (ti − ti−1)[t′′i ]>Y (i)[ti] + 2(ti − ti−1)[t′i]
>Y (i)[t′i] + (ti − ti−1)[ti]

>Y (i)[t′′i ]

= −2[t′i]
>X(i+1)[ti]− 2[ti]

>X(i+1)[t′i] + (ti+1 − ti)[t′′i ]>X(i+1)[ti]

+ 2(ti+1 − ti)[t′i]>X(i+1)[t′i] + (ti+1 − ti)[ti]>X(i+1)[t′′i ] + 2[t′i]
>Y (i+1)[ti]

+ 2[ti]
>Y (i+1)[t′i]

2



where [t′′] = (0, 0, 2, 6t, . . . , k(k − 1)tk−2)> and each constraint is now forcing the values of the left and right
second derivatives of the piecewise function to match at knot i for i = 1, . . . , I − 1. Again, this is a quadratic
optimization problem with linear constraints. By writing the Lagrangian and solving the KKT conditions, we get:{

X
(i)
∗ = Q

(i)
1 + λ∗iMi −

λ∗i−i

2 Bi−1 , for i = 1, . . . , I

Y
(i)
∗ = Q

(i)
2 −

λ∗i
2 Ei + λ∗i−1Mi−1 , for i = 1, . . . , I

where Bi−1 = 2Mi−1−(ti−ti−1)([t′′i−1][ti−1]>+2[t′i−1][t′i−1]>+[ti−1][t′′i−1]>) and Ei = 2Mi−(ti−ti−1)([t′′i ][ti]
>+

2[t′i][t
′
i]
> + [ti][t

′′
i ]>) for i = 1, . . . , I and:

λ∗i−1

(
[t′i]
>(2Bi−1 + 4Mi−1)[ti] + 2(ti − ti−1)[t′′i ]>Mi−1[ti] + 2(ti − ti−1)[t′i]

>Mi−1[t′i]
)

+ λ∗i

(
[t′i]
>(−8Mi − 2Ei − 2Bi)[ti] + [t′′i ]>((ti+1 − ti)Bi − (ti − ti−1)Ei)[ti]

+ [t′i]
>((ti+1 − ti)Bi − (ti − ti−1)Ei)[t

′
i]
)

+ λ∗i+1

(
[t′i]
>(Ei+1 + 4Mi+1)[ti]− 2(ti+1 − ti)[t′′i ]>Mi+1[ti]− 2(ti+1 − ti)[t′i]>Mi+1[t′i]

)
= 4[t′i]

>(Q
(i)
1 −Q

(i+1)
1 −Q(i)

2 +Q
(i+1)
2 )[ti] + 2[t′′i ]>((ti+1 − ti)Q(i+1)

1 − (ti − ti−1)Q
(i)
2 )[ti]

+ 2[t′i]
>((ti+1 − ti)Q(i+1)

1 − (ti − ti−1)Q
(i)
2 )[t′i] , for i = 1, . . . , I − 1

where again, λ∗0 = 0 and λ∗I = 0. Again, this is a tridiagonal system of I − 1 linear equations with I − 1 unknowns
that can be solved efficiently.

Reaching Data Preprocessing
We include only successful trials (i.e. when the primate reaches to the correct location) and use only spikes
occurring in a window of −100ms and 300ms from the time that movement starts. We also reduce the total
number of neurons as inference with our method requires one LSTM per neuron and having too many neurons
renders training slow. In order to do so, we use the following GLM:

yr ∼ Multinomial
(
C, softmax(K̃>r,·β)

)
where yr is the trial type of trial r, C = 40 is the number of trial types, K̃r,· ∈ RN is a vector containing the
(centered and standardized) number of spikes in trial r for each of the N = 223 neurons, and β ∈ RN×C are the
GLM parameters. We train the GLM using group lasso (Yuan and Lin, 2006), where the groups are defined by
neurons. That is, the GLM is trained through maximum likelihood with an added penalty:

λ

N∑
n=1

||βn,·||22

where βn,· is the nth row of β. This makes it so that the coefficients in each group hit zero simultaneously. A
neuron n is removed if ||β̂n,·|| = 0. We use a regularization parameter λ such that all but 20 neurons are removed.
This provides a principled way of reducing the number of neurons while making sure that the kept neurons are
useful. As PfLDS does not require the use of LSTMs, it can be run on the data without removing neurons. While
doing this did increase performance of PfLDS, it did so very marginally and our model still heavily outperformed
PfLDS.

Cycling Data Preprocessing
Once again, we only keep successful trials (i.e. when the primate pedals in the correct direction and speed) and
reduce the total number of neurons N = 256 to 20 by using group lasso. Since each trial has a different length, we
extend every trial to have the same length as the longest trial. We add no spikes to these extended time periods.
We also tried running PfLDS with all the neurons and saw only a very marginal improvement, like we did with
reaching data.
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