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Abstract

We consider the task of mapping pseudocode to executable code, assuming a one-
to-one correspondence between lines of pseudocode and lines of code. Given test
cases as a mechanism to validate programs, we search over the space of possible
translations of the pseudocode to find a program that compiles and passes the test
cases. While performing a best-first search, compilation errors constitute 88.7%
of program failures. To better guide this search, we learn to predict the line of the
program responsible for the failure and focus search over alternative translations
of the pseudocode for that line. For evaluation, we collected the SPoC dataset
(Search-based Pseudocode to Code) containing 18,356 C++ programs with human-
authored pseudocode and test cases. Under a budget of 100 program compilations,
performing search improves the synthesis success rate over using the top-one
translation of the pseudocode from 25.6% to 44.7%.

1 Introduction

We consider the task of mapping natural language pseudocode to functionally correct computer
programs that are long enough to have significant intermediate state (e.g., 10-20 lines) and perform
non-trivial computations. Previous work on executable semantic parsing mainly focuses on translating
short text descriptions to one-line programs [57, 147} 158,159, 29, [11]], and while recent work explored
generating longer programs from text descriptions [30, 154} [39, |18} [19} [17]], these programs are mostly
evaluated on syntactic metrics (e.g., exact match and BLEU score) rather than functional correctness.
In contrast, the program synthesis community emphasizes functional correctness, typically captured
by a set of input-output test cases that the program must compute correctly [14, [13]. However,
input-output pairs give no information about the intermediate states of the program, making it difficult
to synthesize long programs.

Synthesizing a general class of programs of significant length and internal complexity is too chal-
lenging without some description of the steps of computation. To that end, we propose synthesizing
programs from natural language pseudocode and test cases. The test cases provide the functional
specification, while the pseudocode provides guidance for the intermediate computations the program
should perform.

To synthesize a functionally correct program, instead of relying on the top-one translation of the
pseudocode, we search over the space of possible translations to find one that passes the test cases.
In this work, we view the desired program as a composition of segments of code, each aligned to a
segment of natural language in the pseudocode. Figure[I]instantiates our setup: each pseudocode
line translates to a line of code with approximately one or two atomic statements. Unlike treating
the whole program as a single big chunk (too coarse) or decomposing into individual tokens (too
fine-grained), semantically coherent segments of code (rendered as single lines here) form a natural
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1  in function main int main() {
2 let n be integer int n;
3 read n cin >> n;
4 let A be vector of integers vector<int> A;
5 set size of A=n A.resize(n);
6 read n elements into A for(int i = 0; i < A.size(); i++) cin >> A[i];
7 for all elements in A for(int i = 0; i < A.size(); i++) {
8 set min_i to i int min_i = i;
9 forj =i+ 1 to size of A exclusive for(int j = i+1; j < A.size(); j++) {
10 set min_i to j if A[min_i] > A[j] if (Almin_i] > A[j]) { min_i = j; }
11 swap A[i], A[min_i] swap(A[i], Almin_il);
12 print all elements of A for(int i=0; i<A.size(); i++) cout<<A[i]<<" ";
}
Public test case 1 (out of 5): 532415 — 12345
Hidden test case 1 (outof8): 892456271 — 122456729

Figure 1: Given L pseudocode lines x1.7, (with indentation levels ¢;.;,) and public test cases, our task
is to synthesize a program with code lines ;... The program is evaluated against both public and
hidden test cases.

abstraction that can still be described precisely and succinctly by natural language. Within this
framework, a program can be synthesized by choosing a candidate translation for each pseudocode
line. We can now search for a combination of code lines that form a program passing the test cases.

However, common search methods for language-to-code tasks (e.g., beam search [56]) only use the
sparse reward of whether the program succeeds to navigate the search space. Without performing
credit assignment to pinpoint the causes of program failures, it is difficult to guide search toward
promising programs. Since 88.7% of failures during search are due to compilation errors, we propose
to perform credit assignment based on information returned from the compiler: When a program fails
to compile, we use error localization methods to identify which line of the program is responsible for
the failure, and then focus the search on alternative translations of the pseudocode for that line.

We propose two error localization methods. The first uses a multiclass classifier to predict one of
the code lines as the offending line, which is then down-weighted in subsequent search iterations.
In contrast to previous error correction models [[15], our model also uses the error message and
pseudocode for prediction. This is crucial when the compilation error can be fixed in multiple ways,
but only some of which are consistent with the pseudocode. The second method, prefix-based pruning,
uses additional compilations to find a code prefix that causes the error. Unlike the classifier, the
identified code prefix is guaranteed to be erroneous and can be blacklisted entirely.

For evaluation, we collected and release a new dataset, SPoC (Search-based Pseudocode to Code)
containing 18,356 C++ programs (14.7 lines on average). In contrast to other language-to-code
datasets [30} 136, [19]], all programs contain multiple test cases for validation. In contrast to the
closely-related NAPS dataset [56]], which also contains test cases but only 6% human-authored
pseudocode, all programs in SPoC have human-authored pseudocode of a consistent annotation
granularity. Section [3]details the comparison between SPoC and related datasets.

Using the top-one translation of the pseudocode yields a success rate of 24.6% on the test set. Under
a limited budget of 100 synthesis trials (i.e., 100 code compilations and executions), our best method
achieves a success rate of 44.7%. The multiclass error localization model reduces the number of
synthesis trials needed in 15.5% of the programs, with a median absolute reduction of 26 trials and
a median relative reduction of 42%. On the other hand, prefix-based pruning slightly increases the
number of compilations for easier problems, but is more effective on harder programs, making it
outperform the multiclass classifier under larger budgets.

2 Problem statement

Figure [I] illustrates the setup of our synthesis task. Given (a) a sequence z of L pseu-
docode lines x1,xa,...,vy and (b) k public test cases in the form of input-output string pairs



(Tim, v, ..., (Tin, TRVY), the task is to synthesize a program y consisting of L code lines
Y1,Y2, - - -,yr. Bach code line y; is a fragment of code whose semantics is described by the pseu-
docode line z;. To simplify the task, the indentation level ¢; of each line is also given; we leave the
process of predicting ¢; from the input to future work.

The synthesized program is accepted if it successfully compiles and passes all public test cases (i.e.,
the compiled executable prints the string 7" after reading the input 7;™) as well as k&’ additional

hidden test cases (T, T, ... (T\», ToM).

For training, we are given a set of examples where each example contains pseudocode z, a gold
program y, and both public and hidden test cases. At test time, the system has access to pseudocode z,
public test cases (not hidden ones), and a computation budget. For a fair comparison under different
computing environments, we use the number of synthesis trials as the budget, where in each trial, the
system can issue a single call to the compiler and execute the compiled program on public test cases.
The system must output a single final program, which will be validated on both public and hidden
test cases.

3 Dataset

Recall that our main goal is to synthesize functionally correct programs of significant length and
complexity. To this end, we argue that it is important to have both a description of the intermediate
computation and a functional specification of the program. While semantic parsing datasets with
shorter, query-like programs [S7, 7} 133} 14} |59} 123|144} |55]] usually have an execution environment
(e.g., a database) to validate the programs, Table[I|shows that most existing language-to-code datasets
with longer programs [30, [36, [19] lack mechanisms to validate the correctness of programs. This
inevitably leads previous work to resort to proxy metrics, such as exact match accuracy, BLEU score,
and tree node F1 score, which only measure syntactic similarity rather than functional correctness
(30,1541 139, 18} 19, [17].

One notable exception and the inspiration for our work is the NAPS dataset [S6] which contains both
a description (pseudocode) and a functional specification (test cases) of competitive programming
problems. However, most of their pseudocode in the training data (4,923,000 examples from 16,410
programs) is generated by heuristic rule-based templates, which is less realistic compared to the
human-authored counterpart (2,231 examples from 582 programs). Furthermore, the descriptions
suffer from inconsistent granularity: the artificial pseudocode is fine-grained (e.g., “increase varQ
by 1) whereas the human-written pseudocode tends to be abstract (e.g., “compute factorial”’) as the
annotators were encouraged to provide high-level descriptions. This discrepancy is reflected by the
ratio of the length of pseudocode to that of code, which is 1:1.82 in the artificial dataset, and 1:3.26
in the human-authored dataset.

As no existing dataset contains both high-quality human-authored description with a consistent level
of granularity and a mechanism to validate functional correctness, we created a new dataset called
SPoC (Search-based Pseudocode to Code), which consists of programs, pseudocode, and test cases.
The programs are non-trivial solutions to competitive programming problems, and each program is
paired with public and hidden test cases. To control the quality and granularity of the pseudocode,
instead of collecting free-form descriptions, we segmented the code in a consistent fashion and
collected natural language pseudocode for each segment from curated crowdworkers.

3.1 Data collection

Programs and test cases. Similar to the NAPS dataset [56], we scraped competitive programming
problems and their test cases from|codeforces . com. Each problem has multiple programs submitted
by participants as solutions to the problem. We collected accepted C++ programs from problems
marked as the easiest level based on their metric. Based on our pilot study, we filtered out programs
with constructs that are difficult to consistently annotate with pseudocode (i.e., programs with
#define macros, classes, structs, templates, switch statements, and mallocs).

"We counted the number of programs in the released dataset. Since the programs are provided as a sequence
of tokens, the number of lines per program is approximated based on the number of ;, {, and }.
2We excluded partial programs (smaller pieces of full programs) in the dataset when counting.
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Table 1: Datasets for natural language to code. In contrast to other datasets, our SPoC dataset contains
human-authored pseudocode with a consistent granularity of description and test cases.

MTG HS DJANGO CONCODE' NAPS*  SPoC
(301 [301 [36130] [19] [S6]
Programming language Java Python Python Java UAST C++
Number of programs (total) 13,297 665 18,805 2,184,310 17,477 18,356
Lines per program (average) 30.4 7.7 1 44 21.7 14.7
Type of natural language input — card text — comment documentation — pseudocode —
Additional input — card metadata — - class context - -
Granularity of text description program  program line program varies line
(class) (class) (method)
Fraction of human-annotated text 100% 100% 100% 100% 6% 100%
Number of annotators (total) n/a n/a 1 n/a n/a 59
Test cases X X X X
Number of test cases (average) - - - - 7.5 38.6

Table 2: Examples of complex code lines and pseudocode lines in the SPoC dataset.

read n values into array a and array b for(int i = 0; i < n; i++) cin >> al[i] >> bl[il;
read n and m in a loop, printing while (cin >> n >> m) cout << n * m / 2 << endl;
n*m/2 and a new line on each iteration
print all elements of ans for (int i = 0; i < ans.size(); i++) cout << ans[i];
change max to i if tree[i] > tree[max] max = treel[i] > tree[max] 7 i : max;
or max otherwise
if m and n are odd if (m% 2 !'=0&& n % 2 !'=0)
if ais a digit return 1 if (a >= ’0° && a <= ’9’) return 1;
add s to q (q is a set) q.insert(s);
add ok to ans (ans is an integer) ans += ok;
add element a to v (v is a vector) v.push_back(a);

Decomposition. We decompose each program into code lines. To obtain slightly higher-level
descriptions for common constructs, we group any block with only one statement with the preceding
control statement (e.g., the one-line for loop “for (int i = 0; i < n; i++) cin >> x[i];”
allows a high-level description “read n values into x”).

Pseudocode. We recruited 59 crowdworkers on Amazon Mechanical Turk to write pseudocode for
each line of code. The workers can see the whole program and are encouraged to vary the sentence
structure while still maintaining semantic correctness. To our pleasant surprise, we were able to
recruit a set of workers (as upposed to curated specialists) capable of annotating C++ code via a
qualification round in which we manually inspected their annotations.

Statistics. Our dataset contains 18,356 programs submitted for 677 programming problems. Each
problem has roughly 27 programs, which are likely to have similar semantics yet different code
syntax. Excluding closing braces and the common “int main()” line, each program contains an
average of 14.7 lines (with the minimum of 1 and maximum of 457 lines of code). The average length
of code lines is 9.08 tokens, while the average length of pseudocode lines is 7.86 tokens.

While many code lines in the dataset are simple statements such as assignment (“i++;”") or input
reading (“cin >> n;”), a significant number of pseudocode lines are non-trivial to translate. As
illustrated in Table[2] some code lines contain multiple atomic statements, in which case the pseu-
docode tends to become more higher-level. Even single-statement lines may require understanding
complex sentence structures, idiomatic expressions, or the context from other parts of the program.

Training and test sets. To evaluate the generalization on unseen problems and annotation styles,
we created two test sets. We generated the first test set TESTP by splitting based on problems: we
held out 158 problems (23% out of 677 problems), which is equivalent to 1,820 programs (10.1%
of all programs). The second test set TESTW is split by workers: we held out 7 workers (12% out
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Figure 2: Illustration of best-first search and error localization model. In this example, (c11, c22, C32)
satisfies the test cases. Best-first search iterates in the order of decreasing probabilities and succeeds
in four compiler calls. The error localization method down-weights c21, leading to an earlier success.

of 59 workers), which is equivalent to 1,752 programs (9.7% of all programs, with 186 programs
overlapping with TESTP). We used the remaining data for training and development (90:10 split).

4 Basic Approach

As illustrated in Figure[2] our starting point to synthesizing a program y;.r, from pseudocode 1.7,
and public test cases involves two steps. First, a translation model takes each pseudocode line x; as
input and generates M candidate code lines c;1, . . ., ¢;as to be used as the ith code line. Then, we
search over the possible combinations of candidate translations until we find a program .7, that
successfully compiles and passes all public test cases.

Translation. To generate candidate code lines, we use the standard seq2seq implementation from
OpenNMT [24] with an LSTM encoder and decoder, attention-based copying mechanism [32} 49],
and coverage vector [40]. After encoding the pseudocode line x;, we apply beam search with beam
size M to produce a ranked list of candidates translations C; = (¢;1, . . ., ¢;ar), where each code line
ci; is a sequence of string tokens. (We use M = 100 for our experiments.) The model also assigns a
probability p;; = p(c;; | x;) for each candidate ¢;;. The translation model is trained on pairs (z;, ;)
from the training data using the standard log-likelihood objective.

Best-first search. Given the candidate lists C1, ..., Cf, we can synthesize a program ¢ by picking
a candidate ¢; ;j; from each C; (where j[i] € {1,...,M}) and then concatenating them into a
program. In our search algorithm, we iterate through programs ¢ in the descending order of probability
p(9) = HiL:1 i j1i- To do so, we maintain a heap of the combinations § = (cy ji1),- -+ cL,j11])
indexed by p(¢). The heap initially contains the program (ci1,...,cr1), which is the top-one
translation of the pseudocode. In each iteration, we pop a program (¢, j{1], - - ., ¢z jiz]) from the heap
and test it. If the program fails (either from a compilation error, a runtime error, or a mismatch between
the actual and expected test outputs), we push modified programs (¢ jj1], - - -, G j[i]+15 - - - » CL,j[L])
forall i € {1,..., L} that have not been explored to the heap. We continue searching until we either
find a program that passes all public test cases or exhaust the computation budget.

5 Error localization

So far, we have treated program compilation and execution as a black box that only tells whether a
program passes the public test cases. This sparse signal offers little guidance: For instance, best-first
search will keep using an erroneous candidate c;; if its probability p;; is high.



To speed up search, we unpack the black box. In this work, we focus on compilation errors, which
constitute 88.7% of the failure cases in best-first search. When a program g = (01,3‘[1], ce cLJ-[L])
fails to compile, the compiler reports error messages with associated line numbers. Unfortunately, the
reported line numbers do not always correspond to the actual location of the mistake (e.g., the error
“‘n’ was not declared in this scope” can occur long after the line where n should be declared according
to the pseudocode). Empirically, the reported line number does not match the actual incorrect line

21.7% of the time.

Therefore, we treat the compilation error message as a noisy signal, and propose to use an error
localization method to infer the actual portion of the code that causes the error. As illustrated in
Figure [2] the error localization method has access to the pseudocode x, the synthesized code g,
and the first error message (ieyr, Merr) from the compiler, where 4, is a line number and m.,, is a
message string. It then predicts an offending code line or abstains. We then either down-weight or
blacklist the translation candidates in the offending code lines.

We now introduce two error localization methods: multiclass classification, which uses a neural
model to predict a single offending line; and prefix-based pruning, which uses additional calls to the
compiler for detecting an erroneous code prefix.

Multiclass classification. We train a classifier to predict the offending line :* among the L lines.
Our model is similar to the error correction model in [15]]. For each line 7, we embed the tokens of
Z;, Yi, and Me,r, and then use three separate LSTMs to encode the sequences. We concatenate the
final LSTM hidden states with the positional encoding [48] of the line offset Ai = 7., — 4, and then
apply a feedforward network to produce the line embedding of line . The L line embeddings are
then passed through another LSTM, and the hidden state of the LSTM cell corresponding to line ¢
is passed through a feedforward network to compute the logit for line . We return the line * with
the highest probability (softmax over logits) if that probability exceeds a threshold 5, and abstain
otherwise. We use f,u1 = 0.95 for the experiments

Given ¢*, we down-weight the current translation candidate of the line ¢* so that it is used less often in
subsequent search iterations. Concretely, we multiply the probability p;- ;j;«) of the current candidate
Ci= j1i+] 1n line ¢* with a constant factor v < 1. As this affects the heap indices, we rebuild the heap
from scratch (which takes negligible time) and continue the search, skipping any program that has
already been explored before the heap rebuild.

To construct a dataset for training the model, we consider each program y = y;.r, in the synthesis
training dataset, substitute a single line y;» with a candidate c;-; € C;- generated from pseudocode
line x;+, and then collect any modified program 3’ that produces a compilation error with an error
message (ierr, Merr). The model is trained to maximize the log-likelihood of the offending lines i*.

Prefix-based pruning. The multiclass classification method does not guarantee that the predicted
line ¢* is actually an offending line. Furthermore, a candidate code line might be offending in some
contexts but not others (e.g., a variable re-declaration is no longer offending if the previous declaration
no longer exists). To address these issues, we propose an alternative that uses additional compiler
calls to find an offending prefix of the program. Concretely, when a compilation error occurs, we use
the compiler to to find the minimum ¢* such that the prefix (c1;{1j, - - - , ¢+ 5[+ ), plus closing braces
to complete the program, fails to compile. Since programs containing that prefix will also fail (with
very rare exceptions), we can safely blacklist the prefix from future search iterations.

Each additional compiler call is counted as one trial toward the synthesis budget. To use our budget
sparingly, we only test i* = iq,y — Ai where Ai € {0, 1,2} corresponds to the three most frequent
offsets. If we fail to find an offending prefix, we simply abstain and continue the search.

6 Experiments

Our main evaluation metric is success rate at B: the fraction of test examples where the system
generates an accepted program under the budget of B trials. For error localization methods, we also
consider the reduction in the number of trials used compared to normal best-first search.

2 Refer to the Appendix for ablation studies of the design choices in the model.
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Figure 3: (a) While the translation accuracy is high at the line level, we need to consider the result at
the program level. For each program, we count the number of lines ¢ where (b) the top candidate ¢;;
is incorrect, and (c) none of the candidates c;; € Cj is correct.

TESTP TESTW
60 | success rate (‘%)

40 | success rate (‘%)

38

58
36 56

34 54

32 _ budget B . 521, _ budget B .
0 1,000 2,000 3,000 0 1,000 2,000 3,000
B= 10 100 1000 3000 B = 10 100 1000 3000
no localization  26.5 32.5 37.5 39.1 no localization 42.5 51.0 57.3 59.4
i" = ey 280 325 343 347 1" = ey 435 500 526 53.1
multiclass 28.4 342 383 392 multiclass 444 53.7 58.6 60.3
prefix-based 253 33.0 379 403 prefix-based 41.0 505 579  60.7
top-one (B =1): 17.8  oracle (B = «0): 55.2 top-one (B =1): 30.7 oracle (B = «): 71.4

Figure 4: Success rates at budgets B of best-first search with different error localization methods.

Translation accuracy. When evaluating the translation model, surface-form metrics such as exact
sequence match and BLEU scores fail to account for functional correctness of the code. For instance,
a prediction “if (b)” is functionally equivalent to the gold code “if (b == true)” when b is
a boolean. Hence, we instead evaluate the functional correctness of the translation. To check if a
predicted code line ¢;; € C; is functionally correct, we replace the code line y; in the gold program
with ¢;; and then verify whether the program still passes both public and hidden test cases.

The results in Figure [3(a) shows that when the lines are considered independently, the translation
model achieves a high accuracy of 84—-87% under this notion of functional correctness. However,
the picture is grimmer when we consider the statistics at the program level, which is what matters
for synthesis. For each program, we count the number of lines ¢ where the top candidate ¢;; is
not functionally correct. Figure [3(b) shows that only 18.2% of programs in TESTP and 32.0% of
programs in TESTW have the top candidate correct in every line. As code lines that are functionally
correct in isolation may be incompatible one another the programs formed by combining the top
candidate of each line have an even lower success rates of 17.8% on TESTP and 30.7% on TESTW.

Oracle success rate. To compute the maximum achievable success rate given the lists of candidates,
for each program, we count the number of lines ¢ where the candidate list C'; does not have any correct
candidate. Figure 3[c) shows that 44.8% of programs in TESTP and 28.6% of programs in TESTW
have least one difficult line where the translation model does not produce a correct prediction among
the top M = 100 candidates. This means a synthesizer with an infinite search budget would achieve
a maximum success rate of 55.2% on TESTP and 71.4% on TESTW given our lists of candidates
(assuming that incorrect candidates do not give a correct behavior when combined together).

3 Functionally correct lines can also give an incorrect behavior when combined, but this occurs more rarely.



Table 3: Effects of using error localization methods on all test examples.

number of trials:  absolute difference relative difference

method effect compared to best-first count mean median geo.mean median
multiclass improves number of trials 135% -199.5 -26.0 x0.39 x0.58
failed to synthesize — succeeds 2.0 %
worsens number of trials 04 % +407.5 +123.0 x6.70 x7.04
succeeded — fails to synthesize 1.6 %
prefix-based  improves number of trials 41% -272.6 -91.0 x0.45 x0.57
failed to synthesize — succeeds 1.5 %
worsens number of trials 15.7 % +68.4 +12.0 x1.65 x1.63

succeeded — fails to synthesize 0.3 %

(1) 2)
let s be a string create int 1, p and q
7 string s ; 2 inta,p, q;
read s read 1, p and q
8 cin > s 3 cin>> 1> p > q ;
if s is half printl1 *p/(p+q)

9 if (s / 2==0) 4 cout << 1*p/ (p+q) << endl ;

Figure 5: Examples of programs synthesized during search. In Program 1, prefix-based pruning
detects that the prefix up to line 9 is offending. In Program 2, the multiclass model incorrectly predicts
line 3 as the offending line, which ultimately leads to a failure.

Synthesis results. Figure [ compares the success rates of best-first search with and without error
localization. As a baseline, we try down-weighting the reported error line (+* = %¢;;) Whenever a
compilation error occurs. Due to the mismatch between the actual offending line and the reported
line, the synthesis result deteriorates. Up until the compilation budget of around B = 1500, the
multiclass classifier improves the success rate more than prefix-based pruning. Prefix-based pruning
achieves better success rates for higher budgets, but since it uses additional compilation calls, it
performs worse under tighter budgets.

Table 3] details how the error localization methods affect the synthesis outcome. The multiclass model
decreases the number of trials in 15.5% of all examples, but since its predictions are not verified, the
model is also more prone to catastrophic failures. Prefix-based pruning uses additional compilation
calls to verify its verdict, and thus slightly worsens the number of compilations needed in a large
number of examples. However, for more difficult programs, the benefit outweighs the cost.

Between the two test sets, the success rate on TESTW is consistently higher than on TESTP for
all methods. One possible explanation is that the unseen problems in TESTP require the model to
potentially generalize to code constructs that are specific to solving those problems. As a piece of
evidence, we found that 24.74% of the code token 4-grams in TESTP are unseen during training,
while the number is only 15.77% for TESTW.

Error analysis. To understand the behavior of error localization methods, we analyzed several
examples from the development data. Some prototypical examples are shown in Figure[5] Program
1 shows how error localization can improve search. The condition ‘s is half” in line 9 should be
translated as “s == "half"”, but was instead interpreted as “s / 2 == 0” and “s % 2 == 0”
with high probability, and hence best-first search spends a significant amount of budget (1511 trials)
using these incorrect candidates in the combination. In contrast, prefix-based pruning detects them as
offending candidates and succeeds earlier (413 trials).

In contrast, Program 2 shows how an incorrect error localization can lead to a catastrophic failure.
Here, the multiclass model reads the error message me;, = “‘I” was not declared in this scope” with
line number %,y = 3, and incorrectly predicts that line 3 is an offending line. This causes the search
to ultimately fail whereas best-first search finds a correct program in 80 search iterations.



7 Related work and discussion

Program synthesis. Program synthesis using test cases has been extensively studied in the pro-
gramming languages literature. The most knowledge-heavy approach is to formulate synthesis as a
constraint satisfaction problem [43},45]], which requires that the synthesis problem can be translated
to a theory with effective constraint solvers. For other problems, brute force enumeration of programs
(with some optimization) works surprisingly well [35, 3], but when the search space is too large for
enumeration, randomized search guided by a cost function can be effective [41}42]. Some works
combine aspects of multiple approaches (e.g., [21]]). For program specifications, the norm is to use
input-output pairs. However, most synthesized programs are relatively short, and works that consis-
tently synthesize longer programs are in the domains where the intermediate computation is easier to
recover from input and output, such as string [14} 37, 8] and data structure transformations [[13}152].
For other domains, while input-output examples are precise in evaluating functional correctness, they
provide mostly global signals and provide little information about the intermediate computations,
thereby requiring other forms of specification along with input-output examples [12].

Semantic parsing. Works on translating natural language specifications to executable programs, as
discussed in Section 3] are closely related to semantic parsing whose goal is to map natural language
utterances to formal representation. One of its traditional tasks is to parse a given question (usually a
single sentence) into an executable database query [57, 158 128, 14} 59| 53]]. Instead of a single query,
some work aims to parse a sequence of utterances into queries that can be sequentially executed
[2, 120l 31]. However, the sequences are still relatively short (e.g., maximum 5 sentences).

While some semantic parsers operate by modifying the linguistic structure of the utterance [38, 140],
most parsers construct the parse incrementally from scratch. Partial parses can be constructed by
combining smaller partial parses in a bottom-up fashion [58, 28| [27], adding the next token to the
sequence [10; 122} 51, [11} 25]], or creating a new node in a tree structure [10, 126} 54, |39]]. In any case,
the search space of possible parses can be controlled by validating the constructed partial parses and
pruning invalid ones [50} 6]]. For instance, the parser can forbid partial parses that do not type-check,
fail to execute, or execute into unfavorable values (e.g., an empty set). This validation process
motivates our prefix pruning approach, which validates partial programs by invoking a compiler.
However, we put an additional emphasis on minimizing the number of compilations needed, as our
initial attempt to compile every prefix in the same fashion as previous semantic parsing works [50]
significantly slows down the synthesis process.

Error localization. Error localization in the context of automated program repair has been an
active topic of research. Many recent work that uses neural models to localize errors has focused on
localizing and correcting syntax errors [15] or a class of well-defined semantic errors such as variable
misuse and variable replace [}, 9} 134]. Other work identifies error locations by interpreting compiler
error messages [[16}15]. Likewise, our multiclass error localization model uses compilation errors to
locate offending code; however, since the code is tied to pseudocode, we also use the signal from
pseudocode to distinguish ambiguous cases (e.g., in Program 2 of Figure 5] while changing either line
2 or line 3 can fix the error, a correct model should choose line 2 as the offending line with respect to
the pseudocode.)
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