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Abstract

Despite impressive advancements in the last years, human vision is still much
more robust than machine vision. This article presents PyLissom, a novel software
library for the modeling of the cortex maps in the visual system. The software was
implemented in PyTorch, a modern deep learning framework, and it allows full
integration with other PyTorch modules. We hypothesize that PyLissom could act
as a bridge between the neuroscience and machine learning communities, driving
to advancements in both fields.

1 Introduction

The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. Better
understanding biological brains could play a vital role in building intelligent machines. However,
communication and collaboration between the two fields have become less commonplace [3]. Com-
putational tools that integrate approaches to neuroscience and machine learning, in accessible and
documented form, are very scarce in the literature. The availability of these tools could be fruitful for
the interaction between neuroscience groups and machine learning groups, and the emergence of new
ideas and collaborations between these fields.

The term visual map refers to the existence of a non-random relationship between the positions of
neurons in the visual centres of the brain (e.g. in the visual cortex) and the values of one or more
of the receptive field properties of those neurons. The term is usually qualified by reference to
the property concerned. For instance, a property of the visual neurons is that they react to some
orientations in the stimulus more than to others. Orientation map refers to the orderly mapping of
orientation preference [5].

Laterally interconnected synergetically self-organizing map (LISSOM) have been proposed in the
literature as a computational model of maps in the visual cortex in primates [6].

The main contribution of this work is the design and development of a new software library called
PyLissom (section 3) that implements for the first time the LISSOM networks (section 2) in a modern
deep learning framework.
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Figure 1: Basic LISSOM model of the primary visual cortex. The solid circles and lines delineate
the receptive fields of two sample units in the LGN and one in V1. The dashed circle in V1 outlines
the lateral connections of the V1 unit. The LGN and V1 activation in response to a sample input on
the retina is displayed in gray-scale coding from white to black (low to high).

2 LISSOM model

The structure of the mammalian early visual areas is well understood. Nerve fibers from the retina
project to an intermediate region called the lateral geniculate nucleus (LGN), from which the fibers
project to the primary visual cortex (V1). The locations on the retina to which a neuron responds
are called the receptive field of the neuron. At a given location on the cortical sheet, the neurons
in a vertical section through the cortex respond most strongly to the same eye of origin, stimulus
orientation, spatial frequency, and direction of movement. It is customary to refer to such a section
as a column [2]. Neurons in a vertical column in the cortex have similar receptive fields and feature
preferences. Nearby columns generally have similar, but not identical, preferences; slightly more
distant columns have more dissimilar preferences. The feature preferences gradually vary across the
surface of the cortex in characteristic spatial patterns called cortical feature maps.

The core of the LISSOM model consists of a two-dimensional array of computational units represent-
ing columns in V1. These units receive input from the retina through the ON/OFF afferent channels
of the LGN, and from other columns in V1 through lateral connections (Fig. 1). The units learn
through Hebbian adaptation, and compete with other units in a self-organizing map structure [4, 7, 8].

The activation mechanism of a neuron in V1 is computed by combining the afferent contributions
from the LGN and the lateral contributions from other V1 neurons. First, the afferent stimulation sij
of V1 neuron (i, j) is calculated as a weighted sum of activations in its receptive fields on the LGN:

sij = γA

( ∑
ab∈ON

ξabAab,ij +
∑

ab∈OFF

ξabAab,ij

)
(1)

where ξab is the activation of neuron (a, b) in the receptive field of neuron (i, j) in the ON or OFF
channels, Aab,ij is the corresponding afferent weight, and γA is a constant scaling factor. The afferent
stimulation is squashed using a sigmoid activation function σ, forming the neuron’s initial response
as ηij(0) = σ(sij). After the initial response, lateral interaction sharpens and strengthens the cortical
activity over a very short time scale. At each of these subsequent discrete time steps, the neuron
combines the afferent stimulation s with lateral excitation and inhibition:

ηij(t) = σ

(
sij + γE

∑
kl

ηkl(t− 1)Ekl,ij − γI
∑
kl

ηkl(t− 1)Ikl,ij

)
(2)

where ηkl(t− 1) is the activity of another V1 neuron (k, l) during the previous time step, Ekl,ij is the
excitatory lateral connection weight on the connection from that neuron to neuron (i, j), and Ikl,ij is
the inhibitory connection weight. The scaling factors γE and γI represent the relative strengths of
excitatory and inhibitory lateral interactions.
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Figure 2: Example of an orientation map obtained by PyLissom. The vertical bar at the right
shows the oriented preference of the neuron. For instance, the red color denotes that a neuron achieves
its highest activation when the input is horizontal lines.

After the activity has settled, the connection weights of each cortical neuron are modified using the
Hebb rule [4] with divisive postsynaptic normalization:

w′pq,ij =
wpq,ij + αXpqηij∑

uv(wuv,ij + αXuvηij)
(3)

where wpq,ij is the current afferent or lateral connection weight (either A, E or I) from (p, q) to (i, j),
w′pq,ij is the new weight to be used until the end of the next settling process, α is the learning rate for
each type of connection (αA for afferent weights, αE for excitatory, and αI for inhibitory), Xpq is
the presynaptic activity after settling (ξ for afferent, η for lateral), and ηij stands for the activity of
neuron (i, j) after settling. Afferent inputs (i.e. both ON and OFF channels together), lateral excitatory
inputs, and lateral inhibitory inputs are normalized separately.

3 PyLissom

PyLissom is a software developed in PyTorch and Python that implements the LISSOM model
(section 2). A picture of an orientation map of the visual system obtained by PyLissom is shown in
Fig. 2. PyLissom’s main features are the following:

• it extends Pytorch’s neural network module by implementing LISSOM layers, allowing to
build hierarchical models of the visual system

• it allows to be used for machine learning applications since it can combine the LISSOM
modules with other PyTorch modules

• PyLissom has an object-oriented design, and this increases its adaptability and reuse

• PyLissom can parallelize their computations on GPUs

The code of PyLissom is at the following link: https://test.pypi.org/project/pylissom

The user manual of PyLissom is at the following link: https://pylissom.readthedocs.io

4 Related work

LISSOM networks were implemented previously in a computational system called Topographica [1].
The use case of the Topographica software is the neuroscience community. The Topographica software
has been successfully used by some researchers to validate computational models in neuroscience.
However, due to its design, it is complicated to adapt Topograhica for machine learning use cases.

5 Conclusions

The software developed in this work was designed as a joint use case for the machine learning and
the neuroscience communities. It allows to obtain fully usable LISSOM modules in PyTorch. We
expect that PyLissom could be fruitful for the interaction between neuroscience groups and machine
learning groups, and the emergence of new ideas and collaborations between these fields.
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