
Published as a conference paper at ICLR 2018

IMPROVING THE UNIVERSALITY AND LEARNABIL-
ITY OF NEURAL PROGRAMMER-INTERPRETERS WITH
COMBINATOR ABSTRACTION

Da Xiao1,2, Jo-Yu Liao2, Xingyuan Yuan2

1School of Cyberspace Security, Beijing University of Posts and Telecommunications, China
2ColorfulClouds Technology Co., Ltd, Beijing, China
xiaoda99@gmail.com, {liaoruoyu,yuan}@caiyunapp.com

ABSTRACT

To overcome the limitations of Neural Programmer-Interpreters (NPI) in its uni-
versality and learnability, we propose the incorporation of combinator abstraction
into neural programing and a new NPI architecture to support this abstraction,
which we call Combinatory Neural Programmer-Interpreter (CNPI). Combinator
abstraction dramatically reduces the number and complexity of programs that need
to be interpreted by the core controller of CNPI, while still allowing the CNPI to
represent and interpret arbitrary complex programs by the collaboration of the core
with the other components. We propose a small set of four combinators to capture
the most pervasive programming patterns. Due to the finiteness and simplicity of
this combinator set and the offloading of some burden of interpretation from the
core, we are able construct a CNPI that is universal with respect to the set of all
combinatorizable programs, which is adequate for solving most algorithmic tasks.
Moreover, besides supervised training on execution traces, CNPI can be trained
by policy gradient reinforcement learning with appropriately designed curricula.

1 INTRODUCTION

Teaching machines to learn programs is a challenging task. Numerous models have been pro-
posed for learning programs, e.g. Neural Turing Machine (Graves et al., 2014), Differentiable
Neural Computer (Graves et al., 2016), Neural GPU (Kaiser & Sutskever, 2015), Neural Program-
mer (Neelakantan et al., 2015), Neural Random Access Machine (Kurach et al., 2015) and Neural
Programmer-Interpreter (Reed & de Freitas, 2016). These models are usually equipped with some
form of memory components with differentiable access. Most of these models are trained on pro-
gram input-output pairs and the neural network effectively learns to become the particular target
program, mimicking a particular Turing machine.

Of these models one notable exception is Neural Programmer-Interpreters (NPI) (Reed & de Freitas,
2016) and its extension that supports recursion (Cai et al., 2017) (referred to in this paper as RNPI).
NPI has three components: a core controller that is typically implemented by a recurrent neural net-
work, a program memory that stores embeddings of learned programs, and domain-specific encoders
that enable a single NPI to operate in diverse environments. Instead of learning any particular pro-
gram, the core module learns to interpret arbitrary programs represented as program embeddings,
mimicking a universal Turing machine. This integration of the core (interpreter) and a learned pro-
gram memory (programmer) offers NPIs with better flexibility and composability by allowing the
model to learn new programs by combining subprograms. Despite these merits, the NPI model bears
some theoretical and practical limitations that hinder its application in real world problems.

One hypothetical theoretical property of the NPI model that makes it appealing for multi-task, trans-
fer, and life-long learning settings is its universality, i.e. the capability to represent and interpret any
program. As the NPI relies solely on the core to interpret programs, universality requires a fixed core
to interpret potentially many programs. A universal fixed core is critical for learning and re-using
learned programs in a continual manner, because a core with changing weights may fail to interpret
old learned programs after learning new ones. Although the original NPI paper shows empirically

1

Published as a conference paper at ICLR 2018

that a single shared core can interpret 21 programs to solve five tasks, and that a trained NPI with
fixed core can learn a new simple program MAX, it is unclear whether a universal NPI exists or
how universal it could be. Specifically, given the infinite set of all possible programs, the subset of
programs that can be interpreted by a fixed core is not explicitly defined. Even though a universal
NPI exists, it may still be intractable to provable guarantee of universality by the verification method
proposed in Cai et al. (2017), because there may be infinite programs to verify.

Practically, as proposed in Reed & de Freitas (2016), the training of an NPI model relies on a very
strong form of supervision, i.e. the example execution traces of programs. This form of training
data is typically more costly to obtain than input-output examples. Training with weaker form of
supervision is desirable to unlock NPI’s full potential.

In this paper, we propose to overcome these limitations of NPI by incorporating combinator abstrac-
tion into the NPI model and augmenting the original NPI architecture with necessary components
and mechanisms to support this abstraction. We refer to this new architecture as the Combinatory
Neural Programmer-Interpreter (CNPI). As an important abstraction technique in functional pro-
gramming, combinators, a.k.a. higher-order functions, are used to express some common program-
ming patterns shared across different programs. We find that combinator abstraction can dramati-
cally reduce the number and complexity of programs (i.e. combinators) that need to be interpreted
by the core, while still allowing the CNPI to represent and interpret arbitrary complex programs by
the collaboration of the core with the other components. We propose a small set of four combina-
tors to capture four most pervasive programming patterns. Due to the finiteness and simplicity of
this combinator set and the offloading of some burden of interpretation from the core, we are able
construct a CNPI with a fixed core that can represent and interpret an infinite number of programs
which is adequate for solving most algorithmic tasks. This CNPI is universal with respect to the set
of all combinatorizable programs. Moreover, we show empirically that besides supervised training
on execution traces, it is possible to train the CNPI by policy gradient reinforcement learning with
appropriately designed curricula.

2 OVERVIEW OF COMBINATOR ABSTRACTION

2.1 REVIEW OF NPI WITH ITS LIMITATIONS

In this section, we give a brief review of the NPI architecture from Reed & de Freitas (2016) and
Cai et al. (2017). Then we analyze its limitations to motivate our combinator abstraction. The
NPI model has three learnable components: a task-agnostic core controller, a program memory, and
domain-specific encoders that allow the NPI to operate in diverse environments. The core controller
is a long short-term memory (LSTM) network (Hochreiter & Schmidhuber, 1997) that acts as a
router between programs. At each time step, the core can decide either to select another programs
to call with certain arguments, or to end the current program. When the program returns, control is
returned to the caller by popping the callers LSTM hidden units and program embedding off of a
program call stack and resuming execution in this context.

NPI’s inference procedure is as follows (see Section 3.1 and Algorithm 1 in Reed & de Freitas
(2016) for more detail). At time step t, an encoder fenc takes in the environment observation et
and arguments at and generates a state st. The core LSTM flstm takes in the state st, a program
embedding pt ∈ RP and the previous hidden state ht−1 to update its hidden state ht. From the
top LSTM hidden state several decoders generate the following outputs: the return probability rt,
the next program’s key embedding kt+1, and the arguments to the next program at+1. The next
program’s ID is obtained by comparing the key embedding kt+1 to each row of key memory Mkey .
Then the program embedding is retrieved from program memory Mprog holding N programs as:
i∗ = arg maxj=1..N (Mkey

j)T kt+1 , pt+1 = Mprog
i∗ .

The above-described NPI architecture bears two limitations. First, as shown in the above equation,
at each time step, a decision must be made by the core to select the next program to call out of
all N currently learned programs in the program memory. As N grows large, e.g. to hundreds or
thousands, interpreting programs correctly becomes a more and more difficult task for a single core.
What makes things worse is that the core has to learn to interpret new programs without forgetting
old ones. Second, it is common that programs with different names and functionalities share some
common underlying programming patterns. We take two programs used in Reed & de Freitas (2016)

2

Published as a conference paper at ICLR 2018

Encoder memory

ADD:

 if A[P2] ≠END do
 ADD1
 LSHIFT
 ADD

BSTEP:

 if A[P2] ≠END do
 COMPSWAP
 RSHIFT
 BSTEP

linrec(c?; self, a1, a2):
 if c? do
 a1(...)
 a2(...)
 self(c?;self,a1,a2)

ADD-APPLIER:
 linrec(

 c?=A[P2] ≠END?,
 a1=ADD1,
 a2=LSHIFT)

BSTEP-APPLIER:
 linrec(

 c?=A[P2] ≠END?,
 a1=COMPSWAP,
 a2=RSHIFT)

xxx-APPLIER:

 linrec(…)

seq(...):

cond(...):

treerec(...):

XXX:

=

=

= ...
...

Encoder1

…
 …

 in
terp

ret …
 …

Monolithic
Core

…
Encodern

Limited combinator
memory

Unlimited program
memory

Small
Core

in
terp

ret

A[P2] ≠END?
A[P1] <A[P2]?

…

+

+

+

Conventional NPICombinatory NPI

...
...

Unlimited applier
memory

Figure 1: NPI with combinator abstraction.

and Cai et al. (2017) as example (see Figure 1): the ADD1 program in grade school addition, and
the BSTEP program to perform one pass of bubble sort. We use their recursive forms described in
Cai et al. (2017). The two programs share a very common looping pattern. However, the core needs
to learn each of these programs separately without taking any advantage of their shared patterns.
The total number of programs that need to be learned by the core thus become infinite. We argue
that these two limitations make it very challenging, if not impossible, to construct a universal NPI.

2.2 OUR APPROACH USING COMBINATOR ABSTRACTION

To overcome the limitations of the NPI, we propose to incorporate combinator abstraction into the
NPI architecture. In functional programming, combinators are a special kind of higher-order func-
tions that serve as power abstraction mechanisms, increasing the expressive power of programming
languages. We adapt the concept to neural programming and make it play the central role in improv-
ing the universality of NPI.

Conceptually, a combinator is a “program template” with blanks as formal arguments that are
callable as subprograms. An actual program can be formed by wrapping a combinator with an-
other program called an applier, which invokes the combinator and passes the actual arguments to
be called when executing the combinator. Alternatively, an applier applies a combinator to a set
of actual programs as callable arguments. Note that the callable arguments themselves can also be
wrapped programs (i.e. appliers), and programs with increasing complexity can thus be built up. As
in the original NPI, the interpretation of a combinator is conditioned on the output of a lightweight
domain-specific encoder which we call an detector. It is also provided on the fly by the applier.
Figure 1 illustrates the usage of combinator abstraction in the NPI architecture.

In the CNPI architecture, combinators are the only type of programs that need to be interpreted by
the core. By prohibiting a combinator to call programs other than those passed to it as arguments, the
selection range for next program to call at each time step is reduced from a growing N to a constant
K, which is the maximum number of arguments for combinators (≤ 9 in our proposed model).
Meanwhile, compared to the infinity of all possible programs, the number of useful combinators is
finite and typically small. In practice, we construct a small set of four combinators to express four
most pervasive programming patterns. Therefore, the core only needs to interpret a small number
of simple programs. We will show that a quite small core suffices for this job, and that by the
collaboration of this core and the other components a universal CNPI can be constructed.

3 COMBINATORY NPI MODEL

3.1 COMBINATORS AND COMBINATORY PROGRAMS

We propose a set of four combinators to express four most pervasive programming patterns for
algorithmic tasks: sequential, conditional, linear recursion and tree recursion (i.e. multi-recursion).
The pseudo-code for these combinator are shown in Figure 2. Each combinator has four callable
arguments self , a1, a2 and a3 and one detector argument c?. self is a default argument referring

3

Published as a conference paper at ICLR 2018

to the combinator itself and is used for recursive call. For linrec and treerec, we give more readable
aliases to a1, a2 and a3 to hint their typical roles. The detector argument detects some condition (e.g.
a pointer P2 reaching the end of array) in the environment and provides signals for the combinator
to condition its execution. It outputs 0 if the condition satisfies, otherwise 1. For seq a default blind
detector is passed, which always outputs 0. Although not directly callable, detectors can also be
viewed as programs “running in background” as perception modules. In this paper, the conditions to
detect is often used to name detectors and we append a ‘?’ to their names to differentiate them from
callable programs. Like primitive actions (ACTs), we could also define primitive detectors (DETs)
for specific tasks. Note that this combinator set is by no means unique or minimal. They take their
current forms mainly for ease of use and learning.

sequential pattern
def seq(c?; self,
 a1, a2, a3):
 a1()
 a2()
 a3()

conditional pattern
def cond(c?; self,
 a1, a2, a3):
 if c?():
 a1()
 a2()
 else:
 a3()

linear recursion pattern
def linrec(divisible?/c?; self,
 do/a1, next/a2, base/a3):
 if divisible?():
 do()
 next()
 self(divisible?; self,
 do, next, base)
 else:
 base()

tree recursion pattern
def treerec(divisible?/c?; self,
 pre/a1, divide/a2, post/a3):
 if divisible?():
 pre()
 _push_sentinel()
 divide()
 _mapself(divisible?; self,
 pre, divide, post)
 post()

Figure 2: Pseudo-code for the set of combinators.

The four combinators are classified into two categories. seq, cond and linrec are basic combina-
tors, which only call their callable arguments during execution. treerec is an advanced combina-
tor. Besides callable arguments, an advanced combinator can also call built-in programs, such as
push sentinel and mapself in treerec. These built-in programs are used to facilitate multiple re-

cursive calls to self in treerec combinator. Basically, divide prepares states necessary for each
recursive call and push these states to a stack. The built-in combinator mapself shares a similar
structure with linrec. It loads the states one by one from the stack and makes the recursive call with
each state until a sentinel is met (The sentinel is pushed to the stack before divide by push sentinel,
which is a built-in ACT). More details on built-in programs and treerec are given in Appendix A,
and examples of using them can be found in Appendix B.

We now describe how to compose combinator programs using combinators by taking the BSTEP
program (i.e. one pass of bubble sort) as example. The normal and combinatory version of the
program are shown in Figure 3 (a) and (b) respectively. Recall that an applier applies a combinator
to a set of actual programs (ACTs or other predefined appliers) to form a new actual program.
Composing a combinatory program amounts to defining appliers iteratively. As shown in Figure 3
(c), during the execution of a combinatory programs, combinators and appliers call each other to
form an alternating call sequence until reaching a ACT. Combinators, appliers and detectors are all
highly constrained programs, and thus are all easily interpretable and learnable. Nevertheless, they
can collaborate to build arbitrarily complex programs.

def COMPSWAP:
 if A[P1]>A[P2]:
 SWAP_12
def RSHIFT:
 P1_RIGHT
 P2_RIGHT
def BSTEP:

 if A[P2]≠END:
 COMPSWAP
 RSHIFT
 BSTEP

def COMPSWAP:
 cond(A[P1]>A[P2]?;
 SWAP_12, NOP, NOP)
def RSHIFT:
 seq(; P1_RIGHT, P2_RIGHT)
def BSTEP:

 linrec(A[P2]≠END?;
 COMPSWAP, RSHIFT, NOP)

BSTEP
 linrec(..)
 a1->COMPSWAP
 cond(..)
 a1->SWAP_12
 a2->RSHIFT
 seq(..)
 a1->P1_RIGHT
 a2->P2_LEFT
 self->linrec(..)
 a1->COMPSWAP

 …

Combinators Appliers

Primitive actions

single call multiple calls

Detectors

condition

(a) Normal program. (b) Combinatory program. (c) Trace of combinatory

program.

(d) Interaction between

programs and detectors.

call self

Figure 3: Example combinatory program of BSTEP. NOP is special ACT which does nothing.

4

Published as a conference paper at ICLR 2018

3.2 CNPI ARCHITECTURE AND ALGORITHM

Having introduced combinators and how to use them to compose combinatory programs, we now
describe how these programs are interpreted by the CNPI and the necessary augmentations to the
original NPI architecture to enable the interpretation. The complete inference procedure for CNPI
is given in Algorithm 1. An example execution of the BSTEP program is illustrated in Figure 4.

Appliers are effectively one-line programs that apply a program prog, which could be either a com-
binator or an ACT, to a set of arguments. To interpret an applier appl we just need to identify the
program to be called and its arguments, prepare environment for the invocation, and make the invo-
cation. For easy of interpretation, we propose to store the key embeddings of prog and its detector
and callable arguments c?, a1, a2 and a3 directly in the applier’s program embedding pappl:

pappl = kprog|kc?|ka1|ka2|ka3 (1)

where | denotes concatenation 1. We use a fixed parser to extract the key embeddings from the ap-
plier’s embedding. Then the combinator or ACT ID i is computed by comparing the key kprog with
each row of memory Mkey and finding the best match. The callable arguments’ IDs are computed
similarly. In CNPI architecture, the models for detectors are stored in a detector memory (W key ,
Wweight) which has the same key-value structure as the program memory. The detector argument
ID i′ is computed by comparing kc? to each row of Wkey . Note that the core LSTM does not partic-
ipate in the interpretation of appliers. As the format for storing these key embeddings is predefined,
the fixed parser can parse any applier’s embedding.

We use a dynamically constructed data structure called a frame to pass arguments to a combinator.
Each frame is a table of K bindings which associate formal callable arguments with their corre-
sponding actual IDs, with K the number of callable arguments for combinators. When calling a
combinator, a new frame is created. The IDs of the combinator’s callable arguments (including the
combinator’s ID i as it corresponds to the self argument) are filled into the frame 2. In practice we
do not use a key-value structure for frames. Instead the frame only stores values, i.e. the arguments’
IDs in a fixed order of self , a1, a2 and a3.

The interpretation of combinators is in general similar to the inference procedure in Algorithm 1
in Reed & de Freitas (2016). Here we highlight several key differences. In the initialization stage,
besides retrieving combinator embedding from the program memory, the detector model is also
loaded from the detector memory. Then instead of using the combinator embedding as input to
the LSTM at every time step, we use it to initialize the LSTM’s state, i.e. each layer’s hiddens
and cells. We find empirically that this parameterization has better efficiency and accuracy for our
combinators; see Section 5.1. The second difference is that we binarize the output of detector fdet
to get a binary condition c before feeding it to the LSTM:

c← 1(fdet(e) ≥ β) , h← flstm(c, h) (2)

where 1() is an indicator function. This operation effectively decouples the detector from the core
LSTM. This enables us to verify the core’s behaviors separately without considering any specific
detectors, given that the correct condition is provided. This is difficult to achieve in the original NPI
architecture where the core is trained jointly with the encoders.

The third and most important difference is on how the next subprogram to call is computed. We
use a decoder fprog to compute a score vector S ∈ RK to assign a score for each formal callable
argument. The argument with the maximum score is selected and its actual program ID is retrieved
from the frame F . This ID is used in turn to retrieve the program embedding from the program
memory Mprog when the next program is executed:

z∗ = arg max
j=1..K

Sj , i
∗ ← F [z∗] , pt+1 = Mprog

i∗ (3)

where K is the maximum number of callable arguments for combinators. We consider this indirec-
tion of subprogram embedding retrieval, together with the dynamic binding of formal arguments to
actual programs in the frames, to be the key to the superior universality and learnability of CNPI.

1For the seq combinator and ACTs which do not need detector arguments, the blind detector’s key embed-
ding is stored. For ACTs with arguments the arguments’ values are stored in place of the key embeddings.

2If the combinator is treerec, the IDs of built-in programs also need to be appended to the end of the frame
in a predefined order. In this case the frame’s size is K +B, with B the total number of built-in programs.

5

Published as a conference paper at ICLR 2018

When calling the subprogram the same detector ID and frame are re-used, which is equivalent to
passing the combinator’s arguments to all of its subprograms. This facilitates recursion as these
arguments are needed by linrec and treerec when calling self (see Figure 2). For other subprogram
calls to appliers or ACTs, these arguments are safely ignored.

Algorithm 1 Combinatory neural programming inference

1: Inputs: Environment observation e, program ID i, detector ID i′, frame F , stop threshold α, condition
threshold β, number of arguments (including self) K for combinators

2: function RUN(i, i′, F)
3: r ← 0, p←Mprog

i

4: if p is an applier then
5: i2, i

′
2, a2 ← PARSE(p) . Get the next program to run with its detector and args.

6: F2 ← FRAME(K), F2[1]← i2 . New an empty frame and fill in self arg.
7: for j = 1 to K − 1 do F2[j + 1]← a2[j] . Fill in the other args.
8: RUN(i2, i′2, F2) . Run subprogram i2 with detector i′2 and frame F2.
9: FREE(F2) . Free frame F2’s space.

10: else if p is a combinator then
11: fdet ←Wweight

i′ , h← p . Load detector from detector memory and init LSTM.
12: while r < α do
13: c← 1(fdet(e) ≥ β), h← flstm(c, h) . c is a binary condition.
14: r ← fend(h), S ← fprog(h) . S is a K-dim score vector.
15: z2 ← argmaxj=1..K Sj . Decide the argument ID of the next program to run.
16: i2 ← F [z2] . Retrieve the ID of the next program to run from frame.
17: RUN(i2, i′, F) . Run subprogram i2 with the same detector and frame.
18: else . p is a primitive action.
19: a← F [2 : K], e← fenv(e, p, a) . Unpack args from F and do the action.
20:
21: function PARSE(p) . Helper function for interpreting appliers.
22: k, k′, a← SPLIT(p) . Get program, detector and arg keys from applier embedding.
23: i← argmaxj=1..N (Mkey

j)T k, i′ ← argmaxj=1..M (W key
j)T k′ . Program key to id.

24: if i is not a primitive action then
25: for j = 1 to K − 1 do a[j]← argmaxj′=1..N (Mkey

j′)T a[j] . Arg keys to IDs.

26: return i, i′, a

self

a1

a2

a3

linrec
COMP
SWAP

RSHIFT

NOP

h

R:0ARG

C:0

W[A[P2]≠
END?]

parser

NOP
SWAP

M[COMPSWAP]

NOP
cond

A[P1]<
A[P2]?

self

a1

a2

a3

cond

SWAP

NOP

NOP

h

R:1ARG

C:0

W[A[P1]>
A[P2]?] SWAP

self

a1

a2

a3

linrec
COMP
SWAP

RSHIFT

NOP

h

R:0ARG

C:0

W[A[P2]≠
END?]

parser

P2→
P1→

M[RSHIFT]

NOP
seq BLIND self

a1

a2

a3

seq

P1→

P2→

NOP

h

R:0ARG

C:0

W[BLIND] P1

self

a1

a2

a3

seq

P1→

P2→

NOP

h

R:1ARG

C:0

W[BLIND]

self

a1

a2

a3

linrec
COMP
SWAP

RSHIFT

NOP

h

R:1ARG

C:0

W[A[P2≠
END?]

self

a1

a2

a3

linrec
COMP
SWAP

RSHIFT

NOP

h

R:1ARG

C:1

W[A[P2≠
END?]

M[linrec]

M[lin
rec]

M[cond] M[seq]

2 86 E3

P1 P2

cond A[P1]>A[p2]?
SWAP NOP

2 86 E3

P1 P2

linrec A[P2]≠END?
COMPSWAP RSHIFT

2 86 E3

P1 P2

COMPSWAP

2 36 E8

P1 P2

SWAP

2 36 E8

P1 P2

seq P1_RIGHT
P2_RIGHT

2 36 E8

P1 P2

linrec A[P2]≠END?
COMPSWAP RSHIFT

2 36 E8

P1 P2

RSHIFT

2 36 E8

P1P2

P1 RIGHT

RIGHT

2 36 E8

P1 P2

linrec A[P2]≠END?
COMPSWAP RSHIFT

2 36 E8

P1P2

seq P1_RIGHT
P2_RIGHT

2 36 E8

P1 P2

P2 RIGHT

2 36 E8

P1 P2

linrec A[P2]≠END?
COMPSWAP RSHIFT

P2 RIGHT

restore h

save prev h

save prev h

restore h

Frame

identical
frame

save prev h

Figure 4: Example execution of the combinator BSTEP program. SWAP, P1 RIGHT and P2 RIGHT
are in fact appliers which need to be parsed as COMPSWAP and RSHIFT. We omit this step and
treat them as ACTs in the figure for brevity.

6

Published as a conference paper at ICLR 2018

3.3 TRAINING

CNPI has four components: the core, the program (combinator and applier) memory, the detector
memory, and the parser, of which the first three are learnable. The combinators are trained jointly
with the core. Detectors and appliers are trained separately.

Supervised learning (SL) of CNPI uses execution traces of combinatory programs. A single element
of an execution trace consists of a step input-step out pair, which takes one of the two forms: ξcombt :

{et, it} → {ct, zt+1} for combinator execution and ξapplt : {it} → {it+1, i
′
t+1, at+1} for applier

execution. zt+1 is the formal callable argument ID to be called by the applier at time step t + 1.
ct is the correct condition at time step t and is used as the output target for detectors. it+1 and rt
provide targets for the core. Detectors and the core are trained on the ξcombt elements of the trace,
using stochastic gradient ascent to maximize the likelihood of their corresponding targets.

∆w ∝
T∑
t=1

(∇w log pw(ct | et)) , ∆θ ∝
T∑
t=1

(∇θ log pθ(it+1 | ct) +∇θ log pθ(rt | ct)) (4)

where w are parameters of the detector model, θ are the collective parameters of the core and the
combinator embedding, T is the length of the sequence of ξcombt elements. The probability p(it+1 |
ct) of calling subprogram i is computed by applying a softmax to the scores produced by fprog:
p(it+1 | ct) = exp s(it+1 | ct)/

∑
j exp s(jt+1 | ct). In SL the applier embeddings do not need to

be trained; they are just generated from ξapplt elements of the trace according to equation (1).

CNPI can also be trained by policy gradient reinforcement learning (RL) 3. No execution trace is
given and the core tries to complete the task by making program calls following the probabilities
p(it+1 | ct) and feeding-forward the LSTM. An episode ends if the task is completed or the number
of steps reaches MAX NSTEP. In our experiments, MAX NSTEP = K · n, where K is the number
of callable arguments for combinators, n is the complexity of the problem to be solved. A reward
RT is given when an episode ends at step T :

RT =

{
+1− 0.1× T if task is completed
−1− 0.1× T otherwise

(5)

At each time step t, a condition c̃t is sampled from a Bernoulli distribution defined by the output
of the detector. The next program to be called is identified as F [̃it+1], where ĩt+1 is sampled from
{p(it+1 | c̃t)}. The core is trained using stochastic gradient ascent on a mixed objective with two
parts: an RL objective of maximizing expected reward, plus an SL objective of maximizing the
likelihood of correct flag of program return:

∆θ ∝
T∑
t=1

(∇θ log pθ (̃it+1 | c̃t)RT +∇θ log pθ(rt | c̃t)1(RT > 0)) (6)

The RL objective is derived from the REINFORCE algorithm (Williams, 1992). Note that the SL
objective only takes effect on episodes where a positive reward is received on task completion. This
combination of RL and SL objectives to optimize a policy is also used in Oh et al. (2017) to learn
parameterized skills. The detector is also trained to maximize expected reward using REINFORCE:

∆w ∝
T∑
t=1

(∇w log pw(c̃t | et)RT) (7)

Once the detector and the core have been learned, applier embeddings can also be learned using RL.
After the program ĩ is called with detector and callable arguments ĩ′ and ãj , j = 1..K − 1, a reward
R ∈ {−1,+1} is given according to whether the task has been completed. The applier embedding
parameterized by φ is updated as:

∆φ ∝ ∇φ

log pφ(̃i) + log pφ(ĩ′) +

K∑
j=1

log pφ(ãj)

R (8)

3In this paper we only train CNPI by RL on tasks that can be solved by the three basic combinators.

7

Published as a conference paper at ICLR 2018

where the identifiers ĩ, ĩ′ and ãj are sampled respectively from the distributions derived from
the corresponding keys stored in the applier’s embedding: ĩ ∼ softmax(Mkeykprog), ĩ′ ∼
softmax(Wweightkc?), ãj ∼ softmax(Mkeykaj), j = 1..K − 1.

Note that in both SL and RL, detectors are trained separately from the core. This decoupling facili-
tates the sharing of detectors across programs and the verification of the behavior of the core.

4 ANALYSIS

Training CNPI with SL to solve algorithmic tasks consists of three steps. First, train and verify the
core jointly with the combinators with synthetic abstract traces, i.e. sequences of ξcombt elements
corresponding to the correct invocation of formal callable arguments given conditions (a total of
11 traces for the four combinators). After having been verified for correct behavior, the core and
the combinator embeddings are fixed. This step is done only once before solving any specific task.
Second, for a new task, identify the conditions needed to solve the task, train and verify detectors
to detect these conditions, and then add them to the detector memory. Finally, iteratively define
appliers from the bottom up by adding them to the program memory with program embeddings set
according to equation (1) given ξapplt elements of the traces, and call the topmost applier to solve
the task. We state the universality of CNPI with the following theorem and proposition:

Theorem 1. If 1) the core along with the program embeddings of the set of four combinators and
the built-in combinator mapself are trained and verified before being fixed, and 2) the detectors for
a new task are trained and verified, then CNPI can 1) interpret the combinatory programs of the
new task correctly with perfect generalization (i.e. with any input complexity) by adding appliers to
the program memory, and 2) maintain correct interpretation of already learned programs.

Proposition 1. Any recursive program is combinatorizable, i.e., can be converted to a combinatory
equivalent.

Theorem 1 states that CNPI is universal with respect to the set of all combinatorizable programs
and that appliers can be continually added to the program memory to solve new tasks. Proposition
1 shows that this set of programs is adequate for solving most algorithmic tasks, considering that
most, if not all, algorithmic tasks have a recursive solution. We prove Theorem 1 in Appendix C. For
Proposition 1, instead of giving a formal proof, we propose a concrete algorithm for combinatorizing
any program set expressing an recursive algorithm in Appendix B.

We argue that universality is a property harder to achieve than the generalization property discussed
in Cai et al. (2017), which provides provable guarantees of perfect generalization for several pro-
grams. However, the authors did not consider the problem of universality with a fixed core. In
fact, although RNPI can be trained on a particular task and verified for perfect generalization, after
training on a new task causing changes to the parameters of the core, the property of perfect gener-
alization on old tasks may not hold any more. In contrast, CNPI provides both generalization and
universality. Table 1 qualitatively compares CNPI with NPI and RNPI.

Table 1: Qualitative comparison of CNPI with NPI and RNPI.

Model provable
perfect

generalization

provable
universality

verifications of # trainings of
programs /

combinators
encoders /
detectors

programs /
combinators

encoders /
detectors

NPI × × − − per task per task
RNPI X × per task per task per task per task
CNPI X X once per condition once per condition

Due to the decomposition of programs into combinators and appliers, and the decoupling of detec-
tors from the core, we can verify the perfect generalization of a particular program using much fewer
test inputs than RNPI. For example, to verify the perfect generalization of bubble sort with RNPI we
need 2078 test inputs for 6 subprograms while with CNPI we need only 123 for 4 detectors.

8

Published as a conference paper at ICLR 2018

5 EXPERIMENTS

While the previous section analyzes the universality of CNPI, this section shows results on the
empirical evaluation of its learnability via both SL and RL experiments. We mainly report results
on learning the core and the combinators, assuming that detectors for the tasks have been trained.
Learning a detector in our CNPI architecture is a standard binary classification problem, which can
be trivially solved by training a classifier.

To evaluate how CNPI improves learnability over the original NPI architecture, in some experiments
we use the RNPI model as a baseline. It has the same architecture as NPI and allows recursive calls.
For a CNPI withK callable arguments (denoted as CNPI-K), we construct a counterpart RNPI with
K ·n existing actual programs (either composite programs or ACTs) in the program memory as base
programs (denoted as RNPI-Kxn). These base programs are divided into n sets corresponding to
n different tasks (e.g. grade school addition and bubble sort). Then new programs are learned over
each set by calling the correspondingK base programs as subprograms. Note that some of these new
programs may share same patterns (e.g. ADD1 and BSTEP, we call them isomorphic programs),
but in RNPI they are treated as different programs and the core needs to learn all of them. For fair
comparison, the counterpart RNPI uses the same detector as the CNPI.

For all experiments, we used a one-layer LSTM for the core. We trained the CNPI using plain SGD
with batch size 1, and learning rate of 0.5 and 0.1 for SL and RL experiments respectively. For
the SL experiments, the learning rate was decayed by a factor of 0.1 if prediction accuracy did not
improve for 10 epochs.

5.1 SUPERVISED LEARNING RESULTS

We found that, as expected, a CNPI can be trained to learn the set of four combinators using synthetic
abstract traces without any difficulty. From Section 4 we know that this CNPI is able to learn
all combinatorizable programs (including the four in Appendix B) with perfect generalization. To
further stress the learning capacity of the core, we enlarge the small set of four combinators to a full
set of all possible combinators with the following two constraints: 1) branching can only happen at
the beginning of the execution; 2) call to the self argument, i.e. recursive call, can only be made
at the end of the execution (i.e. only tail recursion is allowed). For K = 4, this full set has 57
combinators (including the three basic combinators).

Cores with different number of LSTM cells were trained to learn this full set of combinators. We
compare two methods of feeding the combinators embedding to the core LSTM: use the embedding
as input to the LSTM at every time step (Emb-as-Input), as is done in Reed & de Freitas (2016), and
using it as the initial state (i.e. hiddens and cells) of the LSTM (Emb-as-State0). For both methods
the combinator embedding size is set to be equal to the LSTM size. Note that the Emb-as-State0
model has fewer parameters than Emb-as-Input with the same number of cells. We also trained a
sequence-to sequence model from Sutskever et al. (2014) where an encoder LSTM takes in the text
code representation of the combinator (a simplified version of the pseudo-code in Figure 2) and the
last state of the encoder is used as the combinator embedding to initialize the core LSTM’s state.
This seq2seq model can be seen as a miniature of an instruction-to-action architecture. We see in
Figure 5 that the Emb-as-State0 model achieves better prediction accuracy than the Emb-as-Input
model with the same size. Particularly, the Emb-as-State0 model with only 5 cells can learn all the
57 combinators with 100%. This LSTM is much smaller than the one used in Reed & de Freitas
(2016) which has two layers of size 256. The seq2seq model can also achieve 100% accuracy with
7 cells. In subsequent experiments we used a core LSTM of size 16 if not mentioned otherwise.

We compare the abilities of CNPI and RNPI to learn new combinators/programs with a fixed core.
The models were first trained on a combinator/program set to get 100% accuracy, then trained on
a new set with the core fixed. Finally the models were tested on the old set to see if they are still
remembered by the models. For the CNPI-4 model the old and new combinators were generated
by a random even split of the full combinator set. For the RNPI-4x2 model with two sets of base
programs, we constructed a full set of all possible composite programs for each set of base pro-
grams, as with combinators. Then old and new programs were randomly sampled from the two sets
respectively. Note that the old and new programs generated this way have certain proportion of iso-
morphic programs, and this proportion grows with the percentage of random sampling. In the RNPI

9

Published as a conference paper at ICLR 2018

1 2 3 4 5 6 7 8 9
LSTM cells

0.2

0.4

0.6

0.8

1.0

A
cc
u
ra
cy

Prediction accuracy vs. # LSTM cells

CNPI-4, CombEmb-as-Input

CNPI-4, CombEmb-as-State0

Seq2Seq

Figure 5: Prediction accuracy on the
full combinator set with 4 callable ar-
guments.

Model Old / New set Train
old

Train
new w/

fixed core

Test
old

RNPI-4x2 50% full set 1 /
50% full set 2

100 > 90 12.9
100 > 97 3.3

100% full set 1 /
100% full set 2

100 > 90 6.5
100 > 97 1.7

CNPI-4 50% full set /
the other 50% 100 97.7 100

Table 2: % accuracy of learning new programs/combi-
nators and remembering old ones with a fixed core. The
maximum accuracy obtained when training on new set
are 100% and 97.7% for RNPI and CNPI respectively.

experiment, the program key embeddings need to be learned jointly with the program embeddings,
otherwise the model would not be able to learn the new programs. As shown in Table 2, although
both models can be trained on the new set with high accuracy, when tested on old ones, RNPI shows
catastrophic forgetting, which becomes more severe as there are more isomorphic programs between
the old and new set. In contrast, CNPI remembers old combinators perfectly.

5.2 REINFORCEMENT LEARNING RESULTS

We find that curriculum learning is necessary for training CNPI with RL. Table 3 shows the curricu-
lum we used for training CNPI for the sorting task. For each subtask, the programs to be learned
(including detectors) are bolded and colored. The curriculum has two stages. In the first stage, the
combinators were trained with simple auxiliary tasks, using ACTs and DETs as arguments. The
learned combinators are then used as prerequisite for solving the actual tasks. The tasks for each
combinator is designed to ensure that the task will be completed if and only if the combinator is
correctly executed as defined in Figure 2. In the second stage, detectors and appliers can be learned
in two forms: we can either define a sketch for solving the task (similar to the policy sketches in
Andreas et al. (2017)), with some learnable arguments (as in the Compare and swap and Output max
tasks), or learn an applier to solve the task using already learned arguments (as in the Sort task). Note
that for brevity we define some appliers for resetting pointers directly without any learning after at
the end of Stage 1. In fact, they could also be learned the same way as the appliers in Stage 2.

Though being quite simple programs, we find that the three basic combinators are still difficult to
learn with plain policy gradient RL, even with the curriculum. To facilitate learning. we use the
adaptive sampling technique proposed in Reed & de Freitas (2016). Example traces are fetched
with frequency proportional to the models current prediction error. We set the sampling frequency
using a softmax over a moving average of prediction error over last 10 episodes, with temperature
1. Besides, for each combinator’s auxiliary task we design an easy version of the task, which corre-
sponds to a partial completion of the true task (see Table 3). Then a curriculum can be formed for
each combinator by either mixing the easy and true task (mixed), or complete the easy task first be-
fore going to the true one (gradual). For each different use of adaptive sampling and curriculum we
ran 100 experiments with a maximum number of 5000 episodes for each experiment. Table 4 shows
the success rate that all three auxiliary tasks are completed along with success rates for completing
the task for each combinator. As shown in Table 4, both adaptive sampling and the curriculum help
training considerably. A relatively high success rate of 91% can be obtained with adaptive sampling
and the gradual curriculum. We can also know from Table 4 that of the three combinators seq is the
easiest to learn while linrec is the hardest.

We compare the success rate of training CNPI (CNPI-4) with its counterpart RNPI models RNPI-
4xn. For each combinator’s auxiliary task, we constructed n different versions of the task by provid-
ing different ACTs and DETs. For example, for the Copy task we used different pointers (e.g. P1) to
move in different directions (e.g. to left), and output different symbols when finished (e.g. ‘DONE’)
to generate 3 × n tasks. Then we trained RNPI to learn 3 × n actual programs in parallel to solve
these tasks. The RNPI-4xn models were trained with adaptive sampling and gradual curriculum for

10

Published as a conference paper at ICLR 2018

Table 3: Curriculum for training CNPI for the sorting task using RL. The programs to be learned (in-
cluding detectors) are bolded and colored. Several ACTs are added to help learn the tasks: OUT x:
write the element at pointer x to position pointed by P3 and advanced P3 one step. CLEAR x: set
the element at pointer x to −1. OUTCLEAR x: output then clear x. For the sort task, instead of
sorting in-place, the max element found in each pass is written to a second array pointed to by P3.

Subtask Description Program to learn
Stage 1: Learning the core and combinators

Swap and out-
put easy

Output A[P1] seq0(; OUT 1, NOP, NOP)

Swap and out-
put

Output A[P1], then swap A[P1]
and A[P2], finally output A[P2]

seq(; OUT 1, SWAP 12, OUT 2)

Conditional
output easy

Output A[P2] if P2 is in array, oth-
erwise output ‘OK’

cond0(A[P2]6=END?;
OUT 2, NOP, OUT OK)

Conditional
output

Output and clear A[P2] if P2 is in
array, otherwise output ‘OK’

cond(A[P2] 6=END?;
OUT 2, CLEAR 2, OUT OK)

Copy easy Output the first element if array is
empty, otherwise output ‘OK’

linrec0(A[P2]6=END?;
OUT 2, NOP, OUT OK)

Copy Output elements sequentially till
the end of array, then output ‘OK’

linrec(A[P2]6=END?;
OUT 2, P2 RIGHT, OUT OK)

Reset pointers Reset P1 and P2 to the appropriate
beginning position

RESET 1: linrec(A[P1]6=END?;
P1 LEFT, NOP, NOP)
RESET 2: linrec(A[P2]6=END?;
P2 LEFT, NOP, P2 RIGHT)
RESET: seq(; RESET 1, RESET 2, NOP)

Stage 2: Learning detectors and appliers
Conditional
swap

Conditionally swap two elements COMPSWAP: cond(A[P1]>A[P2]?,
SWAP 12, NOP, NOP)

Output max Find and output the max element
in the array then clear it

MAX: linrec(A[P2]6=END?;
STEP, P2 RIGHT, OUTCLEAR 1)

Sort Sort the array by repeatedly out-
putting the current max element

SORT: linrec(A[P3]6=END?;
MAX, RESET, NOP)

Table 4: % success of training the core+combinators with
RL. The three figures in brackets represent % success of
learning the seq, cond or linrec combinator respectively.

Sampling
method

No
curriculum

Mixed
curriculum

Gradual
curriculum

Uniform 7 (11/10/7) 17 (33/28/17) 49 (94/49/49)
Adaptive 31 (74/41/31) 78 (87/80/78) 91 (92/91/91)

Table 5: Comparison of % success
of training CNPI with RL with other
models.

Stage CNPI
-4

RNPI
-4x2

RNPI
-4x3

Easy 99 25 0
Final 91 0 0

10000 ×n episodes, and the success rate over 100 trials are shown in Table 5. Due to the enlarged
candidate set of the next program to call from 4 to 4×n and the increased number of programs to be
learned from 3 to 3× n, it is much more difficult to train RNPI with RL. RNPI-4x2 finishes the first
stage of the curriculum to complete the easy tasks with a success rate of 25% while fails completely
on the final stage to complete the true tasks. RNPI-4x3 can not even finish the easy stage.

We trained the A[P1]>A[P2]? detector in the Conditional swap task with the RL objective. The
input to the detector is the one-hot encoding of the two elements. Then the STEP applier was learned
in the context of the Output max task by maximizing the expected reward of completing the task; see
equation (8). The embedding of STEP was learned successfully in 79% out of the 100 experiments
we ran. In each successfully trial one of the two appliers, seq(; COMPSWAP, P1 LEFT, NOP) and
cond(A[P1]>A[P2]?; NOP, NOP, MOVE 12) was learned, which was equivalent to finding the max
element by a pass of bubble sort and selection sort respectively. MOVE 12 is a primitive applier we
defined to move P1 forward until reaching P2. Finally, the Sort applier was learned to complete the
Sort task, with success rate of 62% over 100 experiments. Both bubble sort and selection sort were
learned by calling the two learned STEP appliers respectively.

11

Published as a conference paper at ICLR 2018

6 CONCLUSION

The problem of improving the universality and learnability of NPI is addressed for the first time
by incorporating combinator abstraction from functional programming. Analysis and experimental
results have shown that CNPI is universal with respective to all combinatorizable programs and can
be trained with both strong and weak supervision. We believe that the proposed approach is quite
general and has potential applications besides solving algorithmic tasks. One scenery is training
agents by RL to follow instructions and generalize (e.g., Oh et al. (2017), Andreas et al. (2017), Denil
et al. (2017)). Natural language contains “higher-order” words such as “then” and “twice”, which
play critical role but the interpretation of which may cause trouble to vanilla sequence-to-sequence
models (Lake & Baroni, 2017). By representing these words as combinators and equipping the agent
with CNPI-like components, it would be possible to construct agents that display more complex and
structured behavior and that generalize better. We leave this for future work.

ACKNOWLEDGMENTS

We thank Mingli Yuan for valuable discussion and feedback.

REFERENCES

Jacob Andreas, Dan Klein, and Sergey Levine. Modular multitask reinforcement learning with
policy sketches. In International Conference on Machine Learning (ICML), 2017.

Jonathon Cai, Richard Shin, and Dawn Song. Making neural programming architectures generalize
via recursion. In International Conference on Learning Representations (ICLR), 2017.

Misha Denil, Sergio Gómez Colmenarejo, Serkan Cabi, David Saxton, and Nando de Freitas. Pro-
grammable agents. arXiv preprint arXiv:1706.06383, 2017.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. arXiv preprint
arXiv:1410.5401, 2014.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 538
(7626):471–476, 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Łukasz Kaiser and Ilya Sutskever. Neural gpus learn algorithms. arXiv preprint arXiv:1511.08228,
2015.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. arXiv
preprint arXiv:1511.06392, 2015.

Brenden M Lake and Marco Baroni. Still not systematic after all these years: On the compositional
skills of sequence-to-sequence recurrent networks. arXiv preprint arXiv:1711.00350, 2017.

Arvind Neelakantan, Quoc V Le, and Ilya Sutskever. Neural programmer: Inducing latent programs
with gradient descent. arXiv preprint arXiv:1511.04834, 2015.

Junhyuk Oh, Singh Satinder, Lee Honglak, and Kholi Pushmeet. Zero-shot task generalization
with multi-task deep reinforcement learning. In International Conference on Machine Learning
(ICML), 2017.

Scott Reed and Nando de Freitas. Neural programmer-interpreters. In International Conference on
Learning Representations (ICLR), 2016.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural networks.
In Advances in neural information processing systems, pp. 3104–3112, 2014.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement
learning. Machine learning, 8(3-4):229–256, 1992.

12

Published as a conference paper at ICLR 2018

A BUILT-IN PROGRAMS TO SUPPORT TREE RECURSION.

We use some built-ins facilities, including a state stack, a combinator, four ACTs and a detector,
to support tree recursion. They are listed in Table 6. The pseudo-code for the built-in combinator
map self is shown in Figure 6. The built-in ACT load state need to be overloaded for each specific

task because the state needed to for a recursive call may be different for each task. See examples in
B for the usage of load state.

Type Name Descriptions
data
structure

state state A stack to hold states for re-
cursive calls

combinator mapself Make recursive call for each
state on stack

ACT

push
sentinel

Push a sentinel to stack to
terminate recursive call loop

push Push a state to stack
pop Pop a state from stack
load state Load the state on top of

stack before recursive call
detector top6=

SENTINEL?
Detect the termination con-
dition for recursive call loop

Table 6: Built-ins to support tree recursion. The state can
be seen as arguments for a recursive call.

used by treerec
def _mapself(divisible?/c?; self,
 pre/a1, divide/a2, post/a3):

 if _top≠SENTINEL?():
 _load_state()
 self(divisible?; self, pre, divide, post)
 _pop()
 _mapself(divisible?; self, pre, divide, post)
 else:
 _pop() # pop the sentinel
 _load_state()

Figure 6: Built-in combinator mapself
used by treerec.

B COMBINATORY PROGRAMS FOR ALGORITHMIC TASKS

Below we show the combinatory programs compared with the corresponding normal programs for
three algorithmic tasks bubble sort, quick sort and traverse in topological sort. Bubble sort has
a nested two levels of linear recursion both of which are expressed by linrec. Quick sort uses
bi-recursion and traverse in topological sort uses multi-recursion. Both are expressed by treerec
together with SAVE STATE and load state.

Normal and combinatory programs for bubble sort.

1 def COMPSWAP():
2 if A[P1]>A[P2]:
3 SWAP(P1,P2)
4
5 def RSHIFT():
6 MOVE(P1,UP)
7 MOVE(P2,UP)
8
9 def BSTEP():

10 if A[P2] 6= END:
11 COMPSWAP()
12 RSHIFT()
13 BSTEP()
14
15 def LSHIFT():
16 if A[P1] 6= END:
17 MOVE(P1,DOWN)
18 MOVE(P2,DOWN)
19 LSHIFT()
20
21 def RESET():
22 LSHIFT()
23 MOVE(P3,UP)
24
25 def BUBBLESORT():
26 if A[P3] 6=END:
27 BSTEP()
28 RESET()
29 BUBBLESORT()

(a) Normal Program

1 def COMPSWAP:
2 cond(A[P1]>A[P2]?; SWAP_12, NOP, NOP)
3
4 def RSHIFT:
5 seq(; P1_RIGHT, P2_RIGHT, NOP)
6
7 def BSTEP:
8 linrec(A[P2] 6=END?; COMPSWAP, RSHIFT,

NOP)
9

10 def LSHIFT:
11 linrec(A[P1] 6=END?; P1_LEFT, P2_LEFT,

NOP)
12
13 def RESET:
14 seq(; LSHIFT, P3_RIGHT, NOP)
15
16 def BUBBLESORT:
17 linrec(A[P3] 6=END?; BSTEP, RESET, NOP)

(b) Combinatory Program

13

Published as a conference paper at ICLR 2018

Normal and combinatory programs for quick sort.

1 def COMPSWAP():
2 if A[Pj]≤A[Phi]:
3 SWAP(Ppivot, Pj)
4 MOVE(Ppivot, UP)
5
6 def COMPSWAP_LOOP():
7 if Pj 6=Phi:
8 COMPSWAP()
9 MOVE(Pj, UP)

10 COMPSWAP_LOOP()
11
12 def PARTITION():
13 SET_PIVOT_LO()
14 SET_J_LO()
15 COMPSWAP_LOOP()
16 SWAP(Ppivot ,Phi)
17 SET_J_NULL()
18
19 def QUICKSORT():
20 if Plo<Phi:
21 PARTITION()
22 STACK(STACK_PUSH_CALL2)
23 STACK(STACK_PUSH_CALL1)
24 WRITE(Phi, ENV_STACK_HI_PEEK)
25 WRITE(Plo, ENV_STACK_LO_PEEK)
26 QUICKSORT
27 STACK(STACK_POP)
28 WRITE(Phi, ENV_STACK_HI_PEEK)
29 WRITE(Plo, ENV_STACK_LO_PEEK)
30 QUICKSORT
31 STACK(STACK_POP)

(a) Normal Program

1 def PRE_COMPSWAP_LOOP:
2 seq(; SET_PIVOT_LO, SET_J_LO, NOP)
3
4 def COMPSWAP:
5 cond(A[Pj]≤A[Phi]?; SWAP_PIVOTJ,

PPIVOT_RIGHT, NOP)
6
7 def COMPSWAP_LOOP:
8 linrec(Pj 6=Phi?; COMPSWAP, PJ_RIGHT, NOP)
9

10 def POST_COMPSWAP_LOOP:
11 seq(; SWAP_PIVOTHI, SET_J_NULL, NOP)
12
13 def PARTITION:
14 seq(; PRE_COMPSWAP_LOOP, COMPSWAP_LOOP,

POST_COMPSWAP_LOOP)
15
16 def SAVE_STATE2:
17 _push(Ppivot+1, Phi)
18
19 def SAVE_STATE1:
20 _push(Plo, Ppivot-1)
21
22 def DIVIDE:
23 seq(; PARTITION, SAVE_STATE2,

SAVE_STATE1)
24
25 def _load_state:
26 Write value pair on top of the state

stack to Phi and Plo

27
28 def QUICKSORT:
29 treerec(Plo<Phi?; NOP, DIVIDE, NOP)

(b) Combinatory Program

Normal and combinatory programs for traverse in topological sort.

1 def TRAVERSE():
2 if Qcolor(v) is WHITE:
3 WRITE(COLOR_CURR, COLOR_GREY)
4 while Qcolor(DAG[v][childList[v]]) is

valid:
5 WRITE(ACTIVATE_NEIGHB)
6 TRAVERSE()
7 MOVE(ChildList[v], UP)
8 WRITE(COLOR_CURR, COLOR_BLACK)
9 WRITE(RESULT)

(a) Normal Program

1 def PRE:
2 WRITE(COLOR_CURR, COLOR_GREY)
3
4 def SAVE_STATE:
5 seq(; WRITE(ACTIVATE_NEIGHB), _push(v),

NOP)
6
7 def DIVIDE:
8 linrec(Qcolor(DAG[v][childList[v]]) is

valid?; SAVE_STATE,
MOVE(ChildList[v], UP), NOP)

9
10 def _load_state:
11 Write value on top of the state stack

to v
12
13 def POST:
14 seq(; WRITE(COLOR_CURR, COLOR_BLACK),

WRITE(RESULT), NOP)
15
16 def TRAVERSE:
17 treerec(Qcolor(v) is WHITE?; PRE,

DIVIDE, POST)

(b) Combinatory Program

A general algorithm for converting any program set expressing an recursive algorithm to a combina-
tory one is given in Algorithm 2. For a program it first removes any multiple recursive calls by using
push state and mapself, then removes any loop by replacing them with tail recursion. Finally an

iterative maximum matching procedure is used to convert the program to a set of appliers iteratively.
We put forward a proposition that any recursive program can be combinatorized in this way. Note
that non-recursive programs, (e.g. the stack-based iterative program for topological sort used in Cai
et al. (2017)) may still be combinatorized by Algorithm 2, but the process is less straightforward.

14

Published as a conference paper at ICLR 2018

Algorithm 2 Convert a recursive program set to a combinatory one.
1: Inputs: A program set P for solving a task by a recursive algorithm
2: Outputs: A combinatory program set Q equivalent to P
3: function CONVERT(P)
4: Q← {}
5: for all subprogram p ∈ P do
6: Find any multiple recursive calls to the same function (including recursive calls in a loop) and

replace them with a push state(). If any replacement takes place, add a push sentinel() before the first of
these calls and add a mapself() after the last of these calls

7: Find any loop (without recursive calls in the body) and replace it with a tail recursion
8: while p is not an applier do . Match combinators in descending order of complexity.
9: MATCHANDREPLACE(p, treerec, Q)

10: MATCHANDREPLACE(p, linrec, Q)
11: MATCHANDREPLACE(p, cond, Q)
12: MATCHANDREPLACE(p, seq, Q)

return Q
13:
14: function MATCHANDREPLACE(p, comb,Q)
15: for all block b ∈ p do
16: if b matches the pattern expressed by comb then
17: replace b with an applier appl calling comb
18: Q← Q ∪ {appl}

C PROOF OF THEOREM 1

Before proving Theorem 1, we first give a formal definition of combinatory programs and a lemma
on the interpretation of appliers.

Definition 1

1. An ACT is a combinatory program.
2. A program with an applier app as entrance is a combinatory program if all of app’s callable

arguments are combinatory programs.
3. Only that which can be generated by the clause 1-2 in finite steps is a combinatory program.
Lemma 1. If all key embeddings of programs and detectors have unit norm, an applier with program
embedding set according to equation (1) is guaranteed to be interpreted correctly, i.e., Parse in
Algorithm 1 outputs correct IDs for the combinator to be called, its detector and callable arguments.

Proof. Because all key embeddings in program key memory Mkey and detector key memory W key

(in this proof we use Mkey to denote both Mkey and W key for convenience) have unit norm, the
dot product of any two keys equals to their cosine similarity (Sc). Suppose a key embedding k in
the right-hand side of equation (1), which will be output by Split in line 22 of Algorithm 1, is set
as k = Mkey

i , then for any j 6= i, (Mkey
i)T k = Sc(M

key
i , k) = 1 > Sc(M

key
j , k) = (Mkey

j)T k.
According to lines 23-25 of Algorithm 1, the correct program (the combinator, detector or callable
arguments) ID, namely i, will be selected, guaranteeing the correct interpretation of the applier.

Note that the unit norm constraint for key embeddings is convenient to satisfy in practice.

Following the above recursive definition of combinatory programs and the procedure of iteratively
adding appliers to the program memory from the bottom up, we give an induction proof of Theorem
1. The distinguishing feature of CNPI that enables this proof is the dynamic binding of formal detec-
tors and callable arguments to actual programs, which makes verification of combinator’s execution
(by the core) and verification of their invocation (by appliers) independent of each other. In contrast,
it is impossible to conduct such a proof with NPI and RNPI which lack this feature.

Proof. Base case: It is obvious that programs composed of a single ACT (including built-in ACT)
can be interpreted correctly with perfect generalization (abbreviated as perfectly interpretable).

Induction step: Assume that the programs referenced by the callable arguments of an applier app
are all perfectly interpretable, we prove that program prog with app as entrance is perfectly inter-
pretable. Firstly, from Lemma 1 when app is interpreted the right combinator will be invoked with

15

Published as a conference paper at ICLR 2018

the right detector and callable argument IDs. Secondly, because the combinators and the detectors
have been verified, the programs referenced by the callable arguments of app are guaranteed to be
called at the right time. Finally, when these programs are called, they can be perfectly interpreted.
Put it all together, prog can be interpreted correctly. Besides, as the calls to self argument which
support recursion are also guaranteed to be made at the right time (in linrec and mapself), prog can
be interpreted correctly with any input complexity, i.e. with perfect generalization.

When adding new detectors/appliers to detector/program memory, the weights of the core, key em-
beddings and program embeddings of combinators and existing appliers are all hold fixed. Thus,
the correct interpretation of learned programs composed of these existing appliers can be proved in
exactly the same way, i.e., CNPI maintains correct interpretation of already learned programs.

16

	Introduction
	Overview of combinator abstraction
	Review of NPI with its limitations
	Our approach using combinator abstraction

	Combinatory NPI model
	Combinators and combinatory programs
	CNPI architecture and algorithm
	Training

	Analysis
	Experiments
	Supervised learning results
	Reinforcement learning results

	Conclusion
	Built-in programs to support tree recursion.
	Combinatory programs for algorithmic tasks
	Proof of Theorem 1

