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ABSTRACT

Naively applying Reinforcement Learning algorithms to continuous control prob-
lems — such as locomotion and robot control — to maximize task reward often
results in policies which rely on high-amplitude, high-frequency control signals,
known colloquially as bang-bang control. While such policies can implement the
optimal solution, particularly in simulated systems, they are often not desirable
for real world systems since bang-bang control can lead to increased wear and tear
and energy consumption and tends to excite undesired second-order dynamics. To
counteract this issue, multi-objective optimization can be used to simultaneously
optimize both the reward and some auxiliary cost that discourages undesired (e.g.
high-amplitude) control. In principle, such an approach can yield the sought after,
smooth, control policies. It can, however, be hard to find the correct trade-off be-
tween cost and return that results in the desired behavior. In this paper we propose
a new constraint-based approach which defines a lower bound on the return while
minimizing one or more costs (such as control effort). We employ Lagrangian re-
laxation to learn both (a) the parameters of a control policy that satisfies the desired
constraints and (b) the Lagrangian multipliers for the optimization. Moreover, we
demonstrate policy optimization which satisfies constraints either in expectation
or in a per-step fashion, and we learn a single conditional policy that is able to
dynamically change the trade-off between return and cost. We demonstrate the
efficiency of our approach using a number of continuous control benchmark tasks
as well as a realistic, energy-optimized quadruped locomotion task

1 INTRODUCTION

Deep Reinforcement Learning (RL) has achieved great successes over the last couple of years, en-
abling learning of effective policies from high-dimensional input, such as pixels, on complicated
tasks. However, compared to problems with discrete action spaces, continuous control problems
with high-dimensional continuous state-action spaces — as often encountered in robotics — have
proven much more challenging. Beyond the issue of exploration in high-dimensional continuous
action spaces, RL algorithms rarely learn policies that produce smooth control signals when just
optimizing for success. Instead, policies often exhibit control signals that switch between extreme
values at high-frequency, often colloquially referred to as bang-bang control. Smoothness, however,
is a desirable property in most real-world control problems. Unnecessary oscillations are not only
energy inefficient, they also exert stress on a physical system by exciting second-order dynamics and
increasing wear and tear on structural elements and actuators.

To regularize the behavior, one can add penalties to the reward function. As a result, the reward
function is composed of positive reward for achieving the goal and negative reward (penalties) for
control action discontinuities or high energy use. This effectively casts the problem into a multi-
objective optimization setting, where — depending on the ratio between the reward and the different
penalties — different behaviors may be achieved. While every ratio will have its optimal policy,
finding the ratio that results in the desired behavior, i.e. smooth control while still achieving an
acceptable task success rate, is not always trivial and requires excessive hyperparameter tuning.
Often, one must find different hyperparameter settings for different reward-penalty trade-offs or
tasks. The process of finding these parameters is tedious and cumbersome, and may prevent robust
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general solutions. In this paper we rephrase the problem: instead of trying to find the right ratios
between reward and penalties, we regularize the optimization problem by adding constraints, thereby
reducing its effective dimensionality. More specifically, we propose to minimize the penalty with
respect to a lower bound on the success rate of the task.

Using a Lagrangian relaxation technique, we introduce cost coefficients for each of the imposed
constraints that are tuned automatically during the optimization process. In this way we can find
the optimal trade-off between reward and costs (that also satisfies the imposed constraints) automat-
ically. By making the cost multipliers state-dependent, and adapting them alongside the policy, we
can not only impose constraints on expected reward or cost, but also on their instantaneous values.
Such point-wise constraints allow for much tighter control over the behavior of the policy, since a
constraint that is satisfied only in overall expectation could still be violated momentarily. Finally,
the entire constrained optimization procedure that we introduce can furthermore be conditioned on
the constraint bounds themselves in order to learn a single, bound-conditioned policy that is able
dynamically trade-off reward and penalties. This allows us to, for example, learn energy-efficient
locomotion at a range of different velocities.

The contributions of this work are (i) we regress state-dependent Lagrangian multipliers with a
neural network in order to generalize across states, (ii) we impose structure to the critic by simul-
taneously learning both reward and value estimates as well as the coefficient to trade them off in a
single model, and finally (iii) we train a bound-conditioned policy that is optimized for a range of
bounds. Our approach, as described in more detail in Section [3] is general and flexible in that it
can be applied to any value-based RL algorithm and any number of constraints. We evaluate our
approach on continuous control problems in Section[4]using tasks from the DM Control Suite (Tassal
et al.| 2018) and a (precisely simulated) locomotion task with the Minitaur quadruped.

2 BACKGROUND AND RELATED WORK

We consider the classical Markov Decision Process (MDP) setting (Sutton & Barto}|1998)), where an
agent sequentially interacts with an environment. More precisely, the agent observes the state of the
environment s and decides on which action to take according to a policy a ~ 7 (s | s). Executing
the action in the environment, then, causes a state transition. Each transition has an associated reward
defined by some utility function r (s, a). The goal of the agent is to maximize the expected sum
of rewards, also known as the return, max, Es a~x [Y_; 7 (8¢, a;)]. While some tasks have a well-
defined reward, such as the increase in score when playing a game, for many others the objective is
not as easily defined. Designing reward functions that produce a desired behavior policy can thus be
extremely difficult, even in the single-objective case (e.g. Popov et al.l[2017;|/Amodei et al., 2016).

Multi-Objective RL (MORL) problems arise in many domains, including robotics, and have been
covered by a rich body of literature (see e.g. [Roijers et al.,|2013|, for a recent review), suggesting a
variety of solution strategies. For instance,[Mossalam et al.|(2016) devise a Deep RL algorithm that
implements an outer loop method and repeatedly calls a single-objective solver. Mannor & Shimkin
(2004) propose an algorithm for learning in a stochastic game setting with vector valued rewards
(their approach is based on approachability of a target set in the reward space). However, most
of these approaches explicitly recast the multi-objective problem into a single-objective problem
(that is amenable to existing methods), where one aims to find the trade-off between the different
objectives that yields the desired result. In contrast, we aim for a method that automatically trades
off different components in the objective to achieve a particular goal. To achieve this, we cast the
problem in the framework of Constrained Markov Decision Processes (CMDPs) (Altman) [1999).
CMDPs have been considered in a variety of works, including in the robotics and control literature.
For instance, |Achiam et al.| (2017)) and Dalal et al.| (2018) focus on constraints motivated by safety
concerns and propose algorithms that ensure that constraints remain satisfied at all times. These
works, however, assume that the initial policy already satisfies the constraint, which is not the case
when the constraint involves the task success rate; as in this work. The motivation for the work by
Tessler et al.[(2018)) is similar to ours. In contrast to our work, their approach maximizes reward
subject to a constraint on the cost and enforces constraints only in expectation. Additionally, as an
advance over the existing literature, we explicitly learn separate values for the reward and cost, as
well as state-dependent coefficients that enable us to trade off the two in the policy optimization.
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Constraint-based formulations are also used frequently in single-objective policy search algorithms
where bounds on the policy divergence are employed to control the rate of change in the policy
from one iteration to the next (e.g. Peters & Miilling, [2010; Levine & Koltun, 2013 |Schulman et al.,
2015} |Abdolmaleki et al [2018). Our use of constraints, while similar in the employed methods,
can be seen as orthogonal to the idea of using constraints to bound the rate of change in a policy.
While we note that our approach can be applied to any value-based off-policy method, we make
use of the method described in Maximum a Posteriori Policy Optimisation (MPO) (Abdolmaleki
et al.,[2018)) as the underlying policy optimization algorithm — without loss of any generality of our
method. MPO is an actor-critic algorithm that is known to yield robust policy improvement. In each
policy improvement step, for each state sampled from replay buffer, MPO creates a population of
actions. Subsequently, these actions are re-weighted based on their estimated values such that better
actions will have higher weights. Finally, MPO uses a supervised learning step to fit a new policy in
continuous state and action space. See Abdolmaleki et al.|(2018) and Appendix A for more details.

3  CONSTRAINED OPTIMIZATION FOR CONTROL

We consider MDPs where we have both a reward and cost, r (s, @) and ¢ (s, a), which are functions
of state s and action a. The goal is to automatically find a probabilistic policy 7(a|s;6) (with
parameter ) that trades-off between maximizing the (expected) reward and minimizing the cost — in
order to achieve the desired behavior. In the case of continuous control, desirable behavior would be
solving the task (e.g. stable swing up in cart-pole) while minimizing other quantities, such as control
effort or energy. In effect we want to optimize the total return subject to a penalty proportional
to the total cost, i.e. maxy Ega~r [>., 7 (St,a¢) — - c(s¢,ar)], where we take max, to mean
maximizing the objective with respect to the policy parameters 6. The expectation over states s is
with respect to the state visitation probability under the policy p™ (s). The problem of finding the
right trade-off then becomes a matter of finding a good value for a.. Finding this trade-off is often
non-trivial. An alternative way of looking at this dilemma is to take a multi-objective optimization
perspective. Instead of fixing a, we can optimize for it simultaneously and can obtain different
Pareto-optimal solutions for different values of «.. In addition, to ease the definition of a desirable
regime for o, one can consider imposing hard constraints on the cost to reduce dimensionality (Deb,
2014), instead of linearly combining the different objectives. Defining such hard constraints is often
more intuitive than trying to manually tune coefficients. For example, in locomotion, it is easier to
define desired behavior in terms of a lower bound on speed or an upper bound on an energy cost.

3.1 CONSTRAINED MDPs

The constrained perspective outlined above can be formalized as CMDPs (Altman, |1999). While a
constraint can be placed on either the reward or the cost, in this work we consider a lower bound on
the expected total return (although the theory derived below equivalently applies to constraints on
cost), i.e. ming Eg anr D, ¢ (8¢, a4)], s.t. Eg anr [>, 7 (8¢, a:)] > R, where R is the minimum
desired return. In the case of an infinite horizon with a given stationary state distribution, the con-
straint can instead be formulated for the per-step reward, i.e. Eg a~r [r (8, @)] > 7. In practice one
often optimizes the y-discounted return in both cases. To apply model-free RL methods to this prob-
lem we first define an estimate of the expected discounted return for a given policy as the action-value
function @, (s,a) = Eg ar D, 7" - 7 (81, a1) |So = 8, a9 = a]. Further, let Q. (s, a) denote the
similarly constructed expected discounted cost action-value function. Equipped with these value
functions, we can then recast the CMDP in value-space, where V,, = 7/ (1 — v) (i.e. scaling the
desired reward 7 with the limit of the converging sum over discounts):

H%TinEs,aNﬂ' [Q¢ (37 CL)] , S.t. ES,aN‘ﬂ' [Q7 (8, a)] > Vr (D

3.2 LAGRANGIAN RELAXATION

We formulate task success via a constraint on the reward. Fulfilling this constraint indicates task
success. Generally the constraint is not satisfied at the start of learning, as the agent first needs to
learn how to solve the task. This limits the choice of existing methods that can be used to solve
the CMDP, as many of these methods assume that the constraint is satisfied at the start and limit
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the policy update to remain within the constraint-satisfying regime (e.g. /Achiam et al.,[2017)). La-
grangian relaxation is a general method for solving general constrained optimization problems; and
CMDPs by extension (Altman, [1999). In this setting, the hard constraint is relaxed into a soft con-
straint, where any constraint violation acts as a penalty for the optimization. Applying Lagrangian
relaxation to Equation [T|results in the unconstrained dual problem

mgxr/{lzlg ]ES,aNﬂ' [QA (37 a)] , with @ (37 a) =A (Qr (S» a’) - V’I”) - Q. (Sa a) > (2)

with an additional minimization objective over the Lagrangian multiplier \.

A larger ) results in a higher penalty for violating the constraint. Hence, we can iteratively update A
by gradient descent on Q) (8, a), alternated with policy optimization, until the constraint is satisfied.
Under assumptions described in[Tessler et al.[|(2018), this approach converges to a saddle point. At
convergence, when V,E [Q» (s, a)] = 0, A is exactly the desired trade-off between reward and cost
we aimed to find. To perform the policy optimization for 7 any off-the-shelf off-policy optimization
algorithm can be used (since we assume that we have a learned, approximate Q-function at our
disposal). In practice, we perform policy optimization using the MPO algorithm (Abdolmaleki
et al.,[2018)) and refer to Appendix A for additional details.

Scale invariance At the start of learning, as the constraint is not yet satisfied, A will grow in order
to suppress the cost Q. (s, a) and focus the optimization on maximizing @, (s, a). Depending on
how quickly the constraint can be satisfied, A can grow very large, resulting in a overall large mag-
nitude of @) (s, a). This can result in unstable learning as most actor-critic methods that have an
explicit parameterization of 7 are especially sensitive to large (swings in) values. To improve stabil-
ity, we re-parameterize @ (s, @) to be a projection into a convex combination of (Q, (s,a) — V,¥)
and —Q.. (s, a). Instead of scaling only the reward term, we can then adaptively reweigh the relative
importance of reward and cost, and make the magnitude of @ (s, a) bounded. To enforce A > 0,
we can perform a change of variable \’ = log () to obtain the following dual optimization problem

exp (X) (@r (s,a) = V') = Qc (s, a)

max min Eg 4~ /(s,a)],with Q. (s,a) = . 3

T MNeER s,a W[QA ( ’ )] Q)\ ( ’ ) eXp()\l)“Fl ( )
Note that to correspond to the formulation in Equation 2] we only perform gradient descent
w.rt. A on the first term in the numerator. In practice, we limit A" to [N/ i, Aax), With

!
max"*

(exp (X)) + 1) = € for some small ¢, and initialize to A

max

3.3 POINT-WISE CONSTRAINTS

One downside of the CMDP formulation given in Equation [I] is that the constraint is placed on
the expected total episode return, or expected reward. This implies that the constraint will not
necessarily be satisfied at every single timestep, or visited state, during the episode. For some
tasks this difference, however, turns out to be of importance. For example, in locomotion, a constant
speed is more desirable than a fluctuating one, even though the latter might also satisfy a minimum
velocity in expectation. Fortunately, we can extend the single constraint introduced in Section [3.1]to
a set, possibly infinite, of point-wise constraints; one for each state induced by the policy. This can
be formulated as the following optimization problem:

min Eg ar [Qc (8,a)], 8. V8 ~ 7 : Earr [Qr (8,a)] > V. “4)

Analogous to Section [3.2] this problem can be optimized with Lagrangian relaxation by introducing
state-dependent Lagrangian multipliers. Formally, we can write,

m;iX Esor /\1(’2)120 Earr [Q)\ (87 a)] , with @ (37 a) =A (S) (Qr (37 a) - V;“) - Q. (87 a) - 5

Analogously to how one often assumes that nearby states have a similar value, here we have made the
assumption that nearby states have similar A\ multipliers. This allows learning a parametric function
A (s) alongside the action-value, which can generalize to unseen states s. In practice, we train a
single critic model that outputs A (s) as well as Q.. (s, @) and @, (s, a). We provide pseudocode for
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the resulting constrained optimization algorithm in Appendix A. Note that, in this case, the lower
bound is still a fixed value and does not depend on the state. In general such a constraint might be
impossible to satisfy for some states in a given task if the state distribution is not stationary (e.g.
we cannot satisfy a reward constraint in the swing-up phase of the simple pendulum). However, the
lower bound can also be made state-dependent and our approach will still be applicable.

3.4 CONDITIONAL CONSTRAINTS

Up to this point, we have made the assumption that we are only interested in a single, fixed value
for the lower bound. However, in some tasks one would want to solve Equation@for different lower
bounds V,, i.e. minimizing cost for various success rates. For example, in a locomotion task, one
could be interested in optimizing energy for multiple different target speeds or gaits. Assuming
locomotion is a stationary behavior, one could set V. = @/ (1 — +) for a range of velocities 7 €
[0, Umax]. In the limit this would achieve the same result as multi-objective optimization—it would
identify the set of solutions wherein it is impossible to increase one objective without worsening
another—also known as a Pareto front. To avoid the need to solve a large number of optimization
problems, i.e., solving for every V. separately, we can condition the policy, value function and
Lagrangian multipliers on the desired target value and, effectively, learn a bound-conditioned policy

E ~p(z ESN’TT z i anﬂ’ z ) by 5
1~p(2) [f}}(a? =) L(glggo ) [@x (s, Z>]”

with Qx (s,a,2) = A (s,2) (Qr (s,a,2) =V, (2)) — Qc(s,a,2). (6)
Here z is a goal variable, the desired lower bound for the reward, that is observed by the policy and

critic and maps to a lower bound for the value V;. (z). Such a conditional constraint allows a single
policy to dynamically trade off cost and return.

4 EXPERIMENTS

We apply our constraint-based approach to the continuous control domains shown in Figure[T} the
cart-pole and humanoid from the DM Control Suite benchmark, and a more challenging robot loco-
motion task.

(a) Cart-pole (b) Humanoid (c) Minitaur

Figure 1: The continuous control environments used in the experiments. Cart-pole swingup @) and
humanoid stand and walk @ are from the DM control suite (Tassa et al.,|2018)). The Minitaur robot
is similarly simulated in MuJoCo. The red dot denotes the IMU.

4.1 CONTROL BENCHMARKS

We consider three tasks from the DeepMind Control Suite (Tassa et al. [2018) benchmark to illus-
trate the problem of bang-bang control and the effectiveness of our approach: cart-pole swingup,
humanoid stand and humanoid walk. Each of these tasks has a shaped reward that combines the suc-
cess criterion (e.g. pole upright and cart in the center for cart-pole) with a bonus for a low control
signal. The total reward lies in [0, 1] in all cases. We compare agents trained on this original reward
with two that are trained with the control term from the reward removed, one unconstrained that
never observes a control penalty, and one constrained where we minimize the control penalty with
respect to a lower bound on return using the approach detailed in the previous section. In all cases
we train a neural network controller using the MPO algorithm (Abdolmaleki et al., [2018)). More
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Table 1: Average reward and penalty for the different control benchmark tasks and policies trained in
the constrained, unconstrained and original reward setup. In all cases, the constraint-based approach
results in the lowest average penalty. While the lower bound was set to 0.9 of a maximum of 1, we
obtain the same average reward as the unconstrained case for the cartpole swingup and humanoid
stand tasks.

Constrained Unconstrained Original

Task Window | reward penalty | reward penalty | reward penalty

cartpole full 0.891 0.885 1.918 0.895  0.733

P last 50% | 0.998 1.000 1.459 0998  0.074
humanoid (stand) full 0.961 0964  37.189 | 0952 27518
last 50% | 0.998 0.993 37.288 | 0.999  27.007
humanoid (walk) full 0.869 0.953 26.835 | 0957  29.565
last 50% | 0.903 0984  26.819 | 0.990  29.418

specifically, we train a two-layer MLP policy to output the mean and variance of a Gaussian policy.
We use a fixed lower bound on the expected per-step reward of 0.9 and use the norm of the force
output as the penalty to minimize. More details about the training setup can be found in Appendix
A. Table([T]shows the average reward (excl. control penalty) and control penalty for each of the tasks
and setups, both averaged across the entire episode as well as the final 50%. The latter is relevant
as all three tasks have an initial balancing component that by its nature requires significant control
1nput.

For cart-pole, we see that all agents give almost identical returns but the constrained method is
able to achieve significantly lower penalties, even compared to the original reward that included
a (non-adaptive) penalty (over 50% across the entire episode, over 80% in the final half of the
episode). Even though the lower bound on the reward is only 0.9, the constrained method still
achieves higher rewards because after the swingup phase, the best thing to do in order to minimize
the control input is to keep the pole balanced. Figure[Za]shows a typical execution of the noisy policy
when optimizing for the reward alone. Note that actions are clamped in [—1,1]. We can observe
that the average absolute control signal is large and the agent keeps switching rapidly between a
large negative and large positive force even after the swing up phase. While the agent is able to
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0.0

actions [-]
actions [-]

-0.5

L0 T T T T 1 -1.0 4 T T T T r
0 2 4 6 8 10 0 2 4 6 8 10
time [s] time [s]
(a) Cart-pole, unconstrained (b) Cart-pole, original
10 | | 1 ] | 60 4 ! ! ! L :
- —— Unconstrained —— Constrained —— Original
— 05 - E
£ o0 - 2
g —os | é
8
-1.0 1 T T T T T
0 2 4 6 8 10
time [s] time [s]
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Figure 2: Representative results of the executed policies in the control benchmark tasks. Plots (a), (b)
and (c) show the mean and standard deviation as output by the policy trained on cart-pole swingup
in the constrained, unconstrained and original reward setting respectively, following a trajectory
generated using actions sampled from this distribution. In all three cases, we observe high control
input during the first 2 seconds, corresponding to the swingup phase. Figure (d) shows the control
norm during the episode rollout of policies trained in humanoid stand. Note that in all cases the
actual return between the thee methods is almost identical.
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solve the task (and the behaviour can be somewhat smoothed by executing only the mean of the
learned Gaussian policy for this simple system), this kind of bang-bang control is not desirable for
any real-world control system. Figure [2c| shows a typical execution of a policy learned with the
constrained approach. It is clearly visible that the policy is much smoother; in particular it never
reaches maximum or minimum actuation levels after the swing up (during which a switch between
maximum and minimum actuation is indeed the optimal solution). Figure [2b] shows the execution
of the agent trained against the original reward function that also includes a (fixed) control penalty.
As in the constrained case, the action distribution shrinks after the swingup phase. However, there
is still more switching present compared to the constraint-based approach.

We observe a similar trend for the humanoid stand task, where all three setups result in almost the
same average reward, but the constraint-based approach is able to reduce the control penalty by 80%
compared to the original reward setup. We visualize the resulting policies in Figure Bh-c by over-
laying frames from the final 50% time steps of the episode. A policy exhibiting bang-bang control
will result in more jittering motion and hence a more blurry image. As can be seen in Figure [3a] the
unconstrained case results in a lot of jittering motions. Both the constrained and original setup show
significantly less jitter, with the humanoid adopting a fixed pose. In the constrained case, however,
the agent consistently learn to adopt a pose with smaller control norm by putting the legs closer
together. The same observations can be made by looking at the control norm during the episode
in Figure[2d} After the initial standup phase, the contrained optimization approach results in a sig-
nificantly lower control norm during the remainder of the episode. For the humanoid walk task, we
observe a different result: while the constraint-based approach still results in a lower penalty, there
is also a reduction in the average reward. This is to be expected: when walking, the best thing to do
to minimize the penalty is to slow down, which will reduce the reward. As a result the reward will
stick closer to the imposed lower bound of 0.9. Note that we do effectively satisfy the lower bound
after the standup phase. Interestingly, the agent trained on the original reward configuration results
in a higher control penalty compared to the unconstrained case. It is worth noting that the control
penalty is mixed into the reward differently than in the (un)constrained case and may hence have a
different optimum.

(a) Unconstrained (b) Constrained (c) Original

Figure 3: Comparison of policies trained on the humanoid stand task in the constrained, uncon-
strained and original reward setup. Figures show the average frame of the final 50% of the episode.
Policies that exhibit more bang-bang-style control will result in more jittering movements and hence
more blurry images. The constrained and original reward policy clearly show less jitter.

4.2 MINITAUR LOCOMOTION

Our second experiment is based on the the Minitaur robot developed by Ghost Robotics (Kenneally
et al.| 2016)). It is a quadruped with two Degrees of Freedom (DoFs) in each of the four legs. High-
power direct-drive actuators are used for each joint, allowing the robot to express a multitude of
dynamic gaits such as trotting, pronking and galloping. These gaits, however, require a large engi-
neering effort when implemented using state-of-the-art control techniques, and, when model-based
approaches are used, performance becomes sensitive to modeling errors. Learning-based approaches
have shown promise as an alternative for devising locomotion controllers for the Minitaur (Tan et al.,
2018)). Learning approaches are less dependent on gait and other task dependent heuristics and can
lead to more versatile and very dynamic behaviors. We do however want learned gaits to be suf-
ficiently well-behaved, avoiding high-frequency changes or large steps in the control signal that
cause vibrations which ultimately can lead to control instability or mechanical stress. One way to
achieve smooth control and locomotion is to optimize for energy efficiency, as fast, opposing actions
typically require more power. We hence adopt an energy penalty in the following.
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4.2.1 EXPERIMENTAL SETUP

Although the Minitaur experiments are conducted in simulation, we have made a significant effort
to capture many of the challenges of real robots: physical robot complexity, realistic and partial
observations, control latency, plus additional perturbations, variations, and noise. We model the
Minitaur in MuJoCo (Todorov et al., 2012)) as seen in Figure using model parameters obtained
from data sheets as well as system identification to improve the fidelity. The Minitaur is placed on
a varying, rough terrain that is procedurally generated for every rollout. To model the drive train
we use a non-linear actuator model based on a general DC motor model and the torque-current
characteristic described inDe & Koditschek! (2015). The observations of the RL agent include noisy
motor positions, yaw, pitch, roll, and angular velocities and accelerometer readings, but no direct
perception of the surroundings or terrain. The policy outputs position setpoints at 100Hz that are
fed to a low-level proportional position controller running at 1KHz, with a forced delay of 20ms
added between sensor readings and the corresponding control signal, to match delays observed on
the real hardware. To improve control robustness and with the aim to transfer the controllers from
simulation to real hardware, we perform domain randomization (Tobin et al.,[2017) on a number of
model parameters, as well as apply random external forces to the body (see Appendix B for details).

As we are only considering forward locomotion, we set the reward r (s, a) to be the forward velocity
of the robot’s base expressed in the world frame. The cost ¢ (s, @) is set to be the total power usage
of the motors according to the actuator model. As the legs can collide with the main body when
giving the agent access to the full control range, a constant penalty is added to the penalty computed
from the power consumption during any self-collision. We use a largely similar training setup as in
Section .1} however, since the episodes are 30sec in length and only partial and noisy observations
are available, the agent requires memory for effective state estimation, so we add an LSTM to the
model. In addition to learning separate values for Q.. (s, @) and Q. (s, a), we splitup Q. (s, a) into
separate value functions for the power usage and collision penalty. We also increase the number of
actors to 100 to sample a larger number of domain variations more quickly. More details can be
found in Appendix A.

4.2.2 RESULTS

We first look at the effect of applying the lower bound to each individual state instead of on the
global average velocity. Figure ] shows a comparison between learning dynamics between a model
using a single A multiplier and a model with a state-dependent one, i.e. constraint in expectation
or per-step. Both agents try to achieve a lower bound on the value that is equivalent to a minimum
velocity of 0.5m/s. At first, both agents “focus” on satisfying the constraint, increasing the penalty
significantly in order to do so. Once the target velocity is exceeded, the agents start to optimize
the penalty, which drives them back to the imposed bound. A single multiplier that is applied to all
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Figure 4: Comparison of a single versus a state-dependent A\ multiplier for models trained to achieve
a minimum velocity of 0.5m/s. A single multiplier results in large swings in reward and on average
higher values of A. In[b] policies start off at Om/s and first learn to satisfy the constraint before
optimizing the penalty. In|c| for the state-dependent case, we show the mean and standard deviation
of A across the training batch.
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Table 2: Results for models trained to achieve a fixed lower bound on the velocity. Reported numbers
are average per-step (velocity overshoot [m/s], penalty [W]), except for the unbounded case where
we report actual velocity. Each entry is an average over 4 seeds. We highlight the best constant «,
in terms of smallest overshoot, for each target bound.

Target a=3e-3 a=1le-3 a = 3e—4 a=1le—4 Constraint
| delta penalty | delta  penalty | delta penalty | delta penalty | delta penalty
0.1 -0.1, 35.74 -0.01, 0.07, 112.35 0.1, 245.49 0.01, 127.14

0.2 -0.2, 4648 -0.01, 210.04 | 0.15, 207.19 0.23, 399.83 0.03,
0.3 -0.3, 503 0.06, 15491 | 0.16, 213.1 0.24, 429.6 0.04,
0.4 -0.4, 54.05 0.06, 19598 | 0.11, 306.1 0.32, 627.66 0.05,
0.5 -0.5, 60.71 0.13, 250.69 | 0.13, 332.53 0.26, 808.38 0.05,
00 0.0, 54.63 1.25, 775.08 | 1.24, 1556.97 | 1.24, 165642 | -, -

Table 3: Results of models that are conditioned on the target velocity, evaluated for for different
values. Reported numbers are average per-step (velocity overshoot [m/s], penalty [W]). Each row
is an average over 4 seeds. The highlighted numbers mark the best individual alpha for each target
velocity (in terms of velocity overshoot).

Target a=3e—3 a=le-3 a = 3e—4 a=le—4 Constraint
delta penalty | delta  penalty | delta  penalty | delta penalty | delta  penalty
0.0 0.0, 0.01, 116,59 | 0.17, 27245 | 0.37, 757.53 0.0, 84.07

0.1 -0.1, 5449 0.0, 158.68 | 0.21, 324.16 | 037, 6193 0.0,
0.2 -0.2, 5354 0.02, 256.68 | 0.21, 373.13 | 0.36, 627.19 0.04,
0.3 -0.3, 53.6 -0.02, 314.71 | 0.16, 336.48 | 042, 747.24 0.02,
04 -04, 54.82 -0.07, 384.94 | 0.15, 467.21 | 0.32, 870.34 0.05,
0.5 -0.5,  52.37 -0.1, 366.48 | 0.01, 594.36 | 0.27, 1026.3 0.05,
0.6 -0.6, 5236 -0.2, 686.36 | -0.07, 770.67 | 0.02, 1632.96 | -0.04,

states leads to larger changes in behavior space, where the agent oscillates between moving too slow
at a lower penalty or too fast at a higher penalty. The agent with the state-dependent multiplier tracks
the target velocity more closely, and achieves slightly lower penalties. Looking at the A values over
time in Figure 4c] we see that they are generally lower in the latter case as well.

In Table [2| we compare the reward-penalty trade-off for settings trained to achieve a fixed lower
bound on the velocity. We compare our approach to baselines where we clip the reward as
r’ (8¢, a¢) = min (7 (8¢, a;) ,7) and use a fixed coefficient « for the penalty. As there is less incen-
tive for the agent to increase the reward over 7, there is more opportunity to optimize the penalty.
Results shown are the per-step overshoot with respect to the desired target velocity and the penalty,
averaged across 4 seeds and 100 episodes each (the first 100ms is clipped to disregard transient
behavior when starting from a stand-still). We also compare to a baseline where the reward is un-
bounded, marked as oo in Table 2] In the unbounded reward case, we observe that it is difficult
to achieve a positive but moderately slow speed. Either « is too high and the agent is biased to-
wards standing still, or it is too low and the agent reaches the end of the course before the time limit
(corresponding to an average velocity of approx. 1.25m/s). For the clipped reward, we observe a
similar issue when « is set too high. In nearly all other cases, the targeted speed is exceeded by some
margin that increases with decreasing a. While there is less incentive to exceed 7, a larger margin
decreases the chances of the actual speed momentarily dropping below the target speed. Using the
constraint-based approach, we generally achieve average actual speeds closer to the target speed and
at a lower average penalty, showing the merits of adaptively trading of reward and cost.

Table [3] shows a comparison between agents are trained across varying target speeds sampled uni-
formly in [0,0.5] m/s. These agents are given the target speed as observations. The evaluation
procedure is the same as before, except we evaluate the same conditional policy for multiple target
values. We make similar observations: a fixed penalty coefficient generally leads to higher speeds
then the set target, and higher penalties. Interestingly, for higher target velocities, the actual velocity
exceeds the target less, indicating that different values for « are required for different targets. As we
learn multipliers that are conditioned on the target, we can track the target more closely, even for
higher speeds. We also evaluate these models for a target speed outside out the training range. Per-
formance degrades quite rapidly, with the constraint no longer satisfied, and at significantly higher
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Figure 5: Comparison of the constrained optimization approach with baselines using a fixed penalty.
Each data point shows the average absolute velocity delta and penalty for an agent optimized for a
specific target velocity. The different ellipse shades show one to three standard deviations, both for
the fixed (red) and the varying (blue) velocity setpoints. For each setting we train four agents. In the
fixed target case, these are different models. In the conditional target case, these are evaluations of a
single model conditioned on desired velocities.

cost. This can be explained by the way the policies change behavior to match the target speed.
Generally the speed is changed by modulating the stride length. Increasing the stride length much
further than observed during training, however, results in collisions occurring that were not present
at lower speeds, and hence higher penalties. The same observation also explains why the penalties
in the conditional case are higher than in the fixed case (final column in Table[3|vs. Table[2)), as more
distinct behaviors are needed to be optimal for each target velocity. This is likely a limitation of the
relatively simple policy architecture, and improving diversity across goal velocities will be studied
in future work.

Figure [5] extends the comparisons by plotting penalty over absolute velocity deltas for the different
approaches. The plots show that finding a suitable weighting that works for all tasks and setpoints is
difficult. While it is clear to identify values for « that are clearly too high or low, even for well-tuned
values, performance over tasks can vary. Our approach as shown in Figure[Se]is able to achieve a very
consistent performance of low velocity tracking errors and low penalty across all tests. These results
suggest, that our approach requires less problem specific tuning and is less sensitive to changes in the
task. Therefore, a constraint-based approach can greatly reduce computationally expensive hyperpa-
rameter tuning. Videos showing some of the learned behaviors, both in the fixed and conditional con-
straint case, can be found athttps://sites.google.com/view/minitauriclr2019.

5 CONCLUSION

In order to regularize behavior in continuous control RL tasks in a controllable way, we introduced
a constraint-based approach that is able to automatically trade off rewards and penalties, and can
be used in conjunction with any model-free, value-based RL algorithm. Specifically, we minimize
the penalties with respect to a lower bound on the reward value. The constraints are applied in a
point-wise fashion, for each state that the learned policy encounters, to allow for tighter control over
the learned behavior. The resulting constrained optimization problem is solved using Lagrangian
relaxation by iteratively adapting a set of Lagrangian multipliers, one per state, during training. By
learning these state-dependent Lagrangian multipliers in the critic model alongside the value esti-
mates of the policy, we can generalize multipliers to neighbouring states and efficiently and closely
track the imposed bounds. The policy and critic can furthermore generalize across lower bounds
by making the constraint value observable, resulting in a single bound-conditional RL agent that is
able to dynamically trade off reward and costs in a controllable way. We applied our approach to
a number of continuous control benchmarks and show that without some cost function, we observe
high-amplitude and high-frequency control. Our method is able to reduce the control input sig-
nificantly, sometimes without sacrificing average reward. In a simulated locomotion task with the
Minitaur quadruped, we are able to minimize electrical power usage with respect to a lower bound
on the forward velocity. We show that our method can achieve both lower velocity overshoot as well
as lower power usage for different lower bounds compared to a baseline that uses a fixed coefficient
for the penalty. We also learn a single, goal-conditioned policy that is able to move efficiently across
arange of target velocities.
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APPENDIX A: OPTIMIZATION DETAILS

General algorithm The general outline of the optimization procedure for Equation [5]is listed in
Algorithm I} The approach is compatible with any actor-critic algorithm; in the next paragraphs we
detail the methods used in this paper for policy evaluation and optimization.

Algorithm 1 Value constrained model-free control

1 given Q, (5,9, 6), Qe (5,09, 60, (561, 60 ), w(als; 00, with ",
¢ and 0 initial weights, and replay buffer D

2: repeat

3: Execute a ~ 7(a|s; 8(*)) and observe s', 7 (s, a), c(s,a)
4: Add tuple (s,a,s’,r(s,a),c(s,a)) toD
5

6

7

Sample batch B of tuples from D

Critic update:
L, (w(k) (b(k’)) =Ep [valueLoss (s,a, s’ r(s,a),Q, (s a; ) Pk )>)}
8: ( (k),gb ) =Eg [valueLoss (s a,s' c(s a),Q. (3 a; 2 Pk ))ﬂ
o Ly (4", 0®) = Eg [max (0.1 (597,60 (O (s, a9, 6®) = 1,.)]
10: > Equation , no gradient through QT
e Y06 = g0 = Ty Tietnen L (l'/’ Y.6)

12: Policy update:

13 004D =) 4y, - By |policyGradient (0%, 5.0, Qs (s,a: (1), 6 )|
14: until stopping criterion is met

15: return ¥ p(+1) and 9+1)

T, CoA

Policy Evaluation Our method needs to have access to a Q-function for optimization. While any
method for policy evaluation can be used, we rely on the Retrace algorithm (Munos et al., [2016).
More concretely, we learn the Q-function for each cost term Q; (s, a;;, ¢), where 1p;, ¢ denote
the parameters of the function approximator, by minimizing the mean squared loss:

. 2 .
IJ}IE L(wlv ¢) - IIZI)HH Eub( 5),b(als) |:(Q’L (8t7 Q] 17bl7 ¢) - Ql;et) i|’ with
J

Q' = Qi (s, a9}, ') +ZWJ t( I1 Ck) {Ti(5j7ay’)+

k=t+1 @)
]E'rr(a|sj+1) [Qz (SjJrlv a; ¢ia d))] - Q’L (Sjv a;; 1/);7 d)/) :| s
o m(ax|sk)
¢ = min (1, m),

where Q; (s, a; ¥}, ¢') denotes the output of a target Q-network, with parameters 1)}, ¢’, that we
copy from the current parameters after a fixed number of updates. Note that while the above descrip-
tion uses the definition of reward r; we learn the value for the costs analogously. We truncate the
infinite sum after IV steps by bootstrapping with 4 . Additionally, b(a|s) denotes the probabilities
of an arbitrary behaviour policy, in our case given through data stored in a replay buffer.

We use the same critic model to predict all values as well as the Lagrangian multipliers A (s, ¥y, ¢).
Following Equation[5] we hence also minimize the following loss:

in L =E, s in = Eaur : 8
min L (5, ¢) = By ) e [@Qx (s, a)] ®)
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Our total critic loss to minimize is ), L (¢;, ¢) + B - L (v, ¢), where S is used to balance the
constraint and value prediction losses.

Maximum a Posteriori Policy Optimization Given the Q-function, in each policy optimization
step, MPO use expectation-maximization(EM) to optimize the policy. In the E-step MPO finds the
solution to a following KL regularized RL objective; the KL regularization here helps avoiding pre-
mature convergence, we note, however, that our method would work with any other policy gradient
algorithm for updating 7. MPO performs policy optimization via an EM-style procedure. In the
E-step a sample based optimal policy is found by minimizing:

max E,.s) [Eq(a\s) {Qi (st a4, @) H
&)
st.E(s) [KL(q(a\s), md(a|s))] <e

Afterwards the parametric policy is fitted via weighted maximum likelihood learning (subject to
staying close to the old policy) given via the objective:

max Epucs) {E(I(als) [IOg W(a‘s)} }

(10)

5.t By s {KL(Wold(a\s),ﬂ(ab))} <e.
assuming a Gaussian policy (as in this paper) this objective can further be decoupled into mean and
covariance parts for the policy (which in-turn allows for more fine-grained control over the policy
change) yielding:

max £, [Eq(a‘s) [log 7r(a|s)”

T

0t.Cy < 6o (an
Cs, < ex
/u(s)KL(wold(a|s), m(als)) = Cy, + Csx, (12)

where

Cu:/“(S)%(tr@_lxold)—nﬂqn( > ))ds,

Yold

Cs = [ (o) 30— pota) = 1 = s,

This decoupling of updating mean and covariance allows for setting different learning rate for mean
and covariance matrix and controlling the contribution of the mean and co-variance to KL seper-
atly. For additional details regarding the rationale of this procedure we refer to the original paper
Abdolmaleki et al.|(2018)).

Hyperparameters The hyperparameters for the Q-learning and policy optimization procedure are
listed in Table 4] We perform optimization of the above given objectives via gradient descent; using
different learning rates for critic and policy learning. We use Adam for optimization.

14
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Table 4: Overview of the hyperparameters used for the experiments.

Parameter Cart-pole Humanoid Minitaur
Hidden units policy 100 — 100 | 300 — 200 | 300 — 200
Hidden units critic 200 — 200 | 400 — 300 | 300 — 200
LSTM cells - - 100
Discount 0.99 0.99 0.99
Policy learning rate le—5 le—5 le—5
Critic learning rate le—4 le—4 3e—4
Constraint loss scale (3) 1e0 1e0 le—3
Number of actors 32 32 100
E-step constraint(e) le—1 le—1 le—2
M-step constraint on 1 (€,,) le—2 le—2 le—4
M-step constraint on X (ex) le—5 le—5 le—6

APPENDIX B: MINITAUR SIMULATION DETAILS

Table 5: Overview of the different model variations and noise models in the Minitaur domain.
N (11, 0) is the normal distribution, Lognormal (u, ) the corresponding log-normal. i (a, b) is the
uniform distribution and B (p) the Bernouilli distribution.

Parameter Sample frequency Description
Body mass episode global scale ~ Lognormal (0,0.1), with scale
for each separate body ~ Lognormal (0,0.02)
Joint damping episode global scale ~ Lognormal (0,0.1), with scale
for each separate joint ~ Lognormal (0,0.02)
Battery voltage episode global scale ~ Lognormal (0,0.1), with scale
for each separate motor ~ Lognormal (0, 0.02)
IMU position episode offset ~ N (0, 0.01), both cartesian and angular
Motor calibration episode offset ~ N (0,0.02)
Gyro bias episode N (0,0.001)
Accelerometer bias episode N (0,0.01)
Terrain friction episode U (0.2,0.8)
Gravity episode scale ~ Lognormal (0, 0.033)
Motor position noise time step N (0,0.04), additional dropout ~ 55 (0.001)
Angular position noise time step N (0,0.001)
Gyro noise time step N (0,0.01)
Accelerometer noise time step N (0,0.02)
Perturbations time step Per-step decay of 5%, with a chance ~ 53 (0.001)
of adding a force ~ N (0, 10) in any planar di-
rection
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