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Abstract

We consider a dynamic assortment selection prob-
lem where the goal is to offer an assortment with
cardinality constraint K from a set of N possi-
ble items. The sequence of assortments can be
chosen as a function of the contextual informa-
tion of items, and possibly users, and the goal is
to maximize the expected cumulative rewards, or
alternatively, minimize the expected regret. The
distinguishing feature in our work is that feed-
back, i.e. the item chosen by the user, has a
multinomial logistic distribution. We propose
upper confidence interval based algorithms for
this multinomial logit contextual bandit. The first
algorithm is a simple and computationally more
efficient method which achieves an Õ(d

p
T ) re-

gret over T rounds with d dimensional feature
vectors. The second algorithm inspired by the
work of (Li et al., 2017) achieves an Õ(

p
dT )

with logarithmic dependence on N and increased
computational complexity because of pruning pro-
cesses.

1. Introduction

In many human-algorithm interactions, a learning agent
(algorithm) makes sequential decisions and receives user
(human) feedback for the choices it makes. The multi-
armed bandit (Lattimore & Szepesvári, 2019) is a model for
this sequential decision making with partial feedback. It is
a classic reinforcement learning problem that exemplifies
the exploration-exploitation tradeoff dilemma. This multi-
armed bandit model has found applications to a very diverse
set of problems such as sequential design of experiments
including learning click-through rates in search engines,
product recommendations in online retailing, movie sugges-
tions on streaming services, etc. Often, feature information
about options that the agent has or contextual information
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about the user is available. The contextual bandit extends
the multi-armed bandit by making the decision conditional
on this contextual/feature information. In many real world
problems including the aforementioned examples, the agent
offers multiple options to the user, rather than a single op-
tion as in traditional bandit action selection. Then the user
chooses one of the offered options (or chooses none) and the
agent receives a reward associated with the user feedback.

In this paper, we consider a dynamic assortment selection
which is a combinatorial variant of the bandit problem. The
goal is to offer a sequence of assortments of at most K
items from a set of N possible items. The sequence can
be chosen as a function of the contextual information of
items, and possibly users in order to minimize the expected
regret. The d-dimensional contextual information, or a set
of feature vectors, is revealed at each round t, allowing the
feature/contextual information of products to change over
time. The feedback here is the particular item chosen by the
user from the offered assortment. We assume that the item
choice follows a multinomial logistic (MNL) distribution.
This is a widely used model in dynamic assortment optimiza-
tion literature (Caro & Gallien, 2007; Rusmevichientong
et al., 2010; Sauré & Zeevi, 2013; Agrawal et al., 2017a;b;
Chen & Wang, 2017).

The multinomial logit (MNL) contextual bandit is a multi-
nomial generalization of (generalized) linear contextual ban-
dits (Filippi et al., 2010; Rusmevichientong & Tsitsiklis,
2010; Abbasi-Yadkori et al., 2011; Chu et al., 2011; Li et al.,
2017) — if an assortment contains a single item, then the
problem reduces to (generalized) linear bandits. This gen-
eralization is non-trivial since the MNL model cannot be
expressed in the form of generalized linear model (Chen
et al., 2018); hence, the results of Li et al. (2017) do not
apply. Furthermore, in contrast to the standard contextual
bandit problems, in the MNL contextual bandit, the item
choice (feedback) is a function of the offered assortment.
Thus the regret analysis is more complicated.

We propose the first UCB based algorithms for this MNL
contextual bandit. We propose two different algorithms
that trade-off computational complexity with achieved re-
gret. The first algorithm is computationally efficient with
a Õ(d

p
T ) regret bound over T rounds. The second algo-

rithm, which utilizes the technique adapted from the works
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of Auer (2002) and Li et al. (2017), achieves the improved
regret bound of Õ(

p
dT ). However, this second algorithm

now has logarithmic dependence on N and increased compu-
tational complexity because of assortment pruning. We also
generalize a finite sample normality type confidence bound
for the maximum likelihood estimator (MLE) of GLM (Li
et al., 2017) to the MNL model.

2. Related Work

The multinomial logit model (MNL) (Plackett, 1975; Mc-
Fadden, 1978; Luce, 2012) is one of the most widely used
choice models for assortment selection problems. The prob-
lem of computing the optimal assortment (static assortment
optimization problem), when the MNL parameters, i.e. user
preferences, are known a priori, is well studied (Talluri &
Van Ryzin, 2004; Davis et al., 2014; Désir et al., 2014).
Our work belongs to the literature on dynamic assortment
optimization. Caro & Gallien (2007) consider the setting
where the demand for items in an assortment is indepen-
dent. Rusmevichientong et al. (2010) and Sauré & Zeevi
(2013) consider the problem of minimizing regret under the
MNL choice model and present an “explore first then exploit
later” approach. Rusmevichientong et al. (2010) showed
O(N2 log2 T ) regret bound, where N is the number of total
candidate items. Sauré & Zeevi (2013) later improved the
bound to O(N log T ). However, these methods require a
priori knowledge of “separability” between the true optimal
assortment and the other sub-optimal alternatives.

More recent work by Agrawal et al. (2017a;b); Cheung &
Simchi-Levi (2017); Chen & Wang (2017) also incorporated
MNL models into dynamic assortment optimization and for-
mulated the problem into an online regret minimization
problem without requiring a priori knowledge on separa-
bility. Agrawal et al. (2017a) proposed UCB-style algo-
rithm which shows Õ(

p
NT ) regret bound (where Õ sup-

presses logarithmic dependence on T , N , or K). Agrawal
et al. (2017b) achieve the same order of the regret bound
Õ(
p
NT ) using Thompson sampling (Thompson, 1933)

technique with improved empirical performance. Chen &
Wang (2017) show a matching lower bound of ⌦(

p
NT ).

All of this previous work on MNL bandits assumes each
item is associated with a unique parameter, i.e. one can-
not learn across items. In our proposed MNL contextual
bandits, the utility of item i at time t is of the form x>

t,i
✓⇤

some fixed but unknown utility parameter ✓⇤; hence, we can
learn across items. When the feature dimension d⌧

p
N ,

learning across items allows one to reduce the regret bound
from Õ(

p
NT ) to Õ(d

p
T ). However, one cannot directly

incorporate (time-varying) contextual information into the
previous work (see, e.g. Agrawal et al. (2017a;b)) since
these methods require that the same assortment be offered
repeatedly for a random number of time periods until an

outside choice is observed. Chen et al. (2018) establishes
Õ(d
p
T ) regret bound for the MNL contextual bandit sim-

ilar to our first algorithm, UCB-MNL (Algorithm 1) with
Õ(d
p
T ) regret. However, our UCB-MNL still has a tighter

logarithmic dependence and additive terms (and clearly our
second algorithm, CB-MNL (Alogithm 2) has a much tighter
bound with Õ(

p
dT ) regret). There is a fundamental dif-

ference between Chen et al. (2018) and our UCB-MNL.
Chen et al. (2018) enumerates the exponentially many (N
choose K) assortments and builds confidence bounds for
each of them. In contrast, UCB-MNL only builds confi-
dence bounds for each of the N different items. Chen et al.
(2018) do recognize the computational issue and propose
an approximate optimization algorithm to somewhat rem-
edy it; however, not completely. Consider the simple case
where each item has unit revenue. In this case, assortment
selection under UCB-MNL reduces to sorting items based
upper-confidence bounds and the run time is independent of
K, whereas Chen et al. (2018) still have to consider all the
(N choose K) assortments.

Linear contextual bandits have been widely studied (Auer,
2002; Dani et al., 2008; Rusmevichientong & Tsitsiklis,
2010; Abbasi-Yadkori et al., 2011; Chu et al., 2011; Agrawal
& Goyal, 2013). Filippi et al. (2010); Li et al. (2017) extend
the linear contextual bandit to scalar, monotone, general-
ized linear bandit. Filippi et al. (2010) established Õ(d

p
T )

regret bound. Li et al. (2017) improved the regret bound
to Õ(

p
dT ) by establishing a new finite-sample confidence

bound for MLE in generalized linear models (GLM). How-
ever, these results do not apply directly to our problem,
since the choise probability of an item in an assortment is
non-linear and non-monotone in the utility parameter ✓⇤.

Notations

For a vector x 2 Rd, we use kxk to denote its `2-norm
and x> its transpose. Bd := {x 2 Rd : kxk  1} is the
d-dimensional unit ball centered at the origin. The weighted
`2-norm associated with a positive-definite matrix V is de-
fined by kxkV :=

p

x>V x. The minimum and maximum
singular values of a matrix V are written as �min(V ) and
kV k, respectively. The trace of a matrix V is trace(V ). For
two symmetric matrices V and W of the same dimensions,
V ⌫ W means that V �W is positive semi-definite. We
define [n] for a positive integer n to be a set containing pos-
itive integers up to n, i.e., {1, 2, ..., n}. Finally, we define S
to be the set of candidate assortments with size constraint at
most K, i.e. S = {S ⇢ [N ] : |S|  K}.

3. Problem Formulation

We formulate the problem of MNL contextual bandits as
follows. Consider an option space containing N distinct
items, indexed by i 2 [N ]. At time t, feature vectors xt,i 2
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Rd for every base item i 2 [N ] are revealed to the agent.
Each feature vector combines the information of the user
and the corresponding item i. For example, suppose the user
at time t is characterized by a feature vector ut and the base
item i has a feature vector vt,i (note that we allow feature
vectors for an item and a user to change over time), then
we can use xt,i = vec(utv>t,i), the vectorized outer-product
of ut and vt,i, as the combined feature vector of item i a at
time t. If ut is not available, we can use product dependent
features only xt,i = vt,i. Given this contextual information,
at every round t, the agent selects an assortment St ⇢ S and
observes the user purchase decision ct 2 St [ {0}, where
{0} denotes “outside option” which means the user did not
choose any item offered in St. This selection is given by a
multinomial logit (MNL) choice model. Under this model,
the probability that a user chooses item i 2 St is given by,

pt,i(St, ✓
⇤) =

8
>>>>>><

>>>>>>:

exp{x>
t,i
✓⇤}

1 +
P

j2St
exp{x>

t,j
✓⇤}

, if i 2 St

1

1 +
P

j2St
exp{x>

t,j
✓⇤}

, if i = 0

0, otherwise

where ✓⇤ 2 Rd is an unknown time-invariant parameter. We
first make the following assumptions:

Assumption 1. z Each feature vector xt,i is drawn i.i.d.

from an unknown distribution ⌫, with kxt,ik  1 all t, i and

there exists a constant �0 > 0 such that E[xt,ix>
t,i
] � �0.

In fact, the i.i.d. assumption on feature vectors is only
required during the initialization phase to ensure the invert-
ibility of VT0 , which we discuss in Section 5.1.

Assumption 2. For every item i 2 S and any S ⇢ S and

all t,  := mink✓�✓⇤k1 pt,i(S, ✓)pt,0(S, ✓) > 0.

The asymptotic normality of MLE implies the necessity
of this assumption. Note that this assumption is typical
and equivalent or more restrictive assumptions appear in
(generalized) linear contextual bandit literature (Filippi et al.,
2010; Li et al., 2017) to ensure the Fisher information matrix
is invertible. We discuss the need for this assumption in
more detail in Section 4.

The revenue parameter rt,i for each item is also revealed
at round t. Without loss of generality, assume krt,ik  1.
Then, the expected revenue corresponding to the assortment
St is given by

Rt(St, ✓
⇤) =

X

i2St

rt,i exp{x>
t,i
✓⇤}

1 +
P

j2St
exp{x>

t,j
✓⇤}

. (1)

Let S⇤
t

be the offline optimal assortment at time t under full
information when ✓⇤ is known, i.e., when the true MNL

probabilities pt,i(S, ✓⇤) are known a priori:

S⇤
t
= argmax

S⇢S
Rt(S, ✓

⇤). (2)

Consider a time horizon T , where a subset of items can be
offered at time periods t = 1, ..., T . The agent does not
know the value of ✓⇤ (hence pt,i(S, ✓⇤) is not known) and
can only make sequential assortment decisions, S1, ..., ST

at rounds 1, ..., T respectively. Hence, the main challenge is
how to construct an algorithm that simultaneously learns the
unknown parameter ✓⇤ and sequentially makes the decision
on offered assortment based on past choices and observed
responses to maximize cumulative expected revenues over
the time horizon. The performance of an algorithm is usually
measured by the regret, which is the the gap between the
expected revenue generated by the assortment chosen by
the algorithm and that of the offline optimal assortment. We
define the cumulative expected regret is defined as

RT = E
 

TX

t=1

(Rt(S
⇤
t
, ✓⇤)�Rt(St, ✓

⇤))

!

where Rt(S⇤
t
, ✓⇤) is the expected revenue corresponding to

the offline optimal assortment at time t.

4. MLE for Multinomial Logistic Regression

We consider the use of maximum likelihood to estimate
the unknown parameter ✓⇤ of the MNL model. Before
we express the likelihood function, we first use a one-hot
encoding with a binary vector yt 2 {0, 1}|St| for the user
choice ct in which yt,i = 1 if the i-th item in the assortment
St is chosen and and yt,j = 0 for all j 2 St, j 6= i. Then,
the likelihood function is then given by

p(Y |✓⇤) =
nY

t=1

Y

i2St

(pt,i(St, ✓
⇤))yt,i

where Y is {yt}nt=1. Taking the negative logarithm gives

E(✓⇤) = � log p(Y |✓⇤) = �
nX

t=1

X

i2St

yt,i log pt,i(St, ✓
⇤)

which is known as the cross-entropy error function for the
multi-class classification problem. Now, taking the gradient
of this error function with respect to ✓⇤, we obtain

r✓⇤E(✓⇤) =
nX

t=1

X

i2St

(pt,i(St, ✓
⇤)� yt,i)xt,i

From the classical likelihood theory (Lehmann & Casella,
2006), as the sample size n goes to infinity, we know
the MLE ✓̂n is asymptotically normal, with ✓̂n � ✓⇤ !
N (0, I�1

✓⇤ ) where I✓⇤ is the Fisher information matrix.
We show in the proof of Theorem 2 that I✓⇤ is lower
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bounded by
P

t

P
i2St

pt,i(✓⇤)pt,0(✓⇤)xt,ix>
t,i

. Hence, if
pt,i(✓⇤)pt,0(✓⇤) �  > 0, then we can ensure that I✓⇤ is in-
vertible and prevent asymptotic variance of x>✓̂ from going
to infinity for any x. Therefore, this justifies the need for
Assumption 2 to ensure pt,i(✓⇤)pt,0(✓⇤) is not too small.

5. Algorithms and Main Results

In this section, we present two algorithms for the MNL con-
textual bandit problem and their regret analyses. While the
first algorithm is simpler and computationally more efficient,
the second algorithm provides lower expected regret.

5.1. Algorithm UCB-MNL

The basic idea of the algorithm is to maintain a confidence
set for the unknown true utility values, or more the pre-
cisely parameter of the utility function. The techniques of
upper confidence bounds (UCB) have been widely known
to be effective in balancing the exploration and exploita-
tion trade-off in many bandit problems, including K-arm
bandits (Auer et al., 2002; Lattimore & Szepesvári, 2019),
linear bandits (Abbasi-Yadkori et al., 2011; Auer, 2002; Chu
et al., 2011; Dani et al., 2008) and generalized linear bandits
(Filippi et al., 2010; Li et al., 2017).

For each round t, the confidence set of ✓⇤ is constructed
from the feature vectors {x1,i}i2S1 , ..., {xt,i}i2St and the
observed feedback of selected items y1, ..., yt�1 from all
previous rounds. Suppose ✓̂t is the current estimator of the
true parameter ✓⇤ after time t. And, our estimator ✓̂t lies
within in the confidence set with radius ↵ > 0, which we
show later in Lemma 2 holds true with a high probability
as a function of ↵. Intuitively, the larger the radius ↵ is, the
more exploration will take place. Now, an exploitation is
to offer a set S such that maximizes the estimated average
revenue Rt(S, ✓̂t), whereas an exploration is to choose a
set which has a large variance in expected revenue. In the
case of linear bandits or generalized linear bandits with an
increasing inverse link function, balancing exploitation and
exploration can be done simply by taking an action that
maximizes the sum of x>

t,i
✓̂t and the variance. However,

in MNL bandits since the choice probability of an item is
non-linear with the parameters of utility function (and the
expected revenue is also weighted by the revenue for each
item), we need to construct upper confidence bounds more
carefully.

First we consider the following upper bound of x>
t,i
✓̂t,

zt,i := x>
t,i
✓̂t�1 + ↵kxt,ikV �1

t�1
(3)

where Vt =
P

t

⌧=1

P
i2St

x⌧,ix>
⌧,i
2 Rd⇥d is a symmetric

positive definite matrix. We show later in Lemma 3 that
zt,i is indeed an upper bound of x>

t,i
✓⇤ if ✓̂t�1 lies within in

the confidence set of ✓⇤. Then, we construct the following

optimistic estimate of the expected revenue

R̃t(S) :=

P
i2S

rt,i exp (zt,i)

1 +
P

j2S
exp (zt,j)

.

Now, we assume an access to an optimization oracle
which returns the assortment choice at time t, St =
argmaxS⇢S R̃t(S). This leads to Algorithm 1.

Algorithm 1 UCB-MNL
1: Input: total rounds T , initialization rounds T0 and con-

fidence radius ↵
2: Initialization: for t 2 [T0]
3: Randomly choose St with |St| = K
4: Vt  Vt�1 +

P
i2St

xt,ix>
t,i

5: for all t = T0 + 1 to T do

6: Compute St = argmax
S⇢S R̃t(S)

7: Offer St and observe yt (user choice at time t)
8: Update Vt  Vt�1 +

P
i2St

xt,ix>
t,i

9: Compute MLE ✓̂t by solving the equation
tX

⌧=1

X

i2S⌧

⇣
p⌧,i(S⌧ , ✓̂t)� y⌧,i

⌘
x⌧,i = 0 (4)

10: t t+ 1
11: end for

In Algorithm 1, during the initialization phase, we first
randomly choose an assortment St with exactly K items
(note that after initialization, St can be smaller than K) to
ensure a unique solution of (4). The initialization duration
T0 is specified later in Theorem 1, which is chosen to ensure
that �min(VT0) is large enough so that VT0 to be invertible.
The following proposition allows us to find such T0. Its
proof is deferred to the appendix.
Proposition 1. Let x⌧,i be drawn i.i.d. from some distribu-

tion ⌫ with kx⌧,ik  1 and E[x⌧,ix>
⌧,i
] � �0 (Assumption

1). Define VT0 =
P

T0

⌧=1

P
i2S⌧

x⌧,ix>
⌧,i

, where T0 is the

length of random initialization. Suppose we run a random

initialization with assortment size K for duration T0 which

satisfies

T0 �
1

K

 
C1

p
d+ C2

p
log T

�0

!2

+
2B

K�0

for some positive, universal constants C1 and C2. Then,

�min(VT0) � B with probability at least 1� T�1
.

The proposition implies that we can have �min(VT0) �
K with a high probability if we run the initialization for
O(��2

0 (d+ log T )) rounds. Similar to Filippi et al. (2010)
and Li et al. (2017), the i.i.d. assumption (in Assumption
1) on the context xt,i is only needed to ensure that VT0

is invertible at the end of the initialization phase. In the
rest of the regret analysis, we do not require this stochastic
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assumption. Hence, after the initialization, xt,i can even be
chosen adversarily as long as kxt,ik is bounded.

The following lemma shows that the optimistic expected
revenue R̃t(St) is an upper bound of the true expected
revenue of the optimal assortment Rt(S⇤

t
, ✓⇤). The lemma

is an adaptation of Lemma 4.2 in (Agrawal et al., 2017a)
which is shown for non-contextual setting.

Lemma 1. Suppose S⇤
t

is the offline optimal assortment as

defined in (2), and suppose St = argmaxS⇢S R̃t(S). If for

every item i 2 S⇤
t

, zt,i � x>
i
✓⇤, then the revenues satisfy

the following inequalities for all round t:

Rt(S
⇤
t
, ✓⇤)  R̃t(S

⇤
t
)  R̃t(St).

It is important to note that Lemma 1 does not claim that
the expected revenue is generally a monotone function, but
only the value of the expected revenue corresponding to the
optimal assortment increases with an increase in the MNL
parameters (Agrawal et al., 2017a).

REGRET ANALYSIS OF UCB-MNL

We present the following upper bound on the regret of the
policy stated in Algorithm 1.

Theorem 1. There exists a universal constant C0 > 0, such

that if we run UCB-MNL with ↵ = �



p
2d log(T ) for total

of T rounds with T0 = O(��2
0 (d+ log T )) assortment size

constraint K, then the expected regret of the algorithm with

is upper-bounded by

RT  T0 +O(1) +
2�d



s

2T log

✓
T

d

◆
log T

 O
⇣
d
p
T log (T/d) log T

⌘

The theorem demonstrates an Õ(d
p
T ) regret bound for

UCB-MNL which is independent of N ; hence, applicable to
the case of infinite items. Chen et al. (2018) established the
lower bound result ⌦(d

p
T/K) for MNL bandits. When

K is small, which is typically true in most applications,
the regret upper-bound in Theorem 1 demonstrates that our
policy is almost optimal.

Proof. Proof of Theorem 1

The proof of the regert bound involves bounding k✓̂t�✓⇤kVt

and
P

T

t=1

P
i2St
kxt,ik

2
V

�1
t�1

as well as an immediate regret
bound. We present the following lemmas whose proofs are
deferred to the appendix.

The first lemma below shows that the true parameter ✓⇤ lies
within an ellipsoid centered at ✓̂t with confidence radius ↵
under Vt norm. Recall that Proposition 1 ensures that we

have �min(VT0) � K at the end of the initialization phase if
we run the initialization with size K assortments; hence the
algorithm satisfies the condition of the following lemma.

Lemma 2. Define ↵t = �



q
2d log

�
1 + t

d

�
+ log t. If

�min(VT0) � K, then it follows that

k✓̂t � ✓⇤kVt  ↵t (5)
holds for all t > T0 with a probability 1�O(t�1).

We emphasize that this finite-sample estimation error bound
is new for MNL model.

The following lemma shows our optimistic utility estimate
zt,i is an upper confidence bound for the expected utility
x>
t,i
✓⇤ if the true ✓⇤ is contained in the confidence set of ✓̂t.

Lemma 3. Let zt,i be defined as (3). If event E
✓

holds, then

we have

0  zt,i � x>
t,i
✓⇤  2↵tkxt,ikV �1

t�1
.

Then we show that the expected revenue has some Lipschitz
property and bound the immediate regret with the maximum
variance over the assortment.

Lemma 4. Suppose that zt,i � x>
t,i
✓⇤  2↵tkxt,ikV �1

t�1

holds for i 2 St where St is the chosen assortment in round

t. Then, we have

R̃t(St)�Rt(St, ✓
⇤)  2↵t max

i2St

kxt,ikV �1
t�1

The next technical lemma upper bounds the sum of squared
norms.

Lemma 5. Define VT0 =
P

T0

t=1

P
i2S⌧

xt,ix>
t,i

and VT =

VT0 +
P

T

t=V0+1

P
i2St

xt,ix>
t,i

. If �min(VT0) � K, then

we have
TX

t=1

max
i2St

kxt,ik
2
V

�1
t�1
 2d log

✓
T

d

◆

Now we can combine the results to show the cumulative
regret bound. First we define the high probability events for
the concentration of parameter and the random initialization.

Definition 1. Define the following events:

E
� = {�min(VT0) � K}

E
✓ = {k✓̂t � ✓⇤kVt  ↵t, 8t  T}

Then we break the regret into the initialization phase and
the learning phase:

RT  T0 + E
"

TX

t=⌧+1

⇣
R(S̃⇤

t
, ✓⇤)�R(St, ✓

⇤)
⌘#

 T0 + E
"

TX

t=⌧+1

⇣
R̃t(St)�R(St, ✓

⇤)
⌘#
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where the last inequality comes from optimistic revenue
estimation by Lemma 1. Now, we break the regret of the
learning phase further into two components – when both
event E✓ in Lemma 2 and event E� in Proposition 1 are true
(i.e. E✓

\ E
�) and when either of the events is not true, (i.e.

Ē
✓
[ Ē

�).

RT  T0 + E
"

TX

t=T0+1

⇣
R̃t(St)�Rt(St, ✓

⇤)
⌘ �

E
✓
\ E

�
�
#

+ E
"

TX

t=T0+1

⇣
R̃t(St)�Rt(St, ✓

⇤)
⌘ �

Ē
✓
[ Ē

�
�
#

 T0 +
TX

t=1

2↵max
i2St

kxt,ikV �1
t�1

+O(1)

where the last inequality is from Lemma 4 and ↵ = ↵T .
Applying Cauchy-Schwarz inequality in the second term, it
follows that

RT  T0 + 2↵

vuut
TX

t=1

max
i2St

kxt,ik
2
V

�1
t�1

+O(1).

Applying Lemma 5 for
P

T

t=1 maxi2St kxt,ik
2
V

�1
t�1

,

RT  T0 + 2↵

s

2d log

✓
T

d

◆
+O(1).

Finally, choosing ↵ = �



q
2d log

�
1 + T

d

�
+ log T , we

have

RT  T0 +
2�d



s

2T log

✓
T

d

◆
log T +O(1)

5.2. Non-asymptotic Normality of the MLE for MNL

Before we present our next algorithm CB-MNL, we first
present Theorem 2, which is a crucial component in the
regret analysis of CB-MNL which is proposed in Section 5.3.
The following theorem is a generalization of Theorem 1 in
Li et al. (2017), which presents a finite-sample version of the
classical asymptotic normality of the MLE for generalized
linear model (GLM). Our version is a generalization to a
multinomial setting, i.e. if St contains only a single item,
then it is equivalent to the GLM version presented in Li et al.
(2017).

Theorem 2. Define Vt =
P

t

u=1

P
i2St

x⌧,ix>
⌧,i

, and let

� > 0 be given. Furthermore, assume that

�min(Vt) �
4096�2

2

✓
d2 + log

1

�

◆
(6)

Then, with probability at least 1� 3�, the maximum likeli-

hood estimator satisfies, for any x 2 Rd
, that

|x>(✓̂t � ✓⇤)| 
5�



r
log

1

�
kxk

V
�1
t

The proof of Theorem 2 is presented in the appendix. It is
important to note that although the statement of the theorem
is similar to the GLM version in Li et al. (2017). The GLM
version is not directly applicable to the MNL model, due to
the dependency of the choice probability over different items
i, j 2 St and their outer product of the contexts xt,ix>

t,j
in

the Fisher information matrix (see the proof of Theorem 2
in the appendix). This theorem characterizes the behavior of
MLE on every direction. The theorem implies that x>(✓̂t �
✓⇤) has a sub-Gaussian tail bound for any x 2 Rd, which
enables us to improve the regret bound by the factor of

p
d

compared to Theorem 1 for UCB-MNL.

5.3. Algorithm CB-MNL

Inspired by Li et al. (2017), we propose another algorithm
CB-MNL (Algorithm 3) which uses MLE-MNL (Algorithm
2) as a sub-routine. This algorithm operates on the radius of
the confidence bound, independent of expected mean utility,
to perform exploration. At round t, the algorithm screens
the candidate actions based on the value of maxi2S w(`)

t,i

through L epochs until an assortment St is chosen.

The algorithm maintains { `}
L

`=0, the sets of time in-
dices which are the partitions of the entire time horizon
{1, 2, ..., T}. The purpose of this partitioning is to ensure
that the choice responses yt in each index set ` are indepen-
dent, so that we can apply the normality result in Theorem
2 to each of  ` individually (then combine them together to
get the total regret). The idea was first introduced by Auer
(2002) and further developed by Li et al. (2017).

Algorithm 2 MLE-MNL
1: Input: parameter ↵, index set  (t), candidate set A
2: Compute MLE ✓̂t by solving the equation

X

⌧2 (t)

X

i2S⌧

(p⌧,i(S⌧ , ✓)� y⌧,i)x⌧,i = 0

3: Update Vt =
P

⌧2 (t)

P
i2S⌧

x⌧,ix>
⌧,i

4: Compute the following:

wt,i = ↵kxt,ikV �1
t

for all i 2 [N ]

Wt = 2max
i2I

wt,i

where I = {i 2 S : S 2 A}

At each round t, the algorithm goes though epochs ` up to
L until St is chosen.
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• Sub-routine: in step (a), we run MLE-MNL (Algorithm
2) which uses the normality result to compute w(`)

t,i
for

all i, W(`)
t

, and ✓̂(`)
t

. We can utilize the normality result
here since {yt, t 2  `}’s are independent given the
feature vectors in each  ` (see Lemma 6).

• Exploitation: in step (b), if the maximal confidence
interval of an assortment is very small, smaller than

1
K

p
T

, for all possible candidate sets, then we perform
pure exploitation. This step’s contribution to the total
regret will be small.

• Exploration: in step (c), if there is a set that has large
confidence interval (larger than 2�`), then we choose
that set as St. Then we update the index set  ` to
include the timestamp t.

• Pruning: finally, step (d) is a pruning step, where
we remove clearly sub-optimal sets and keep the sets
which are possibly optimal.

Algorithm 3 CB-MNL
1: Input: Lengths of trials T and pilot ⌧ , parameter ↵
2: Initialization: for t 2 [⌧ ]
3: randomly choose St with |St| = K
4: set L = b 12 log2 T c, and  0 = · · · =  L = ?.
5: for all t = ⌧ + 1 to T do

6: Initialize A1 = S and ` = 1
7: while St is empty do

8: (a). Run MLE-MNL with A`, ↵ and  ` [ [⌧ ] to
compute ✓̂(`)

t
, w(`)

t,i
, W(`)

t

9: (b). If W
(`)
t


1p
T

,

10: set St = argmax
S2A`

Rt(S, ✓̂
(`)
t

);
update  0 =  0 [ {t}

11: (c). Else if W
(`)
t

> 2�`,
12: set St = argmax

S2A`

P
i2S

w(`)
t,i

;
update  ` =  ` [ {t}

13: (d). Else if W
(`)
t
 2�`,

14: compute M
(`)
t

= maxS2A` Rt(S, ✓̂
(`)
t

)

15: A`+1 =
n
S 2 A` : Rt(S, ✓̂

(`)
t

) �M
(`)
t
� 2 · 2�`

o

16: ` `+ 1
17: end while

18: end for

If the algorithm does not choose St in epoch `, then it
moves on to the next epoch ` + 1 and repeat the process
until St is chosen either through exploitation action in (b)
or exploration action in (c). Note that when maximizing the
expected revenue Rt(S, ✓̂) in step (b) or in step (d), it uses
the expected revenue defined in (1) replacing ✓⇤ with the
current estimator ✓̂(`)

t
— it is not the optimistic expected

revenue R̃t(S) which is used in Algorithm 1.

Adapted from Lemma 14 of Auer (2002) and Lemma 4 of
Li et al. (2017), the following result shows that the sam-
ples collected from Algorithm 3 in each index set  ` are
independent. The proof is presented in the appendix.

Lemma 6. For all ` 2 [L] and t 2 [T ], given the set of

feature vectors in index set  `, {{xt,i}i2St , t 2  `}, the

corresponding choice responses {yt, t 2  `} are indepen-

dent random variables.

REGRET ANALYSIS OF CB-MNL

Independent samples enable us to apply the non-asymptotic
normality result in Theorem 2. We present the following
regret bound of CB-MNL (Algorithm 3).

Theorem 3. There exists a universal constants C and

C0, such that if we run CB-MNL algorithm with T0 =
C0

�
2
0K

p
dT log T and ↵ = 5�



p
log(TN log T ) for T � T 0

rounds, where

T 0 = ⌦

✓
�2

4
max

⇢
log TN

d
, d3
�◆

, (7)

the expected regret of the algorithm is upper-bounded as

RT 
C�



p
dT log(T/d) log(TN log T ) log T

+ T0 +O(1) + 2
p

T

 O
⇣p

dT log(T/d) log(TN log T ) log T
⌘
.

The theorem establishes Õ(
p
dT ) regret bound for CB-

MNL algorithm. Chu et al. (2011) showed the minimax
lower bound of the expected regret of ⌦(

p
dT ) in finite-

armed linear bandits, a special of the GLM bandits, which
is again a special case (when the assortment size is exactly
1) of MNL contextual bandits we consider in the work. To
the best of our knowledge, this is the first algorithm which
achieves the rate of Õ(

p
dT ) regret in MNL contextual ban-

dits. Comparing with Theorem 1 for UCB-MNL (Algorithm
1), the improvement of

p
d factor comes from avoiding sep-

arately bounding k✓⇤ � ✓̂tkVt and kxk
V

�1
t

, each of which
contains

p
d term; hence resulting in extra

p
d when com-

bined. Note that the regret bound in Theorem 3 has logarith-
mic dependence on N , therefore CB-MNL is not applicable
to an infinite number of total items. However, when N is
not exponentially large, the rate of CB-MNL is faster.

Proof of Theorem 3. We first present two lemmas to help
bound the cumulative expected regret. The first lemma
ensures that normality results (Theorem 2) holds with given
confidence radius ↵ for all items.
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Lemma 7. Let T0 = C0

�
2
0K

p
dT log T . Suppose T � T0

where T0 is defined as (7). Fix ↵ > 0. Define the following

event:

E
u

t
:=
n
|x>

t,i
✓̂t�1 � x>

t,i
✓⇤|  ↵kxt,ikV �1

t
, 8i 2 [N ]

o

(8)
Then, event E

u

t
holds for all t > T0 (and for all epochs `

within each round t) with probability at least 1�O(t�1)

Proof sketch. The proof follows Lemma 6 and Theorem 2.
Lemma 6 ensure independent samples. Using Proposition
2 we lower bound �min(VT0) at the end of initialization to
successfully apply . Denote this event by E

�

⌧
. Then our

choice of ⌧ indeed ensures E�

⌧
holds with high probability.

This allows us to use Theorem 2. Then we apply union
bound for all items i. Then solving for � gives the results.

The next lemma bounds the immediate regret of CB-MNL,
breaking down to two choice scenarios — when an assort-
ment is chosen for exploitation (step (b)) or for exploration
(step (c)) in Algorithm 2. The proof is deferred to the ap-
pendix.

Lemma 8. Suppose that event E
u

t
in (8) holds, and that

in round t, the assortment St is chosen at stage `t. Then

S⇤
t
2 A` for all `  `t. Furthermore, we have

Rt(S
⇤
t
, ✓⇤)�Rt(St, ✓

⇤) 

8
><

>:

2
p
T
, if St chosen in step(b)

8

2`t
, if St chosen in step(c)

Then, we follow the similar arguments of Li et al. (2017)
to show the cumulative expected regret bound. First, de-
fine V`,t =

P
t2 `

P
i2St

xt,ix>
t,i

, then by Lemma 5 and
CauchySchwarz inequality, we have

X

t2 `

max
i2St

w(`)
t,i

=
X

t2 `

max
i2St

↵kxt,ikV �1
`,t

 ↵
p
2| `|d log(T/d).

However, from the choices made at exploration steps (step
(c)) of Algorithm 3, we know

2�`
| `|  2

X

t2 `

max
i2St

w(`)
t,i

for ` 2 {1, ..., L}. Now, we combine the two inequalities
above. Then it follows that

| `|  2`+1↵
p
2| `|d log(T/d). (9)

Note that each index set  ` is a disjoint set with [L
`=0 ` =

{t + 1, ..., T}. Then, similar to the first steps in the proof

of Theorem 1, we break the regret into three components –
when both event Eu

t
in (8) and event E�, which is to ensure

the minimum eigenvalue of VT0 is large enough, are true
(Eu

t
\E

�) and when either of the events is not true (Ēu

t
[ Ē

�),
and the random initialization phase with length T0. Note
that we need the minimum eigenvalue of VT0 to be larger
than the case in Definition 1 but we can still use Proposition
1 to ensure such case with probability 1�O(T�1).

RT  T0 + E
"

TX

t=T0+1

(R(S⇤, ✓⇤)�R(St, ✓
⇤))

�
E
u

t
\ E

�
�
#

+ E
"

TX

t=T0+1

(R(S⇤, ✓⇤)�R(St, ✓
⇤))

�
Ē
u

t
[ Ē

�
�
#

We can decompose the regret into the disjoint stages
recorded by  `.

RT  T0 + E
"
X

t2 0

(R(S⇤, ✓⇤)�R(St, ✓
⇤))

�
E
u

t
\ E

�
�
#

+ E
"

LX

`=1

X

t2 `

(R(S⇤, ✓⇤)�R(St, ✓
⇤))

�
E
u

t
\ E

�
�
#

+O(1)

 T0 +
2
p
T
| 0|+

LX

`=1

8

2`
| `|+O(1)

 T0 + 2
p

T +
LX

`=1

16↵
p

2| `|d log(T/d) +O(1)

 T0 + 2
p

T + 16↵

r
2dLT log

T

d
+O(1)

where the third inequality uses (9) and the last inequal-
ity is by Cauchy-Schwartz inequality. Now, we choose
↵ = 5�

p
log(TN log T ), T0 = C0

�
2
0

p
dT log T and L =

1
2 log T , then we have the regret bound in Theorem 3.

6. Discussions

In this paper, we study the dynamic assortment selection
problem under an MNL contextual model. We propose
two algorithms for MNL contextual bandits which learn the
parameters of the underlying choice model while simultane-
ously maximizing the cumulative revenue. While the first
algorithm UCB-MNL achieves the optimal rate for the case
of infinite number of items, the second algorithm CB-MNL
achieves a faster rate for the case of finite number of items
at each round.
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Lattimore, T. and Szepesvári, C. Bandit Algorithms. Cam-
bridge University Press (preprint), 2019.

Lehmann, E. L. and Casella, G. Theory of point estimation.
Springer Science & Business Media, 2006.

Li, L., Lu, Y., and Zhou, D. Provably optimal algorithms
for generalized linear contextual bandits. In International

Conference on Machine Learning, pp. 2071–2080, 2017.

Luce, R. D. Individual choice behavior: A theoretical

analysis. Courier Corporation, 2012.

McFadden, D. Modeling the choice of residential location.
Transportation Research Record, (673), 1978.

Plackett, R. L. The analysis of permutations. Applied

Statistics, pp. 193–202, 1975.

Rusmevichientong, P. and Tsitsiklis, J. N. Linearly parame-
terized bandits. Mathematics of Operations Research, 35
(2):395–411, 2010.

Rusmevichientong, P., Shen, Z.-J. M., and Shmoys, D. B.
Dynamic assortment optimization with a multinomial
logit choice model and capacity constraint. Operations

research, 58(6):1666–1680, 2010.
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