
Under review as a conference paper at ICLR 2020

ADAPTIVE LEARNED BLOOM FILTER (ADA-BF):
EFFICIENT UTILIZATION OF THE CLASSIFIER

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent work suggests improving the performance of Bloom filter by incorporating
a machine learning model as a binary classifier. However, such learned Bloom filter
does not take full advantage of the predicted probability scores. We proposed new
algorithms that generalize the learned Bloom filter by using the complete spectrum
of the scores regions. We proved our algorithms have lower False Positive Rate
(FPR) and memory usage compared with the existing approaches to learned Bloom
filter. We also demonstrated the improved performance of our algorithms on
real-world datasets.

1 INTRODUCTION

Bloom filter (BF) is a widely used data structure for low-memory and high-speed approximate
membership testing (Bloom, 1970). Bloom filters compress a given set S into bit arrays, where
we can approximately test whether a given element (or query) x belongs to a set S, i.e., x ∈ S or
otherwise. Several applications, in particular caching in memory constrained systems, have benefited
tremendously from BF (Broder et al., 2002).

Bloom filter ensures a zero false negative rate (FNR), which is a critical requirement for many
applications. However, BF does not have a non-zero false positive rate (FPR) (Dillinger and Manolios,
2004) due to hashing collisions, which measures the performance of BF. There is a known theoretical
limit to this reduction. To achieve a FPR of ε, BF costs at least n log2(1/ε) log2 e bits (n = |S|),
which is log2 e ≈ 44% off from the theoretical lower bound (Carter et al., 1978). Mitzenmacher
(2002) proposed Compressed Bloom filter to address the suboptimal space usage of BF, where the
space usage can reach the theoretical lower bound in the optimal case.

To achieve a more significant reduction of FPR, researchers have generalized BF and incorporated
information beyond the query itself to break through the theoretical lower bound of space usage.
Bruck et al. (2006) has made use of the query frequency and varied the number of hash functions based
on the query frequency to reduce the overall FPR. Recent work (Kraska et al., 2018; Mitzenmacher,
2018) has proposed to improve the performance of standard Bloom filter by incorporating a machine
learning model. This approach paves a new hope of reducing false positive rates beyond the theoretical
limit, by using context-specific information in the form of a machine learning model (Hsu et al.,
2019). Rae et al. (2019) further proposed Neural Bloom Filter that learns to write to memory using a
distributed write scheme and achieves compression gains over the classical Bloom filter.

The key idea behind Kraska et al. (2018) is to use the machine learning model as a pre-filter to
give each query x a score s(x). s(x) is usually positively associated with the odds that x ∈ S.
The assumption is that in many practical settings, the membership of a query in the set S can be
figured out from observable features of x and such information is captured by the classifier assigned
score s(x). The proposal of Kraska et al. uses this score and treats query x with score s(x) higher
than a pre-determined threshold τ (high confidence predictions) as a direct indicator of the correct
membership. Queries with scores less than τ are passed to the back-up Bloom filter.

Compared to the standard Bloom filter, learned Bloom filter (LBF) uses a machine learning model to
answer keys with high score s(x). Thus, the classifier reduces the number of the keys hashed into the
Bloom filter. When the machine learning model has a reliable prediction performance, learned Bloom
filter significantly reduce the FPR and save memory usage (Kraska et al., 2018). Mitzenmacher (2018)
further provided a formal mathematical model for estimating the performance of LBF. In the same
paper, the author proposed a generalization named sandwiched learned Bloom filter (sandwiched

1

Under review as a conference paper at ICLR 2020

LBF), where an initial filter is added before the learned oracle to improve the FPR if the parameters
are chosen optimally.

Wastage of Information: For existing learned Bloom filters to have a lower FPR, the classifier
score greater than the threshold τ should have a small probability of wrong answer. Also, a significant
fraction of the keys should fall in this high threshold regime to ensure that the backup filter is
small. However, when the score s(x) is less than τ , the information in the score s(x) is never used.
Thus, there is a clear waste of information. For instance, consider two elements x1 and x2 with
τ > s(x1)� s(x2). In the existing solutions, x1 and x2 will be treated in the exact same way, even
though there is enough prior to believing that x1 is more likely positive compared to x2.

Strong dependency on Generalization: It is natural to assume that prediction with high confidence
implies a low FPR when the data distribution does not change. However, this assumption is too
strong for many practical settings. First and foremost, the data distribution is likely to change in an
online streaming environment where Bloom filters are deployed. Data streams are known to have
bursty nature with drift in distribution (Kleinberg, 2003). As a result, the confidence of the classifier,
and hence the threshold, is not completely reliable. Secondly, the susceptibility of machine learning
oracles to adversarial examples brings new vulnerability in the system. Examples can be easily
created where the classifier with any given confidence level τ , is incorrectly classified. Bloom filters
are commonly used in networks where such increased adversarial false positive rate can hurt the
performance. An increased latency due to collisions can open new possibilities of Denial-of-Service
attacks (DoS) (Feinstein et al., 2003).

Motivation: For a binary classifier, the density of score distribution, f(s(x)) shows a different
trend for elements in the set and outside the set S. We observe that for keys, f(s(x)|x ∈ S) shows
ascending trend as s(x) increases while f(s(x)|x /∈ S) has an opposite trend. To reduce the overall
FPR, we need lower FPRs for groups with a high f(s(x)|x /∈ S). Hence, if we are tuning the number
of hash functions differently, more hash functions are required for the corresponding groups. While
for groups with a few non-keys, we allow higher FPRs. This variability is the core idea to obtaining a
sweeter trade-off.

Our Contributions: Instead of only relying on the classifier whether score s(x) is above a single
specific threshold, we propose two algorithms, Ada-BF and disjoint Ada-BF, that rely on the complete
spectrum of scores regions by adaptively tuning Bloom filter parameters in different score regions.
1) Ada-BF tunes the number of hash functions differently in different regions to adjust the FPR
adaptively; disjoint Ada-BF allocates variable memory Bloom filters to each region. 2) Our theoretical
analysis reveals a new set of trade-offs that brings lower FPR with our proposed scheme compared to
existing alternatives. 3) We evaluate the performance of our algorithms on two datasets: malicious
URLs and malware MD5 signatures, where our methods reduce the FPR by over 80% and save 50%
of the memory usage over existing learned Bloom filters.

Notations: Our paper includes some notations that need to be defined here. Let [g] denote the index
set {1, 2, · · · , g}. We define query x as a key if x ∈ S, or a non-key if x /∈ S. Let n denote the size
of keys (n = |S|), and m denote the size of non-keys. We denote K as the number of hash functions
used in the Bloom filter.

2 REVIEW: BLOOM FILTER AND LEARNED BLOOM FILTER

Bloom Filter: Standard Bloom filter for compressing a set S consists of an R-bits array and K
independent random hash function h1, h2, · · · , hK , taking integer values between 0 and R− 1, i.e.,
hi : S ⇒ {0, 1, · · · , R − 1}. The bit array is initialized with all 0. For every item x ∈ S, the bit
value of hi(x) = 1, for all i ∈ {0, 1, · · · ,K}, is set to 1.

To check a membership of an item x
′

in the set S, we return true if all the bits hi(x
′
), for all

i ∈ {0, 1, · · · ,K}, have been set to 1. It is clear that Bloom filter has zero FNR (false negative rate).
However, due to lossy hash functions, x

′
may be wrongly identified to be positive when x

′
/∈ S while

all the hi(x
′
)s are set to 1 due to random collisions. It can be shown that if the hash functions are

independent, the expected FPR can be written as follows

E (FPR) =

(
1−

(
1− 1

R

)Kn)K
.

2

Under review as a conference paper at ICLR 2020

Learned Bloom filter: Learned Bloom filter adds a binary classification model to reduce the
effective number of keys going to the Bloom filter. The classifier is pre-trained on some available
training data to classify whether any given query x belongs to S or not based on its observable
features. LBF sets a threshold, τ , where x is identified as a key if s(x) ≥ τ . Otherwise, x will be
inserted into a Bloom filter to identify its membership in a further step (Figure 1). Like standard
Bloom filter, LBF also has zero FNR. And the false positives can be either caused by that false
positives of the classification model (s(x|x /∈ S) ≥ τ) or that of the Bloom filter.

It is clear than when the region s(x) ≥ τ contains large number of keys, the number of keys inserted
into the Bloom filter decreases which leads to favorable FPR. However, since we identify the region
s(x) ≥ τ as positives, higher values of τ is better. At the same time, large τ decreases the number
of keys in the region s(x) ≥ τ , increasing the load of the Bloom filter. Thus, there is a clear
trade-off.

3 A STRICT GENERALIZATION: ADAPTIVE LEARNED BLOOM FILTER
(ADA-BF)

With the formulation of LBF in the previous section, LBF actually divides the x into two groups.
When s(x) ≥ τ , x will be identified as a key directly without testing with the Bloom filter. In other
words, it uses zero hash function to identify its membership. Otherwise, we will test its membership
using K hash functions. In other view, LBF switches from K hash functions to no hash function at
all, based on s(x) ≥ τ or not. Continuing with this mindset, we propose adaptive learned Bloom
filter, where x is divided into g groups based on s(x), and for group j, we use Kj hash functions to
test its membership. The structure of Ada-BF is represented in Figure 1(b).

Figure 1: Panel A-C show the structure of LBF, Ada-BF and disjoint Ada-BF respectively.

More specifically, we divide the spectrum into g regions, where x ∈ Group j if s(x) ∈ [τj−1, τj),
j = 1, 2, · · · , g. Without loss of generality, here, we assume 0 = τ0 < τ1 < · · · < τg−1 < τg = 1.
Keys from group j are inserted into Bloom filter using Kj independent hash functions. Thus, we use
different number of universal hash functions for keys from different groups.

For a group j, the expected FPR can be expressed as,

E (FPRj) =

(
1−

(
1− 1

R

)∑g
t=1 ntKt

)Kj
= αKj (1)

where nt =
∑n
t=1 I(τt−1 ≤ s(xi|xi ∈ S) < τt) is the number of keys falling in group t, and Kj is

the number of hash functions used in group j. By varying Kj , E (FPRj) can be controlled differently
for each group.

Variable number of hash functions gives us enough flexibility to tune the FPR of each region. To
avoid the bit array being overloaded, we only increase the Kj for groups with large number of keys
nj , while decrease Kj for groups with small nj . It should be noted that f(s(x)|x ∈ S) shows an
opposite trend compared to f(s(x)|x /∈ S) as s(x) increases (Figure 2). Thus, there is a need for
variable tuning, and a spectrum of regions gives us the room to exploit these variability efficiently.
Clearly, Ada-BF generalizes the LBF. When Ada-BF only divides the queries into two groups, by
setting K1 = K, K2 = 0 and τ1 = τ , Ada-BF reduces to the LBF.

3

Under review as a conference paper at ICLR 2020

3.1 SIMPLIFYING THE HYPER-PARAMETERS

To implement Ada-BF, there are some hyper-parameters to be determined, including the number of
hash functions for each group Kj and the score thresholds to divide groups, τj (τ0 = 0, τg = 1).
Altogether, we need to tune 2g − 1 hyper-parameters. Use these hyper-parameters, for Ada-BF, the
expected overall FPR can be expressed as,

E (FPR) =
g∑
j=1

pjE (FPRj) =
g∑
j=1

pjα
Kj (2)

where pj = Pr(τj−1 ≤ s(xi|xi /∈ S) < τj). Empirically, pj can be estimated by p̂j =
1
m

∑m
i=1 I(τj−1 ≤ s(xi|xi /∈ S) < τj) =

mj
m (m is size of non-keys in the training data and

mj is size of non-keys belonging to group j). It is almost impossible to find the optimal hyper-
parameters that minimize the E (FPR) in reasonable time. However, since the estimated false positive
items

∑g
j=1mjα

Kj = O(maxj(mjα
Kj)), we prefer mjα

Kj to be similar across groups when
E (FPR) is minimized. While αKj decreases exponentially fast with larger Kj , to keep mjα

Kj

stable across different groups, we require mj to grow exponentially fast with Kj . Moreover, since
f(s(x)|x /∈ S) increases as s(x) becomes smaller for most cases,Kj should also be larger for smaller
s(x). Hence, to balance the number of false positive items, as j diminishes, we should increase Kj

linearly and let mj grow exponentially fast.

With this idea, we provide a strategy to simplify the tuning procedure. We fix pj
pj+1

= c and
Kj − Kj+1 = 1 for j = 1, 2, · · · , g − 1. Since the true density of s(x|x /∈ S) is unknown. To

implement the strategy, we estimate pj
pj+1

by p̂j
pj+1

=
mj
mj+1

and fix mj
mj+1

= c. This strategy ensures
p̂j to grow exponentially fast with Kj . Now, we only have three hyper-parameters, c, Kmin and
Kmax (Kmax = K1). By default, we may also set Kmin = Kg = 0, equivalent to identifying all the
items in group g as keys.

Lemma 1: Assume 1) the scores of non-keys, s(x)|x /∈ S, are independently following a distribu-
tion f ; 2) The scores of non-keys in the training set are independently sampled from a distribution f .
Then, the overall estimation error of p̂j ,

∑
j |p̂j − pj |, converges to 0 in probability as m becomes

larger. Moreover, if m ≥ 2(k−1)
ε2

[√
1
π +

√
1−2/π
δ

]2
, with probability at least 1 − δ, we have∑

j |p̂j − pj | ≤ ε.

Even though in the real application, we cannot access the exact value of pj , which may leads to the
estimation error of the real E (FPR). However, Lemma 1 shows that as soon as we can collect enough
non-keys to estimate the pj , the estimation error is almost negligible. Especially for the large scale
membership testing task, collecting enough non-keys is easy to perform.

3.2 ANALYSIS OF ADAPTIVE LEARNED BLOOM FILTER

Compared with the LBF, Ada-BF makes full use the of the density distribution s(x) and optimizes
the FPR in different regions. Next, we will show Ada-BF can reduce the optimal FPR of the LBF
without increasing the memory usage.

When pj/pj+1 = cj ≥ c > 1 and Kj −Kj+1 = 1, the expected FPR follows,

E (FPR) =
g∑
j=1

pjα
Kj =

∑g
j=1 c

g−jαKj∑g
j=1 c

g−j ≤

(1− c)(1− (cα)g)

(1
α − c)(αg − (cα)g)

αKmax , cα 6= 1

1− c
1− cg

· g, cα = 1

(3)

where Kmax = K1. To simplify the analysis, we assume cα > 1 in the following theorem. Given
the number of groups g is fixed, this assumption is without loss of generality satisfied by raising c
since α will increase as c becomes larger. For comparisons, we also need τ of the LBF to be equal to
τg−1 of the Ada-BF. In this case, queries with scores higher than τ are identified as keys directly by
the machine learning model. So, to compare the overall FPR, we only need to compare the FPR of
queries with scores lower than τ .

4

Under review as a conference paper at ICLR 2020

Theorem 1: For Ada-BF, given pj
pj+1

≥ c > 1 for all j ∈ [g − 1], if there exists λ > 0 such that
cα ≥ 1+λ holds, and nj+1−nj > 0 for all j ∈ [g−1] (nj is the number of keys in group j). When
g is large enough and g ≤ b2Kc, then Ada-BF has smaller FPR than the LBF. Here K is the number
of hash functions of the LBF.

Theorem 1 requires the number of keys nj keeps increasing while pj decreases exponentially fast
with j. As shown in figure 2, on real dataset, we observe from the histogram that as score increases,
f(s(x)|x /∈ S) decreases very fast while f(s(x)|x ∈ S) increases. So, the assumptions of Theorem
1 are more or less satisfied.

Moreover, when the number of buckets is large enough, the optimal K of the LBF is large as well.
Given the assumptions hold, theorem 1 implies that we can choose a larger g to divide the spectrum
into more groups and get better FPR. The LBF is sub-optimal as it only has two regions. Our
experiments clearly show this trend. For figure 3(a), Ada-BF achieves 25% of the FPR of the LBF
when the bitmap size = 200Kb, while when the budget of buckets = 500Kb, Ada-BF achieves 15%
of the FPR of the LBF. For figure 3(b), Ada-BF only reduces the FPR of the LBF by 50% when
the budget of buckets = 100Kb, while when the budget of buckets = 300Kb, Ada-BF reduces 70%
of the FPR of the LBF. Therefore, both the analytical and experimental results indicate superior
performance of Ada-BF by dividing the spectrum into more small groups. On the contrary, when g is
small, Ada-BF is more similar to the LBF, and their performances are less differentiable.

4 DISJOINT ADAPTIVE LEARNED BLOOM FILTER (DISJOINT ADA-BF)

Ada-BF divides keys into g groups based on their scores and hashes the keys into the same Bloom
filter using different numbers of hash functions. With the similar idea, we proposed an alternative
approach, disjoint Ada-BF, which also divides the keys into g groups, but hashes keys from different
groups into independent Bloom filters. The structure of disjoint Ada-BF is represented in Figure 1(c).
Assume we have total budget of R bits for the Bloom filters and the keys are divided into g groups
using the same idea of that in Ada-BF. Consequently, the keys from group j are inserted into j-th
Bloom filter whose length is Rj (R =

∑g
j=1Rj). Then, during the look up stage, we just need to

identify a query’s group and check its membership in the corresponding Bloom filter.

4.1 SIMPLIFYING THE HYPER-PARAMETERS

Analogous to Ada-BF, disjoint Ada-BF also has a lot of hyper-parameters, including the thresholds
of scores for groups division and the lengths of each Bloom filters. To determine thresholds τj ,
we use similar tuning strategy discussed in the previous section of tuning the number of groups
g and mj

mj+1
= c. To find Rj that optimizes the overall FPR, again, we refer to the idea in the

previous section that the expected number of false positives should be similar across groups. For
a Bloom filter with Rj buckets, the optimal number of hash functions Kj can be approximated as
Kj =

Rj
nj

log(2), where nj is the number of keys in group j. And the corresponding optimal expected

FPR is E (FPRj) = µRj/nj (µ ≈ 0.618). Therefore, to enforce the expected number of false items
being similar across groups, Rj needs to satisfy

mj · µ
Rj
nj = m1 · µ

R1
n1 ⇐⇒ Rj

nj
− R1

n1
=

(j − 1)log(c)
log(µ)

Since nj is known given the thresholds τj and the total budget of buckets R are known, thus, Rj
can be solved accordingly. Moreover, when the machine learning model is accurate, to save the
memory usage, we may also set Rg = 0, which means the items in group j will be identified as keys
directly.

4.2 ANALYSIS OF DISJOINT ADAPTIVE LEARNED BLOOM FILTER

The disjoint Ada-BF uses a group of shorter Bloom filters to store the hash outputs of the keys.
Though the approach to control the FPR of each group is different from the Ada-BF, where the
Ada-BF varies K and disjoint Ada-BF changes the buckets allocation, both methods share the same
core idea to lower the overall FPR by reducing the FPR of the groups dominated by non-keys. Disjoint
Ada-BF allocates more buckets for these groups to a achieve smaller FPR. In the following theorem,

5

Under review as a conference paper at ICLR 2020

we show that to achieve the same optimal expected FPR of the LBF, disjoint Ada-BF consumes less
buckets. Again, for comparison we need τ of the LBF is equal to τg−1 of the disjoint Ada-BF.

Theorem 2: If pj
pj+1

= c > 1 and nj+1 − nj > 0 for all j ∈ [g − 1] (nj is the number of keys
in group j), to achieve the optimal FPR of the LBF, the disjoint Ada-BF consumes less buckets
compared with the LBF when g is large.

5 EXPERIMENT

Baselines: We test the performance of four different learned Bloom filters: 1) standard Bloom
filter, 2) learned Bloom filter, 3) sandwiched learned Bloom filter, 4) adaptive learned Bloom filter,
and 5) disjoint adaptive learned Bloom filter. We use two datasets which have different associated
tasks, namely: 1) Malicious URLs Detection and 2) Virus Scan. Since all the variants of Bloom filter
structures ensure zero FNR, the performance is measured by their FPRs and corresponding memory
usage.

5.1 TASK1: MALICIOUS URLS DETECTION

We explore using Bloom filters to identify malicious URLs. We used the URLs dataset down-
loaded from Kaggle, including 485,730 unique URLs. 16.47% of the URLs are malicious, and
others are benign. We randomly sampled 30% URLs (145,719 URLs) to train the malicious
URL classification model. 17 lexical features are extracted from URLs as the classification fea-
tures, such as “host name length”, “path length”, “length of top level domain”, etc. We used
“sklearn.ensemble.RandomForestClassifier1” to train a random forest model. After saving the model
with “pickle”, the model file costs 146Kb in total. “sklearn.predict_prob" was used to give scores for
queries.

We tested the optimal FPR for the four learned Bloom filter methods under the total memory budget
= 200Kb to 500Kb (kilobits). Since the standard BF does not need a machine learning model, to
make a fair comparison, the bitmap size of BF should also include the machine learning model size
(146 Kb in this experiment). Thus, the total bitmap size of BF is 346Kb to 646Kb. To implement the
LBF, we tuned τ between 0 and 1, and picked the one giving the minimal FPR. The number of hash
functions was determined by K = Round(Rn0

log 2), where n0 is the number of keys hashed into
the Bloom filter conditional τ . To implement the sandwiched LBF, we searched the optimal τ and
calculated the corresponding initial and backup filter size by the formula in Mitzenmacher (2018).
When the optimal backup filter size is larger than the total bits budget, sandwiched LBF does not need
a initial filter and reduces to a standard LBF. For the Ada-BF, we used the tuning strategy described
in the previous section. Kmin was set to 0 by default. Thus, we only need to tune the combination of
(Kmax, c) that gives the optimal FPR. Similarly, for disjoint Ada-BF, we fixed Rg = 0 and searched
for the optimal (g, c).

Result: Our trained machine learning model has a classification accuracy of 0.93. Considering the
non-informative frequent class classifier (just classify as benign URL) gives accuracy of 0.84, our
trained learner is not a strong classifier. However, the distribution of scores is desirable (Figure 2),
where as s(x) increases, the empirical density of s(x) decreases for non-keys and also increases
for keys. In our experiment, when the sandwiched LBF is optimized, the backup filter size always
exceeds the total bitmap size. Thus, it reduces to the LBF and has the same FPR (as suggested by
Figure 4(a)).

Our experiment shows that compared to the LBF and sandwiched LBF, both Ada-BF and disjoint
Ada-BF achieve much lower FPRs. When filter size = 500Kb, Ada-BF reduces the FPR by 81%
compared to LBF or sandwiched LBF (disjoint FPR reduces the FPR by 84%). Moreover, to achieve a
FPR ≈ 0.9%, Ada-BF and disjoint Ada-BF only require 200Kb, while both LBF and the sandwiched
LBF needs more than 350Kb. And to get a FPR ≈ 0.35%, Ada-BF and disjoint Ada-BF reduce the
memory usage from over 500Kb of LBF to 300Kb, which shows that our proposed algorithms save
over 40% of the memory usage compared with LBF and sandwiched LBF.

1The Random Forest classifier consists 10 decision trees, and each tree has at most 20 leaf nodes.

6

Under review as a conference paper at ICLR 2020

0.0 0.2 0.4 0.6 0.8 1.0
Score

102

103

104

Co
un

t

Score Distribution of Malicious URLs
Malicious

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Score

100

101

102

103

104

105

Co
un

t

Score Distribution of Benign URLs
Benign

(b)

Figure 2: Histogram of the classifier’s score distributions of keys (Malicious) and non-keys (Benign)
for Task 1. We can see that nj (number of keys in region j) is monotonic when score > 0.3. The
partition was only done to ensure pj

pj+1 ≥ c

5.2 TASK 2: VIRUS SCAN

Bloom filter is widely used to match the file’s signature with the virus signature database. Our
dataset includes the information of 41323 benign files and 96724 viral files. The virus files are
collected from VirusShare database (Vir). The dataset provides the MD5 signature of the files,
legitimate status and other 53 variables characterizing the file, like “Size of Code”, “Major Link
Version” and “Major Image Version”. We trained a machine learning model with these variables
to differentiate the benign files from the viral documents. We randomly selected 20% samples
as the training set to build a binary classification model using Random Forest model 2. We used
“sklearn.ensemble.RandomForestClassifier” to tune the model, and the Random Forest classifier costs
about 136Kb. The classification model achieves 0.98 prediction accuracy on the testing set. The
predicted the class probability (with the function “predict_prob” in “sklearn” library) is used as the
score s(x). Other implementation details are similar to that in Task 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Score

102

Co
un

t

Score Distribution of Viral Files
Viral

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Score

102

103

Co
un

t

Score Distribution of Benign Files
Benign

(b)

Figure 3: Histogram of the classifier score distributions for the Virus Scan Dataset. The partition was
only done to ensure pj

pj+1 ≥ c.

Result: As the machine learning model achieves high prediction accuracy, figure 4 suggests that
all the learned Bloom filters show huge advantage over the standard BF where the FPR is reduced
by over 98%. Similar to the previous experiment results, we observe consistently lower FPRs of
our algorithms although the the score distributions are not smooth or continuous (Figure 3). Again,
our methods show very similar performance. Compared with LBF, our methods reduce the FPRs

2The Random Forest classifier consists 15 decision trees, and each tree has at most 5 leaf nodes.

7

Under review as a conference paper at ICLR 2020

5.0%

10.0%

15.0% False Positive Rates Comparison

200 250 300 350 400 450 500
Bitmap Size (Kb)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%
Fa
lse

 P
os
iti
ve
 R
at
e

BF
LBF
sandwiched LBF
Ada-BF
disjoint Ada-BF

(a)

20.0%

40.0% False Positive Rates Comparison

100 150 200 250 300
Bitmap Size (Kb)

0.00%
0.10%
0.20%
0.30%
0.40%
0.50%
0.60%
0.70%
0.80%

Fa
lse

 P
os

iti
ve

 R
at
e

BF
LBF
sandwiched LBF
Ada-BF
disjoint Ada-BF

(b)

Figure 4: FPR with memory budget for all the five baselines (the bit budget of BF = bitmap size +
learner size). (a) FPRs comparison of Malicious URL detection experiment; (b) FPRs comparison of
Virus scan experiment.

by over 80%. To achieve a 0.2% FPR, the LBF and sandwiched LBF cost about 300Kb bits, while
Ada-BF only needs 150Kb bits, which is equivalent to 50% memory usage reduction compared to the
previous methods.

5.3 SENSITIVITY TO HYPER-PARAMETER TUNING

Compared with the LBF and sandwiched LBF where we only need to search the space of τ to
optimize the FPR, our algorithms require to tune a series of score thresholds. In the previous sections,
we have proposed a simple but useful tuning strategies where the score thresholds can be determined
by only two hyper-parameters, (K, c). Though our hyper-parameter tuning technique may lead to
a sub-optimal choice, our experiment results have shown we can still gain significantly lower FPR
compared with previous LBF. Moreover, if the number of groups K is misspecified from the optimal
choice (of K), we can still achieve very similar FPR compared with searching both K and c. Figure 5
shows that for both Ada-BF and disjoint Ada-BF, tuning c while fixing K has already achieved
similar FPRs compared with optimal case by tuning both (K, c), which suggests our algorithm does
not require very accurate hyper-parameter tuning to achieve significant reduction of the FPR.

5.4 DISCUSSION: SANDWICHED LEARNED BLOOM FILTER VERSUS LEARNED BLOOM
FILTER

Sandwiched LBF is a generalization of LBF and performs no worse than LBF. Although Mitzen-
macher (2018) has shown how to allocate bits for the initial filter and backup filter to optimize the
expected FPR, their result is based on the a fixed FNR and FPR. While for many classifiers, FNR
and FPR are expressed as functions of the prediction score τ . Figure 4(a) shows that the sandwiched
LBF always has the same FPR as LBF though we increase the bitmap size from 200Kb to 500Kb.
This is because the sandwiched LBF is optimized when τ corresponds to a small FPR and a large
FNR, where the optimal backup filter size even exceeds the total bitmap size. Hence, we should not
allocate any bits to the initial filter, and the sandwiched LBF reduces to LBF. On the other hand, our
second experiment suggests as the bitmap size becomes larger, sparing more bits to the initial filter is
clever, and the sandwiched LBF shows the its advantage over the LBF (Figure 6(b)).

6 CONCLUSION

We have presented new approaches to implement learned Bloom filters. We demonstrate analytically
and empirically that our approaches significantly reduce the FPR and save the memory usage com-
pared with the previously proposed LBF and sandwiched LBF even when the learner’s discrimination
power . We envision that our work will help and motivate integrating machine learning model into
probabilistic algorithms in a more efficient way.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Virusshare 2018. https://virusshare.com/research.4n6.

Burton H Bloom. Space/time trade-offs in hash coding with allowable errors. Communications of the
ACM, 13(7):422–426, 1970.

Andrei Broder, Michael Mitzenmacher, and Andrei Broder I Michael Mitzenmacher. Network
applications of bloom filters: A survey. In Internet Mathematics. Citeseer, 2002.

Jehoshua Bruck, Jie Gao, and Anxiao Jiang. Weighted bloom filter. In 2006 IEEE International
Symposium on Information Theory, pages 2304–2308. IEEE, 2006.

Larry Carter, Robert Floyd, John Gill, George Markowsky, and Mark Wegman. Exact and approximate
membership testers. In Proceedings of the tenth annual ACM symposium on Theory of computing,
pages 59–65. ACM, 1978.

Peter C. Dillinger and Panagiotis Manolios. Bloom filters in probabilistic verification. In Alan J. Hu
and Andrew K. Martin, editors, Formal Methods in Computer-Aided Design, page 370, Berlin,
Heidelberg, 2004. Springer Berlin Heidelberg. ISBN 978-3-540-30494-4.

Laura Feinstein, Dan Schnackenberg, Ravindra Balupari, and Darrell Kindred. Statistical approaches
to ddos attack detection and response. In Proceedings DARPA information survivability conference
and exposition, volume 1, pages 303–314. IEEE, 2003.

Chen-Yu Hsu, Piotr Indyk, Dina Katabi, and Ali Vakilian. Learning-based frequency estimation
algorithms. In International Conference on Learning Representations, 2019. URL https:
//openreview.net/forum?id=r1lohoCqY7.

Jon Kleinberg. Bursty and hierarchical structure in streams. Data Mining and Knowledge Discovery,
7(4):373–397, 2003.

Tim Kraska, Alex Beutel, Ed H Chi, Jeffrey Dean, and Neoklis Polyzotis. The case for learned index
structures. In Proceedings of the 2018 International Conference on Management of Data, pages
489–504. ACM, 2018.

Michael Mitzenmacher. Compressed bloom filters. IEEE/ACM Transactions on Networking (TON),
10(5):604–612, 2002.

Michael Mitzenmacher. A model for learned bloom filters and optimizing by sandwiching. In
Advances in Neural Information Processing Systems, pages 464–473, 2018.

Jack W Rae, Sergey Bartunov, and Timothy P Lillicrap. Meta-learning neural bloom filters. arXiv
preprint arXiv:1906.04304, 2019.

9

https://virusshare.com/research.4n6
https://openreview.net/forum?id=r1lohoCqY7
https://openreview.net/forum?id=r1lohoCqY7

Under review as a conference paper at ICLR 2020

APPENDIX A SENSITIVITY TO HYPER-PARAMETER TUNING

200 250 300 350 400 450 500
Budget of buckets (Kb)

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

Fa
lse

 P
os
iti
ve

 R
at
e

Ada-BF: FPRs with different K
K=10
K=11
K=12
Optimal

(a)

200 250 300 350 400 450 500
Budget of buckets (Kb)

0.00%

0.20%

0.40%

0.60%

0.80%

1.00%

1.20%

Fa
lse

 P
os

iti
ve

 R
at

e

Disjoint Ada-BF: FPRs with different K
K=10
K=11
K=12
Optimal

(b)

Figure 5: FPR comparison of tuning c while fixing the number of groups K and tuning both (K, c)

APPENDIX B MORE COMPARISONS BETWEEN THE LBF AND SANDWICHED
LBF

200250300350400450 600 700 800
Budget of buckets (Kb)

0.00%

0.50%

1.00%

1.50%

2.00%

2.50%

Fa
lse

 P
os
iti
ve
 R
at
e

LBF vs sandwiched LBF
LBF
sandwiched LBF

(a)

100 150 200 250 300 350 400 450 500
Budget of buckets (Kb)

0.00%

0.10%

0.20%

0.30%

0.40%

0.50%

0.60%

0.70%

Fa
lse

 P
os

iti
ve

 R
at
e

LBF vs sandwiched LBF
LBF
sandwiched LBF

(b)

Figure 6: FPR comparison between LBF and sandwiched LBF under different bitmap sizes. (a)
malicious URL experiment; (b) malware detection experiment

APPENDIX C COMPARING THE BLOOM FILTER TO HIERARCHICAL
HASHING

The machine learning model used in the learned Bloom filters is critical because it has discrimination
power between the keys and non-keys and is more efficient in identifying keys in some cases. To
show its unique role, we replaced the machine learning model with another Bloom filter such that
it becomes a hierarchical Bloom filter (learner is replaced by an initial filter). To implement the
hierarchical Bloom filter, we spare 50% of the bit budget to the initial filter and use the other bits to
build the backup filter.

Figure 7 shows that the hierarchical BF does not outperform the original BF under all the budget of
buckets, and in some cases, it even achieves a worse FPR. Hence, using a random hash function to
replace the learner is not a memory efficient approach.

10

Under review as a conference paper at ICLR 2020

200 250 300 350 400 450 500
Budget of buckets (Kb)

0.0%

2.0%

4.0%

6.0%

8.0%

10.0%

Fa
lse

 P
os
iti
ve
 R
at
e

Comparison to Hierarchical Bloom filter
BF
Hierarchical BF

Figure 7: FPR comparison between LBF and sandwiched LBF under different bitmap sizes. (a)
malicious URL experiment; (b) malware detection experiment

APPENDIX D PROOF OF THE STATEMENTS

Proof of Lemma 1: Let Zj(x) =
∑m
i=1 1(s(x) ∈ [τj−1, τj)|x /∈ S), then Zj(x) ∼

Bernoulli(pj), and mj =
∑m
i=1 Zj(xi) counts the number of non-keys falling in group j and

p̂j =
mj
m . To upper bound the probability of the overall estimation error of pj , first, we need to

evaluate its expectation, E
(∑K

j=1|p̂j − pj |
)

.

Since mj is a binomial random variable, its exact cdf is hard to compute. But with central limit
theorem, when m is large, mj−mpj√

mpj(1−pj)
−→ N(0, 1). Thus, we can approximate E (|p̂j − pj |) =

E
(
| mj−mpj√

mpj(1−pj)
|
)
·
√

pj(1−pj)
m ≈

√
2
π ·
√

pj(1−pj)
m (if Z ∼ N(0, 1), E (|Z|) =

√
2
π). Then, the ex-

pectation of overall error is approximated by E
(∑K

j=1|p̂j − pj |
)
≈
√

2
mπ ·

(∑K
j=1

√
pj(1− pj)

)
,

which goes to 0 as m becomes larger.

We need to further upper bound the tail probability of
∑K
j=1|p̂j − pj |. First, we upper bound the

variance of
∑K
j=1|p̂j − pj |,

Var

 K∑
j=1

|p̂j − pj |

 ≤ K

K∑
j=1

Var (|p̂j − pj |) = K

K∑
j=1

(
Var (p̂j − pj)− E (|p̂j − pj |)2

)

≈ K

m

K∑
j=1

pj(1− pj)− 2

π

(
K∑
i=1

√
pj(1− pj)

)2
 , K

m
V (p)

Now, by envoking the Chebyshev’s inequality,

P

 K∑
j=1

|p̂j − pj | ≥ ε

 = P

 K∑
j=1

|p̂j − pj | − E

 K∑
j=1

|p̂j − pj |

 ≥ ε− E

 K∑
j=1

|p̂j − pj |

≤

Var
(∑K

j=1|p̂j − pj |
)

(
ε− E

(∑K
j=1|p̂j − pj |

))2
=

KV (p)

m
(
ε− E

(∑K
j=1|p̂j − pj |

))2 −→ 0 as m −→∞

11

Under review as a conference paper at ICLR 2020

Thus,
∑K
j=1|p̂j − pj | converges to 0 in probability as m −→∞. �

Moreover, since we have

E

 K∑
j=1

|p̂j − pj |

 ≈
√

2

mπ
(

K∑
j=1

√
pj(1− pj)) ≤

√
2

mπ
(K − 1) (4)

V (p) =

K∑
j=1

pj(1− pj)− 2

π

(
K∑
i=1

√
pj(1− pj)

)2

≤
K∑
j=1

(
pj(1− pj)

(
1− 2

π

))

≤
(
1− 2

π

)(
1− 1

K

)
(5)

Then, by Eq 4 and Eq 5, we can upper bound P
[∑K

j=1|p̂j − pj | ≥ ε
]

by,

P

 K∑
j=1

|p̂j − pj | ≥ ε

 ≤ KV (p)

m
(
ε− E

(∑K
j=1|p̂j − pj |

))2
≤

(1− 2
π)(K − 1)

m
(
ε−

√
2
mπ (K − 1)

)2 (6)

When m ≥ 2(k−1)
ε2

[√
1
π +

√
1−2/π
δ

]2
, we have m

(
ε−

√
2
mπ (K − 1)

)2
≥ (K−1)(1− 2

π)

δ , thus,

P
[∑K

j=1|p̂j − pj | ≥ ε
]
≤ δ. �

Proof of Theorem 1: For comparison, we choose τ = τg−1, for both LBF and Ada-BF, queries
with scores larger than τ are identified as keys directly by the same machine learning model. Thus,
to compare the overall FPR, we only need to evaluate the FPR of queries with score lower than
τ .

Let p0 = P [s(x) < τ |x /∈ S] be the probability of a key with score lower than τ . Let n0 denote the
number of keys with score less than τ , n0 =

∑
i:xi∈S

I(s(xi) < τ). For learned Bloom filter using K

hash functions, the expected FPR follows,

E (FPR) = (1− p0) + p0

(
1−

(
1− 1

R

)Kn0
)K

= 1− p0 + p0β
K , (7)

where R is the length of the Bloom filter. For Ada-BF, assume we fix the number of groups g. Then,
we only need to determineKmax andKmin = Kmax−g+1. Let pj = Pr(τj−1 ≤ s(x) < τj |x /∈ S)
The expected FPR of the Ada-BF is,

E (FPRa) =
g∑
j=1

pj

(
1−

(
1− 1

R

)∑g−1
j=1 Kjnj

)K
j

=

g−1∑
j=1

pjα
Kj , (8)

where
∑g−1
j=1 nj = n0. Next, we give a strategy to select Kmax which ensures a lower FPR of

Ada-BF than LBF.

12

Under review as a conference paper at ICLR 2020

Select Kmax = bK + g
2 − 1c. Then, we have

n0K =

g−1∑
j=1

njK = K

n1 + g−1∑
i=2

(n1 +

j−1∑
i=1

Ti) = n1(g − 1) +

g−2∑
j=1

Tj(g − j − 1)

=

2K

g − 2

 (g − 1)(g − 2)

2
n1 +

g−2∑
j=1

(g − 2)(g − 1− j)
2

Tj

≤ 2

g − 2

 (g − 1)(g − 2)

2
n1 +

g−2∑
j=1

(g + j − 2)(g − 1− j)
2

Tj

=

2

g − 2

g−1∑
j=1

(j − 1)nj (9)

By Eq 9. we further get the relationship between α and β.

g−1∑
j=1

Kjnj =

g−1∑
j=1

(Kmax − j + 1)nj ≤ n0
(
Kmax −

g

2
+ 1
)
≤ n0K =⇒ α ≤ β.

Moreover, by Eq. 3, we have,

E (FPRa) =
(1− c)(1− (cα)g)

(1
α − c)(αg − (cα)g)

αKmax ≤ (1− c)(1− (cα)g)

(1
α − c)(αg − (cα)g)

βKmax

≤ βKmax
α(c− 1)

cα− 1

< E (FPR)
(
1 + λ

λ
βKmax−K

)
≤ E (FPR)

(
1 + λ

λ
βbg/2−1c

)
.

Therefore, as g increases, the upper bound of E (FPRa) decreases exponentially fast. Moreover, since
1+λ
λ is a constant, when g is large enough, we have 1+λ

λ βbg/2−1c ≤ 1. Thus, the E (FPRe) is reduced
to strictly lower than E (FPR). �

Proof of Theorem 2: Let η = log(c)
log(µ) ≈

log(c)
log(0.618) < 0. By the tuning strategy described in the

previous section, we require the expected false positive items should be similar across the groups.
Thus, we have

p1 · µR1/n1 = pj · µRj/nj =⇒ Rj = nj

(
R1

n1
+ (j − 1)η

)
, for j ∈ [g − 1]

where Rj is the budget of buckets for group j. For group j, since all the queries are identified as keys
by the machine learning model directly, thus, Rg = 0. Given length of Bloom filter for group 1, R1,
the total budget of buckets can be expressed as,

g−1∑
j=1

Rj =

g−1∑
j=1

nj
n1
R1 + (j − 1)njη

Let p0 = Pr(s(x) < τ |x /∈ S) and pj = Pr(τj−1 ≤ s(x) < τj |x /∈ S). Let n0 denote the number
of keys with score less than τ , n0 =

∑
i:xi∈S

I(s(xi) < τ), and nj be the number of keys in group

13

Under review as a conference paper at ICLR 2020

j, nj =
∑

i:xi∈S
I(τj−1 ≤ s(xi) < τj). Due to τ = τg−1, we have

∑g−1
j=1 nj = n0. Moreover, since

τg−1 = τ , queries with score higher than τ have the same FPR for both disjoint Ada-BF and LBF.
So, we only need to compare the FPR of the two methods when the score is lower than τ . If LBF and
Ada-BF achieve the same optimal expected FPR, we have

p0 · µR/n0 =

g−1∑
j=1

pj · µRj/nj = g · p1 · µR1/n1

=⇒ R =
n0
n1
R1 − n0

log(p0/p1)− log(g)

log(µ)

=

g−1∑
j=1

[
nj
n1
R1 − nj

log(1−
(
1
c)
)g − log

(
1− 1

c

)
− log(g)

log(µ)

]
,

where R is the budget of buckets of LBF. Let Tj = nj+1 − nj ≥ 0. Next, we upper bound
∑g−1
j=1 nj

with
∑g−1
j=1(j − 1)nj .

g−1∑
j=1

nj = n1 +

g−1∑
i=2

(n1 +

j−1∑
i=1

Ti) = n1(g − 1) +

g−2∑
j=1

Tj(g − j − 1)

=
2

g − 2

 (g − 1)(g − 2)

2
n1 +

g−2∑
j=1

(g − 2)(g − 1− j)
2

Tj

≤ 2

g − 2

 (g − 1)(g − 2)

2
n1 +

g−2∑
j=1

(g + j − 2)(g − 1− j)
2

Tj

=

2

g − 2

g−1∑
j=1

(j − 1)nj

Therefore, we can lower bound R,

R ≥
g−1∑
j=1

[
nj
n1
R1 − (j − 1)nj

2(log(1−
(
1
c)
)g − log

(
1− 1

c

)
− log(g))

(g − 2) log(µ)

]
.

Now, we can lower bound R−
∑g−1
j=1 Rj ,

R−
g−1∑
j=1

Rj ≥
g−1∑
j=1

(j − 1)nj

[
−η −

2(log(1−
(
1
c)
)g − log

(
1− 1

c

)
− log(g))

(g − 2) log(µ)

]
.

Since η is a negative constant, while
2(log(1−(1

c))
g−log(1− 1

c)−log(g))
(g−2) log(µ) approaches to 0 when g is large.

Therefore, when g is large, η − 2(log(1−(1
c))

g−log(1− 1
c)−log(g))

(g−2) log(µ) < 0 and R −
∑g−1
j=1 Rj is strictly

larger than 0. So, disjoint Ada-BF consumes less memory than LBF to achieve the same expected
FPR.

14

	Introduction
	Review: Bloom Filter and Learned Bloom Filter
	A Strict Generalization: Adaptive Learned Bloom Filter (Ada-BF)
	Simplifying the Hyper-Parameters
	Analysis of Adaptive Learned Bloom Filter

	Disjoint Adaptive Learned Bloom Filter (Disjoint Ada-BF)
	Simplifying the Hyper-Parameters
	Analysis of Disjoint Adaptive Learned Bloom Filter

	Experiment
	Task1: Malicious URLs Detection
	Task 2: Virus Scan
	Sensitivity to Hyper-parameter Tuning
	Discussion: Sandwiched Learned Bloom filter versus Learned Bloom filter

	Conclusion
	Sensitivity to hyper-parameter tuning
	More comparisons between the LBF and sandwiched LBF
	Comparing the Bloom filter to Hierarchical Hashing
	Proof of the Statements

