
Under review as a conference paper at ICLR 2019

LEARNING OF SOPHISTICATED CURRICULUMS BY
VIEWING THEM AS GRAPHS OVER TASKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Curriculum learning consists in learning a difficult task by first training on an easy
version of it, then on more and more difficult versions and finally on the difficult
task. To make this learning efficient, given a curriculum and the current learning
state of an agent, we need to find what are the good next tasks to train the agent
on.
Teacher-Student algorithms assume that the good next tasks are the ones on which
the agent is making the fastest progress or digress. We first simplify and improve
them. However, two problematic situations where the agent is mainly trained on
tasks it can’t learn yet or it already learnt may occur.
Therefore, we introduce a new algorithm using min max ordered curriculums that
assumes that the good next tasks are the ones that are learnable but not learnt yet.
It outperforms Teacher-Student algorithms on small curriculums and significantly
outperforms them on sophisticated ones with numerous tasks.

1 INTRODUCTION

Curriculum learning. An agent with no prior knowledge can learn a lot of tasks by reinforcement,
i.e. by reinforcing (taking more often) actions that lead to higher reward. But, for some very hard
tasks, it is impossible. Let’s consider the following task:

Figure 1: The agent (in red) receives a reward of 1 when it picks up the blue ball in the adjacent
room. To do so, it has to first open the gray box, take the key inside and then open the locked door.

This is an easy task for humans because we have prior knowledge: we know that a key can be
picked up, that we can open a locked door with a key, etc... However, most of the time, the agent
starts with no prior knowledge, i.e. it starts by acting randomly. Therefore, it has a probability near
0 of achieving the task in a decent number of time-steps, so it has a probability near 0 of getting
reward, so it can’t learn the task by reinforcement.

One solution to still learn this task is to do curriculum learning (Bengio et al. (2009)), i.e. to first
train the agent on an easy version of the task, where it can get reward and learn, then train on more
and more difficult versions using the previously learnt policy and finally, train on the difficult task.

Learning by curriculum may be decomposed into two parts:

1. Defining the curriculum, i.e. the set of tasks the agent may be trained on.
2. Defining the program, i.e. the sequence of curriculum’s tasks it will be trained on.

These two parts can be done online, during training.

1

Under review as a conference paper at ICLR 2019

Curriculum learning algorithms. Defining a curriculum and a program can be done manually,
e.g. by defining a hand-chosen performance threshold for advancement to the next task (Zaremba &
Sutskever (2014); Wu & Tian (2017)).

However, if an efficient algorithm is found, it may save us a huge amount of time in the future.
Besides, efficient (and more efficient than humans) algorithms are likely to exist because they can
easily mix in different tasks (what is hard for humans) and then:

• avoid catastrophic forgetting by continuously retraining on easier tasks;

• quickly detect learnable but not learnt yet tasks.

Hence, it motivates the research of curriculum learning algorithms.

Curriculum learning algorithms can be grouped into two categories:

1. curriculum algorithms: algorithms that define the curriculum;

2. program algorithms: algorithms that define the program, i.e. that decide, given a curriculum
and the learning state of the agent, what are the good next tasks to train the agent on.

In this paper, we will focus on program algorithms, in the reinforcement learning context. Recently,
several such algorithms emerged, focused on the notion of learning progress (Matiisen et al. (2017);
Graves et al. (2017); Fournier et al. (2018)). Matiisen et al. (2017) proposed four algorithms (called
Teacher-Student) based on the assumption that the good next tasks are the ones on which the agent
is making the fastest progress or digress.

We first simplify and improve Teacher-Student algorithms (section 4). However, even improved, two
problematic situations where the agent is mainly trained on tasks it can’t learn or it already learnt
may occur. Therefore, we introduce a new algorithm (section 5), focused on the notion of mastering
rate, based on the assumption that the good next tasks are the ones that are learnable but not learnt
yet.

We show that this algorithm outperforms Teacher-Student algorithms on small curriculums and sig-
nificantly outperforms them on sophisticated ones with numerous tasks.

2 BACKGROUND

2.1 CURRICULUM LEARNING

First, let’s recall some general curriculum learning notions defined in Graves et al. (2017). A curricu-
lum C is a set of tasks {c1, ..., cn}. A sample x is a drawn from one of the tasks of C. A distribution
d over C is a family of non-negative summing to one numbers indexed by C, i.e. d = (dc)c∈C with
dc ≥ 0 and

∑
c∈C dc = 1. Let DC be the set of distributions over C. A program 1d : N→ DC is a

time-varying sequence of distributions over C.

Without loss of generality, we propose to perceive a distribution d over tasks C as coming from an
attention a over tasks, i.e. d := ∆(a). An attention a over C is a family of non-negative numbers
indexed by C, i.e. a = (ac)c∈C with ac ≥ 0. Intuitively, ac represents the interest given to task c.
Let AC be the set of attentions over C.

∆ : AC → DC is called a distribution converter. In Matiisen et al. (2017); Graves et al. (2017);
Fournier et al. (2018), several distribution converters are used (without using this terminology):

• the argmax distribution converter: ∆Amax(a)c :=

{
1 if c = argmaxc′ ac′

0 otherwise
.

A greedy version of it is used in Matiisen et al. (2017), i.e.
∆GAmax(a) := ε · u+ (1− ε) ·∆Amax(a) with ε ∈ [0, 1] and u the uniform distri-
bution over C.

1What we call “program” is called “syllabus” in Graves et al. (2017). We prefer the primer word because it
is more explicit and can’t be confused with “curriculum”.

2

Under review as a conference paper at ICLR 2019

• the exponential distribution converter: ∆Exp(a)c := exp(ac)∑
c′ exp(ac′)

(used in Graves et al.
(2017)).

• the Boltzmann distribution converter: ∆Boltz(a)c := exp(ac/τ)∑
c′ exp(ac′/τ) (used in Matiisen et al.

(2017)).

• The powered distribution converter: ∆Pow(a)c := (ac)p∑
c′ (ac′)

p (used in Fournier et al.
(2018)).

An attention function a : N→ AC is a time-varying sequence of attentions over C. A program d can
be rewritten using this notion: d(t) := ∆(a(t)) for a given attention converter ∆.

Finally, a program algorithm can be defined as follows:

Algorithm 1: A program algorithm
input: A curriculum C ;

An agent A;
for t← 1 to T do

Compute a(t) ;
Deduce d(t) := ∆(a(t)) ;
Draw a task c from d(t) and then a sample x from c ;
Train A on x and observe return rt;

A program algorithm needs to internally define an attention function A and an attention converter
∆. All the program algorithms in Matiisen et al. (2017); Graves et al. (2017); Fournier et al. (2018)
fit this formalism.

2.2 TEACHER-STUDENT PROGRAM ALGORITHMS

The Teacher-Student paper (Matiisen et al. (2017)) presents four attention functions called Online,
Naive, Window and Sampling. They are all based on the idea that the attention must be given by the
absolute value of an estimate of the learning progress over tasks, i.e. A(t) := |β(t)| where βc(t) is
an estimate of the learning progress of the agent A on task c.

For the Window attention function, they first estimate the “instantaneous” learning progress of the
agent A on task c by the slope βLinregc (t) of the linear regression of the points (t1, rt1), ..., (tK , rtK)
where t1, ..., tK are the K last time-steps when the agent was trained on a sample of c and where
rti is the return got by the agent at these time-steps. From this instantaneous learning progress, they
define βc as the weighted moving average of βLinregc , i.e. βc(t+ 1) := αβLinregc (t) + (1−α)βc(t).

For all the algorithms, a Boltzmann or greedy argmax distribution converter is used. For example,
here is the GAmax Window program algorithm proposed in the paper:

Algorithm 2: GAmax Window algorithm
input: A curriculum C ;

An agent A;
β := 0 ;
for t← 1 to T do

a := |β| ;
d := ∆GAmax(a) ;
Draw a task c from d and then a sample x from c ;
Train A on x and observe return rt ;
βLinregc := slope of lin. reg. of (t1, rt1), ..., (tK , rtK) ;
βc := αβLinregc + (1− α)βc ;

3

Under review as a conference paper at ICLR 2019

3 EXPERIMENT SETTINGS

Before presenting simplifications and improvements of the Teacher-Student algorithms (section 4)
and then introducing a new algorithm (section 5), we present the experiment settings.

Three curriculums were used to evaluate the algorithms, called BlockedUnlockPickup, KeyCorridor
and ObstructedMaze (see appendix A for screenshots of all tasks). They are all composed of Gym
MiniGrid environments (Chevalier-Boisvert & Willems (2018)).

These environments are partially observable and at each time-step, the agent receives a 7×7×3 im-
age (figure 1) along with a textual instruction. Some environments require language understanding
and memory to be efficiently solved, but the ones chosen in the three curriculums don’t.

The agent gets a reward of 1 − n
nmax

when the instruction is executed in n steps with n ≤ nmax.
Otherwise, it gets a reward of 0.

4 SIMPLIFICATION & IMPROVEMENT OF TEACHER-STUDENT ALGORITHMS

4.1 RECOMMENDATIONS

Before simplifying and improving Teacher-Student algorithms, here are some suggestions about
which distribution converters and attention functions of the Teacher-Student paper to use and not to
use.

First, in this paper, two distribution converters are proposed: the greedy argmax and the Boltzmann
ones. We don’t recommend to use the Boltzmann distribution converter because τ is very hard to
tune in order to get a distribution that is neither deterministic nor uniform.

Second, four attention functions are proposed: the Online, Naive, Window and Sampling ones. We
don’t recommend to use:

• the Naive attention function because it is a naive version of the Window one and performs
worst (see figure 5 in Matiisen et al. (2017));

• the Sampling attention function because it performs worst than the Window one (see figure
5 in Matiisen et al. (2017)). Moreover, the reason it was introduced was to avoid hyperpa-
rameters but it still require to tune a ε to avoid deterministic distributions (see algorithm 8
in Matiisen et al. (2017))...

It remains the Online and Window attention functions. But, the Online one is similar to the Window
one when K = 1.

Finally, among all what is proposed in this paper, we only recommend to use the Window attention
function with the greedy argmax distribution converter, i.e. to use the GAmax Window algorithm
(algorithm 2). This is the only one we will consider in the rest of this section.

4.2 SIMPLIFICATIONS & IMPROVEMENTS

Now, let’s see how we can simplify and improve the GAmax Window algorithm.

Firstly, we simplify the Window attention function by removing the weighted moving average (i.e.
by taking βc := βLinregc) without impacting performances (figures 2 and 3). We call Linreg this new
attention function.

Secondly, we introduce the proportional distribution converter: ∆Prop(a)c := ac∑
c′ ac′

. This cor-
responds to the powered distribution converter when p = 1. We then replace the greedy argmax
distribution converter by a greedy proportional one, and improve performances (figures 2 and 3).

This gives this new program algorithm:

4

https://github.com/maximecb/gym-minigrid
https://github.com/maximecb/gym-minigrid

Under review as a conference paper at ICLR 2019

Algorithm 3: GProp Linreg algorithm
input: A curriculum C ;

An agent A;
βLinreg := 0 ;
for t← 1 to T do

a := |βLinreg| ;
d := ∆GProp(a) ;
Draw a task c from d and then a sample x from c ;
Train A on x and observe return rt ;
βLinregc := slope of lin. reg. of (t1, rt1), ..., (tK , rtK) ;

In the rest of this article, this algorithm will be referred as our “baseline”.

4.3 RESULTS

The two following figures show that:

• the GAmax Linreg algorithm performs similarly to the GAmax Window algorithm, as as-
serted before. It even seems a bit more stable because the gap between the first and last
quartile is smaller.

• the GProp Linreg algorithm performs better than the GAmax Linreg and GAmax Window
algorithm, as asserted before.

Figure 2: GAmax Window, GAmax Linreg and
GProp Linreg algorithms were each tested with
10 different agents (seeds) on the BlockedUn-
lockPickup curriculum. The median return dur-
ing training, between the first and last quartile,
are plotted.

Figure 3: GAmax Window, GAmax Linreg and
GProp Linreg algorithms were each tested with
10 different agents (seeds) on the KeyCorridor
curriculum. The median return during training,
between the first and last quartile, are plotted.

5 A MASTERING RATE BASED ALGORITHM (MR ALGORITHM)

Algorithms introduced in Matiisen et al. (2017); Graves et al. (2017); Fournier et al. (2018), and
in particular Teacher-Student algorithms and the baseline algorithm, are focused on the notion of
learning progress, based on the assumption that the good next tasks are the ones on which the agent
is making the fastest progress or digress. However, two problematic situations may occur:

1. The agent may be mainly trained on tasks it already learnt. The frame B of the figure 4
shows that, around time-step 500k, the agent already learnt Unlock and UnlockPickup but
is still trained 90% of the time on them, i.e. on tasks it already learnt.

2. It may be mainly trained on tasks it can’t learn yet. The more the curriculum has tasks,
the more it occurs:

5

Under review as a conference paper at ICLR 2019

• The frame A of the figure 4 shows that, initially, the agent doesn’t learn Unlock but is
trained 66% of the time on UnlockPickup and BlockedUnlockPickup, i.e. on tasks it
can’t learn yet.

• The figure 5 shows that agents spend most of the time training on the hardest task of
the ObstructedMaze curriculum whereas they have not learnt yet the easy tasks.

.

Figure 4: The agent with seed 6 was trained on
the BlockedUnlockPickup curriculum using the
baseline algorithm. The return and probability
during training are plotted. Two particular mo-
ments of the training are framed.

Figure 5: 10 agents (seeds) were trained on the
ObstructedMaze curriculum using the baseline
algorithm. The mean return and mean probabil-
ity during training are plotted.

To overcome these issues, we introduce a new algorithm, focused on the notion of mastering rate,
based on the assumption that the good next tasks to train on are the ones that are learnable but not
learnt yet. Why this assumption? Because it can’t be otherwise. Mainly training on learnt tasks or
not learnable ones is a lost of time. This time must be spent training on respectively harder or easier
tasks.

In subsection 5.1, we first define what are learnt and learnable tasks and then, in subsection 5.2, we
present this new algorithm.

5.1 LEARNT & LEARNABLE TASKS

Learnt tasks. A min-max curriculum is a curriculum C = {c1, ..., cn} along with:

• a family (m1
c)c∈C where m1

c is an estimation of the minimum mean return the agent would
get on task c. It should be higher than the true minimum mean return.

• and a family (M1
c)c∈C where M1

c is an estimation of the maximum mean return the agent
would get on task c. It should be lower than the true maximum mean return.

On such a curriculum, we can define, for a task c:

• the live mean return r̄c(t) by r̄c(1) := m1
c and r̄c(t) = (rt1 + ...+rtK)/K where t1, ..., tK

are the K last time-steps when the agent was trained on a sample of c and where rti is the
return got by the agent at these time-steps;

• the live minimum mean return by mc(1) := m1
c and mc(t) := min(r̄c(t),mc(t− 1));

• the live maximum mean return by Mc(1) := M1
c and Mc(t) := max(r̄c(t),Mc(t− 1)).

From this, we can define, for a task c, the mastering rateMc(t) := r̄c(t)−mc(t)
Mc(t)−mc(t) . Intuitively, a task

c would be said “learnt” ifMc(t) is near 1 and “not learnt” ifMc(t) is near 0.

6

Under review as a conference paper at ICLR 2019

Learnable tasks. An ordered curriculumOC is an acyclic oriented graph over tasks C. Intuitively,
an edge goes from task A to task B if A must be learnt before B.

A min-max ordered curriculum is an ordered curriculum along with a minimum and maximum mean
return estimation for each task.

On such a curriculum, we can define, for a task c, the learnability rate:
MAnc c(t) := min

c′|c′ c
Mc′(t)

where c′ cmeans that c′ is an ancestor of c in the graphOC . If c has no ancestor,MAnc c(t) := 1.
Intuitively, a task c would be said “learnable” if Lc(t) is near 1 and “not learnable” if it is near 0.

5.2 A MASTERING RATE BASED ALGORITHM (MR ALGORITHM)

Let’s introduce our mastering rate based algorithm (MR algorithm) that assumes that the good next
tasks to train on are the ones that are learnable but not learnt yet.

Unlike Teacher-Student algorithms that require a curriculum as input, this algorithm requires a min-
max ordered curriculum: this is more data to provide but this is not much harder to do. For all the
experiments in Matiisen et al. (2017); Graves et al. (2017); Fournier et al. (2018), min-max ordered
curriculums could have been provided easily.

If ac(t) represents the attention given to task c, then the MR algorithm is based on the following
formula:

ac(t) = [(MAnc c(t))
p
]
[
δ(1−Mc(t)) + (1− δ)β̂Linregc (t)

]
[1−MSucc c(t)] (1)

where:

• β̂Linregc (t) :=
βLinreg
c (t)

maxc′ β
Linreg

c′ (t)
if possible. Otherwise, β̂Linregc (t) := 0;

• MSucc c(t) := minc′|c→c′Mc′(t). If c has no successor,MSucc c(t) := 0.

The attention ac(t) given to a task c is the product of three terms (written inside square brackets):

• The first term only gives attention to tasks that are learnable. The power p controls how
much a task should be learnable in order to get attention.

• The second term, when δ = 0, only gives attention to tasks that are not learnt yet. When
δ 6= 0, it gives also attention to tasks that are progressing or regressing the more. This is
useful because if the maximum mean return estimation is 0.5 whereas as the true maximum
mean return is 0.9, then agents will stop training on tasks when they reach 0.5 mean return
whereas they could have reached 0.9 by continuing...

• The last term only gives attention to tasks whose successors are not learnt yet. Without it,
tasks learnt and whose successors are learnt might still have attention because of β̂Linregc (t)
in the second term.

Now that the attention function is defined, all we have to do is to choose a distribution converter.
Because we don’t want to sample learnt or not learnable tasks, we can’t use the greedy proportional
or the greedy argmax ones. We rather prefer the proportional one. However, with this distribution
converter, nothing ensures that easier tasks will be sampled regularly.

To overcome this, each task first gives a part γpred of its attention to its predecessors:

a′c(t) := (1− γpred)ac(t) +
∑

c′|c→c′

γpred
nc′

a′c′(t) (2)

where nc is the number of predecessors. Then, each task gives a part γsucc of its attention to its
successors:

ac
′′(t) := (1− γsucc)a

′

c(t) +
∑

c′|c′→c

γsucc
nc′

a′c′(t) (3)

where nc is the number of successors.

Hence, we get the MR algorithm:

7

Under review as a conference paper at ICLR 2019

Algorithm 4: MR algorithm
input: A min-max ordered curriculum C ;

An agent A;
βLinreg := 0 ;
for t← 1 to T do

Compute attention a using equation 1 ;
Compute redistributed attention a′ following equation 2 and 3;
d := ∆Prop(a′) ;
Draw a task c from d and then a sample x from c ;
Train A on x and observe return rt ;
βLinregc := slope of lin. reg. of (t1, rt1), ..., (tK , rtK) ;

Finally, we can remark that the MR algorithm is just a more general version of Teacher-Student
algorithms and the baseline algorithm. If we consider min-max ordered curriculums without edges
(i.e. just curriculums), if δ = 0, and if we use the GProp dist converter instead of the Prop one, then
the MR algorithm is exactly the GProp Linreg algorithm.

5.3 RESULTS

The MR algorithm with δ = 0.6 (see appendix B for the min-max ordered curriculums given to this
algorithm) outperforms the baseline algorithm on all the curriculums, especially on:

• KeyCorridor where the median return of the baseline is near 0 after 10M time-steps on
S4R3, S5R3 and S6R3 while the first quartile of the MR algorithm is higher than 0.8 after
6M time-steps (see figure 6).

• ObstructedMaze where the last quartile of the baseline is near 0 after 10M time-steps on all
the tasks while the last quartile of the MR algorithm is higher than 0.7 after 5M time-steps
on 1Dl, 1Dlh, 1Dlhb, 2Dl, 2Dlhb (see figure 7)..

Figure 6: GProp Linreg and MR with δ = 0.6
were each tested with 10 different agents (seeds)
on the KeyCorridor curriculum. The median re-
turn during training, between the first and last
quartile, are plotted.

Figure 7: GProp Linreg and MR with δ = 0.6
were each tested with 10 different agents (seeds)
on the ObstructedMaze curriculum. The median
return during training, between the first and last
quartile, are plotted.

ACKNOWLEDGMENTS

We acknowledge Jacob Leygonie, Claire Lasserre and Salem Lahlou for fruitful conversations re-
garding these ideas, and Compute Canada for computing support.

8

Under review as a conference paper at ICLR 2019

REFERENCES

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09, pp.
41–48, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1. doi: 10.1145/1553374.
1553380. URL http://doi.acm.org/10.1145/1553374.1553380.

Maxime Chevalier-Boisvert and Lucas Willems. Minimalistic gridworld environment for openai
gym. https://github.com/maximecb/gym-minigrid, 2018.

P. Fournier, O. Sigaud, M. Chetouani, and P.-Y. Oudeyer. Accuracy-based Curriculum Learning in
Deep Reinforcement Learning. ArXiv e-prints, June 2018.

Alex Graves, Marc G. Bellemare, Jacob Menick, Rémi Munos, and Koray Kavukcuoglu. Automated
curriculum learning for neural networks. CoRR, abs/1704.03003, 2017. URL http://arxiv.
org/abs/1704.03003.

Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. Teacher-student curriculum learn-
ing. CoRR, abs/1707.00183, 2017. URL http://arxiv.org/abs/1707.00183.

Yuxin Wu and Yuandong Tian. Training agent for first-person shooter game with actor-critic cur-
riculum learning. 2017.

Wojciech Zaremba and Ilya Sutskever. Learning to execute. CoRR, abs/1410.4615, 2014. URL
http://arxiv.org/abs/1410.4615.

A CURRICULUMS

Three curriculums were used to evaluate the algorithms: BlockedUnlockPickup (3 tasks), KeyCor-
ridor (6 tasks) and ObstructedMaze (9 tasks).

(a) Unlock.
nmax = 288

(b) UnlockPickup.
nmax = 288

(c) BlockedUnlockPickup.
nmax = 576

Figure 8: BlockedUnlockPickup curriculum. In Unlock, the agent has to open the locked door. In the
others, it has to pick up the box. In UnlockPickup, the door is locked and, in BlockedUnlockPickup,
it is locked and blocked by a ball. The position and color of the door and the box are random.

9

http://doi.acm.org/10.1145/1553374.1553380
https://github.com/maximecb/gym-minigrid
http://arxiv.org/abs/1704.03003
http://arxiv.org/abs/1704.03003
http://arxiv.org/abs/1707.00183
http://arxiv.org/abs/1410.4615

Under review as a conference paper at ICLR 2019

(a) S3R1.
nmax = 270

(b) S3R2.
nmax = 270

(c) S3R3.
nmax = 270

(d) S4R3.
nmax = 480

(e) S5R3.
nmax = 750

(f) S6R3.
nmax = 1080

Figure 9: KeyCorridor curriculum. The agent has to pick up the ball. However, the ball is in a
locked room and the key in another room. The number of rooms and their size gradually increase.
The position and color of the key and the doors are random.

10

Under review as a conference paper at ICLR 2019

(a) 1Dl.
nmax = 288

(b) 1Dlh.
nmax = 288

(c) 1Dlhb.
nmax = 288

(d) 2Dl.
nmax = 576

(e) 2Dlh.
nmax = 576

(f) 2Dlhb.
nmax = 576

(g) 1Q.
nmax = 720

(h) 2Q.
nmax = 1584

(i) Full.
nmax = 3600

Figure 10: ObstructedMaze curriculum. The agent has to pick up the blue ball. The boxes hide a
key. A key can only open a door of its color. The number of rooms and the difficulty opening doors
increase.

B MIN-MAX ORDERED CURRICULUMS

Here are the min-max ordered curriculums given to the MR algorithm in subsection 5.3.

For every task c, we set m1
c to 0 and M1

c to 0.5. The real maximum mean return is around 0.9 but
we preferred to take a much lower maximum estimation to show we don’t need an accurate one to
get the algorithm working.

11

Under review as a conference paper at ICLR 2019

Figure 11: Oriented curriculum for BlockedUnlockPickup.

Figure 12: Oriented curriculum for KeyCorridor.

Figure 13: Oriented curriculum for ObstructedMaze.

C HYPERPARAMETERS

α 0.1
ε 0.1
K 10

Table 1: Hyperparameters used for Teacher-Student and baseline algorithms. They are the same
than those used in the Teacher-Student paper.

δ 0.6
γpred 0.2
γsucc 0.05
K 10
p 6

Table 2: Hyperparameters used for the MR algorithm.

12

Under review as a conference paper at ICLR 2019

D PERFORMANCE OF THE MR ALGORITHM ON BLOCKEDUNLOCKPICKUP

Figure 14: GProp Linreg and MR with δ = 0.6 were each tested with 10 different agents (seeds) on
the BlockedUnlockPickup curriculum. The median return during training, between the first and last
quartile, are plotted.

13

	Introduction
	Background
	Curriculum learning
	Teacher-Student program algorithms

	Experiment settings
	Simplification & improvement of Teacher-Student algorithms
	Recommendations
	Simplifications & Improvements
	Results

	A Mastering Rate based algorithm (MR algorithm)
	Learnt & learnable tasks
	A mastering rate based algorithm (MR algorithm)
	Results

	Curriculums
	Min-max ordered curriculums
	Hyperparameters
	Performance of the MR algorithm on BlockedUnlockPickup

