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Abstract

Previous studies in numerical analysis have shown how the calculation of a Ja-
cobians, Hessians, and their factorizations can be accelerated when their sparsity
pattern is known. However, accurate Jacobian and Hessian sparsity patterns cannot
be computed numerically, leaving the burden on the user to provide them. In this
manuscript we develop a method for the accurate and efficient construction of
sparsity patterns by transforming an input program into one that computes the
sparsity pattern of its Jacobian or Hessian. Our implementation, which we demon-
strate on partial differential equations, is a scalable technique for acceleration of
automatic differentiation on arbitrarily complex multivariate programs. This work
also demonstrates that the effectiveness of dynamic program analysis when applied
to differentiable programming is yet to be fully realized.

1 Introduction

Scientific and engineering models are no longer simple mathematical functions but instead comprise
of intricate programs with interconnected modules. Because of their programmatic structure, it may
be nearly impossible to directly write down their mathematical form. In addition, given the high
degree of collaboration and interdisciplinary work, it may be difficult for any one author to know the
entirety of a model, as is demonstrated in many modular climate models like CCSM3 [7]. However,
it is becoming increasingly common to want to solve inverse problems for complex programmatic
models which may contain concepts from many disciplines including differential equations and neural
networks [3, 15, 1]. Thus automated program analysis must replace manual mathematical analysis in
order to derive properties such as Jacobians and adjoints of the model.

In this manuscript, we introduce sparsity programming: a method for automatic detection of Jacobian
and Hessian sparsity in high level codes that are to be automatically differentiated. By propagating
metadata through a program execution in a just-in-time compiled language, our methodology is able
to efficiently build an accurate sparsity pattern.

Differentiable programming has seen the effectiveness of dynamic program analysis in deriving
gradients of programs without restricting the programming language [14]. However, this may just
be the tip of the iceberg of what program analysis techniques can enable in this area. Our work
showcases that it is possible to utilize dynamic program analysis to perform a new set of mathematical
analysis on differentiable programs.
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1.1 Previous work and our contribution

Traditional numerical analysis has documented how knowledge of the sparsity in the Jacobian or
Hessian of a nonlinear function f can be used to compute them with lesser effort. They use ideas
like matrix coloring to reduce the total number of operations required to compute Jacobians/Hessians
of known sparsity [9, 6]. This previous work focused on application domains where f had a strong
mathematical interpretation, such as a known PDE with a tangible mathematical description, and
practitioners exploited the structure of PDE discretizations to analytically know the sparsity pattern
of their program. However, recently the applications of automatic differentiation has given rise to
differentiable programming, a domain where derivatives are calculated through arbitrary numerical
programs in dynamic languages using forward or reverse mode automatic differentiation. In such
models, the sparsity pattern may be too difficult to derive by hand, but also not amenable to static
sparsity analysis of traditional approaches like ADOL-C [19, 10] and TAF [11].

A pure-numerical algorithm will not suffice to find the sparsity pattern for an arbitrary program. Some
reasons for this are:

• If a program has state-dependent branching, any one input could extract the sparsity pattern
for the program path it happens to execute but not of the entire program.

• Extraneous zeros could be computed simply due to floating point error.
• True zeros may be hard to detect in larger programs due to floating point round-off, and

thus a non-zero tolerance will need to be used to threshold values, possibly introducing false
zeros which grow the sparsity pattern.

Our approach avoids these problems by regarding sparsity detection as dynamic program analysis
problems. We use non-standard interpretation, the act of altering the semantics of a program’s
variables and operators to compute alternative results, to detect the sparsity without numerical
error. In Section 2.1 we show how the Jacobian sparsity pattern can be estimated by tracking
which components of the input to f “influenced” which of its output components. In Section 2.2
we augmented the technique with linearity information to find the Hessian sparsity. In Section 3,
we detail a procedure for correctly handling code with branching. In Section 4 we demonstrate a
real-world example of our Jacobian sparsity detector. We conclude in Section 5 by discussing how
this methodology is being integrated with automatic differentiation to achieve automated program
acceleration in inverse problems.

2 Automatic Sparsity Detection through Non-Standard Interpretation

Our non-standard interpreter works by attaching metadata, called a “tag”, to values produced in the
program when necessary. We use the notation x〈tag〉 to denote a tagged value: x is the value part
seen by the standard interpretation of the input program, while the part inside the 〈〉 brackets is the tag
part, and is only visible to our non-standard interpreter which sits on top of the standard interpreter.

2.1 Jacobian sparsity detection pass

We compute Jacobian sparsity by tracking which input components have a role in producing which
output components. If an output j is influenced by input i, then we note that the Jacobian could be
non-zero at the index (i, j). Any (i, j) pairs not discovered to be non-zeros in this way are guaranteed
to be actually zeros. We track this information by tagging values in the program with a "provenance
set" when necessary. This set contains the indices of the input components that influenced the value it
is tagging.

Our interpreter takes a function f(Y, X, params...) where, by convention, Y is the output vector
which is mutated by the program, the X is the input vector, and params are arbitrary parameters. The
interpreter also must be given the arguments to "seed" the analysis, we use the arguments for the
shape and type information they provide, our sparsity computation itself assumes that their values are
subject to change.

The interpreter first tags Y and X with the tags Output() and Input() respectively. params are
tagged with an empty provenance set – this signifies that the parameters are subject to change, but
they aren’t from any input component. Then following program transforms are applied:
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• Input array access: X〈Input()〉[i]→ X[i]〈{i}〉
• Function call: g(a〈a_set〉, b〈b_set〉, · · · )→ g(a,b, · · · )〈a_set∪b_set∪ · · · 〉

For function calls, if no arguments are tagged, the rewrite is not triggered; and if not all
arguments are tagged, we treat the other arguments as having an empty provenance set.

• Output array write: Y〈Output()〉[j] = a〈a_set〉 →

for i in a_set
execution_context.sparsity[i,j]=1

end
Y[j] = a

Here execution_context is a metadata object that is specific to the nonstandard execution of the
function f . After the execution execution_context.sparsity object, which starts off as all zeros,
contains the sparsity pattern for the program.

2.2 Hessian sparsity detection pass

In similar vein, we extract Hessian sparsity of a Cn → C function by another non-standard interpreter.
This interpreter takes a function f(X, params...) where, by convention, X is the input vector,
params are changeable parameters. In the hessian case, instead of tracking a provenance set, we
track a provenance polynomial which has the same hessian sparsity pattern as the value that is tagged.
The interpreter first tags X as X〈Input()〉, and params with the polynomial that denotes the number
1 to consider them subject to change. The program is transformed as below and executed:

• Input array access: X〈Input()〉[i] → X[i]〈i1〉
• 1-argument linear function call:

g(a〈a_poly〉) → g(a)〈isnzderiv(g, (1,1)) ? a_poly : a_poly2〉
• 2-argument linear function call: g(a〈a_poly〉, b〈b_poly〉) →

begin
a_contribution = isnzderiv(g, (1,1)) ? a_poly : a_poly2
b_contribution = isnzderiv(g, (2,2)) ? b_poly : b_poly2
prod = isnzderiv(g, (1,2)) ? 0 : a_poly * b_poly
g(a, b)〈a_contribution + b_contribution + prod〉

end

Here we limit rewrites to the functions g which are known mathematical functions. We expect every
other function call to call such a function somewhere down its call stack. isnzderiv(g, (i,j))
tells us if ∂ijg is non-zero. Table 1 shows example hessians on very simple program fragments
operating on an input vector of length 4. We store the provenance polynomial as a set of dictionaries
where each dictionary is a term of the polynomial, and it containing 42=>2 says that x[42]^2 is a
factor of that term. We also canonicalize them to make sure they do not grow redundantly. We extract
the sparsity of the hessian by computing the sparsity of the provenance polynomial that the result is
tagged with.

3 Dealing with control flow

If a branch condition ends up being tagged with a provenance set or a provenance polynomial, then
we know that it is subject to change in a different execution of the function. Our interpreter first runs
the program setting the condition to true, and then again setting the condition to false. Since we are
only interested in the sparsity pattern and not the standard result of the program, this technique is
usually able to infer the sparsity of the entire program. Although this works for most real-world
applications we have tried, we note the following limitations:

• There’s a combinatorial increase in the number of analysis passes as the number of tagged
branch conditions increases. In our experience, however, it is hard to find programs that
contain more than a couple of branches that get tainted.
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• s = 0; while s < 1; s += X〈Input()〉[i]; end
This program, with a loop condition that depends on the input, is a pathological one. Here,
our interpreter can go into an infinite loop trying to guess true and false at every iteration
but never being able to terminate the loop. However, common use cases which may require
sparsity handling, like differential equation and machine learning models, do not tend to
have value-dependent control flow and thus this has not been a problem in our use cases.

• Some program paths that are forced to be taken by the interpreter may crash due to assump-
tions about the value within a branch. For example, in

foo(y, x, t) = if t < 0; y[2] = x[1] + sqrt(-t); end
the interpreter will override the branch t<0 to be true and when seeded with t=1, sqrt(-1)
will cause a domain error. We are working on a concolic execution [5, 4, 12, 18] approach,
that should allow us to obtain appropriate program inputs (in the example, a negative value
of t) that can then be used to legitimately explore different program paths. Since concolic
execution works by querying a SAT solver for feasible values, this approach will, as a side
effect, prune the space of all possible branch combinations to only those that need to be
explored.

4 Computational Experiment: The Brussulator Semilinear Partial
Differential Equation

Here we demonstrate the effectiveness of this approach on an existing chemical kinetics model
applicable to climate modeling and systems biology. The Brussulator is a two dimensional (N ×N )
nonlinear parabolic partial differential equation which describes the spatial evolution of a chemical
reaction system. The system of equations is:

∂u

∂t
= p2 + u2v − (p1 + 1)u+ p3(

∂2u

∂x2
+

∂2u

∂y2
) + f(x, y, t),

∂v

∂t
= p1u− u2v + p4(

∂2u

∂x2
+

∂2u

∂y2
), (1)

where

f(x, y, t) =

{
5 if (x− 0.3)2 + (y − 0.6)2 ≤ 0.12 and t ≥ 1.1

0 else,
(2)

with no-flux boundary conditions and u(0, x, y) = 22(y(1−y))3/2 with v(0, x, y) = 27(x(1−x))3/2
[13]. This PDE is discretized to a set of N×N×2 ODEs using the finite difference method. Listing 1
showcases the time evolution code for use with DifferentialEquations.jl [16]. It utilizes higher order
code generation techniques like Cartesians, mutation, and complex control flow in order to be very
efficient. Figure 1 shows the sparsity pattern as a sparse diagonal matrix corresponding to the known
sparsity pattern of the 5-point stencil of the Laplacian for a system of PDEs. This showcases that our
methodology is able to directly analyze the sparsity pattern of performance optimized codes, directly
bringing sparsity programming to the user instead of requiring specific programming patterns.

1 brusselator_f(x, y, t) = ifelse((((x-0.3)^2 + (y-0.6)^2) <= 0.1^2) && (t >= 1.1), 5., 0.)
2 limit(a, N) = a == N+1 ? 1 : a == 0 ? N : a
3 function brusselator_2d_loop(du, u, p, t)
4 A, B, alpha, xyd, dx, N = p; alpha = alpha/dx^2
5 @inbounds for I in CartesianIndices((N, N))
6 i, j = Tuple(I)
7 x, y = xyd[I[1]], xyd[I[2]]
8 ip1, im1, jp1, jm1 = limit(i+1, N), limit(i-1, N), limit(j+1, N), limit(j-1, N)
9 du[i,j,1] = alpha*(u[im1,j,1] + u[ip1,j,1] + u[i,jp1,1] + u[i,jm1,1] - 4u[i,j,1]) +

10 B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] + brusselator_f(x, y, t)
11 du[i,j,2] = alpha*(u[im1,j,2] + u[ip1,j,2] + u[i,jp1,2] + u[i,jm1,2] - 4u[i,j,2]) +
12 A*u[i,j,1] - u[i,j,1]^2*u[i,j,2]
13 end
14 end

Listing 1: DifferentialEquations.jl-compatible time evolution code for Equation 1
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Figure 1: Sparsity pattern of the Jacobian of the
Brusselator code in Listing 1 with input and output
tensors of size 6× 6× 2 = 72.

Table 1: Hessian sparsity construction for a
program taking as input a vector of length 4.
The 4× 4 sparsity pattern for each intermedi-
ate value is shown. The provenance polyno-
mial has the same hessian sparsity pattern.

code fragment polynomial sparsity

deg2rad(x[1]) x1

log(x[1]) x2
1

x[1] + x[4] x1 + x4

x[1] * x[4] x1x4

q = x[1]/x[4] x1x
2
4

asin(q)*x[3] (x2
1x

2
4)x3

5 Integration with Automatic Differentiation and Beyond

Requiring users of scientific programs to know the sparsity pattern in order to get efficient results
is not a method which will scale with the growing complexity of scientific simulations. Here we
develop a rigorous method which is able to accurately and efficiently determine the sparsity pattern
of the Jacobian and Hessian for an arbitrary Julia program. While it does have the limitation that
the control flow cannot be state dependent (such as a while loop which requires knowing the value
in order to know the number of iterations), the method is able to be rigorous on a large number of
existing pure-Julia codes in the Julia ecosystem, thus augmenting differentiable programming with
the ability to specialize on sparsity patterns.

Integration with automatic differentiation (AD) is provided by the SparseDiffTools.jl1 package
which performs matrix coloring to automatically deduce sparsity-efficient methods for calculating
Jacobians and Hessians. Additionally, these patterns can be automatically analyzed to be convert
general sparsity patterns to special matrix types, allowing matrix multiplication and factorization
to automatically make use of specialized methods defined in packages like BandedMatrices.jl2 and
BlockBandedMatrices.jl3 for even more efficient calculation. Packages like DifferentialEquations.jl
[16] allow these patterns to be given and combine all of these operations within a higher level
mathematical operation to allow for user-friendly but efficient modeling.

Advances in these techniques are leading to discussions about whether DSL-based APIs, such as
that seen with mathematical optimization package JuMP [8], can instead be fully and optimally
implemented without a DSL by utilizing similar dynamic program analysis. For example, a similar
context as the Hessian sparsity could be used to deduce whether a program is quadratic or convex,
allowing more advanced optimization tools to be automatically applied without user intervention or
the constraint of a DSL. Initial results are promising.
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6 Appendix: implementation notes

Here we briefly describe functions and function application in the Julia language.

Every function f has the type typeof(f), and may have one or more implementations called
“methods” which are specific to the types of the arguments it is called with. The implementation (also
called the body of the method) is a sequence of statements like function call, assignment, or control
flow statements (if conditions and while loops). When a function is called, informally speaking,
the method that is the most specific to the given argument types is chosen to be run. For full details of
the method selection heuristics, refer to [2], but the "most specific" rule of thumb should be enough
to understand the contents of this paper. We use the notation f(a::Int, b::String, c::Any) to
refer to, for example, a method of the function f whose body is executed when called with an integer
a, a string b and an object c of any type.

To execute a method, Julia turns the body of the method into an intermediate representation (IR)
which is then transformed into into machine code. A key feature of Julia that makes our work possible
is that this IR can be accessed and manipulated by the programmer to implement non-standard
semantics to existing programs. We call such a transformation a dynamic compiler pass.

6.1 Cassette.jl: How to watch a program run

Our implementation is greatly simplified by Cassette.jl [17], a utility for writing dynamic compiler
passes through contextual dispatch.

A basic Cassette compiler pass rewrites every function call g(x...) as overdub(ctx, g, x...),
which by default, in turn calls g(x...). But one can define a specialized method, for instance,
overdub(ctx::MyContext, ::typeof(+), x...) to change the behavior of the program from
its default behavior when specifically the + fucntion is called. This is called “overdubbing”. ctx is a
context object whose type is specific to the compiler pass being applied, and it can store arbitrary
metadata (for example, execution_context.sparsity used in Section 2.1) required by the pass.
Also, the context’s type aggregates overdub methods pertaining to a specific use case, and allows
multiple pass to be recursively applied. For example, we have the JacobianSparsityContext to
define the non-standard interpretation context for Jacobian sparsity detection. This context object
is initially passed to the function whose Jacobian sparsity is to be found, and Cassette takes care of
passing the same object to every overdub method called.

Cassette also supports tagging values in the program with arbitrary metadata. These tags are
transparent to the standard Julia interpretation of the program, even as values may go in and out of
structs, but can be accessed or set in overdub methods for the purposes of our compiler pass.

6.2 Implementation non-standard interpreters with Cassette.jl

The the above two features of Cassette lets us (1) intercept function calls, (2) tag values with metadata.
The program transformation rules in section 2 map one-to-one to overdub method definitions.

Due to Julia’s dynamic multiple-dispatch, the data-flow-driven type inference, efficient machine code
is generated on the transformed code in a just-in-time fashion. Julia hence excels in being an ideal
versatile language for language hacks such as those demonstrated in this project.
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