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Abstract

Gaussian processes (GPs) are flexible non-parametric models, with a capacity that
grows with the available data. However, computational constraints with standard
inference procedures have limited exact GPs to problems with fewer than about
ten thousand training points, necessitating approximations for larger datasets. In
this paper, we develop a scalable approach for exact GPs that leverages multi-GPU
parallelization and methods like linear conjugate gradients, accessing the kernel
matrix only through matrix multiplication. By partitioning and distributing kernel
matrix multiplies, we demonstrate that an exact GP can be trained on over a million
points, a task previously thought to be impossible with current computing hardware.
Moreover, our approach is generally applicable, without constraints to grid data
or specific kernel classes. Enabled by this scalability, we perform the first-ever
comparison of exact GPs against scalable GP approximations on datasets with
104−106 data points, showing dramatic performance improvements.

1 Introduction

Gaussian processes (GPs) have seen great success in many machine learning settings, such as black-
box optimization [38], reinforcement learning [6, 8], and time-series forecasting [33]. These models
offer several advantages – principled uncertainty representations, model priors that require little
expert intervention, and the ability to adapt to any dataset size [31, 32]. GPs are not only ideal for
problems with few observations; they also have great promise to exploit the available information in
increasingly large datasets, especially when combined with expressive kernels [41] or hierarchical
structure [5, 35, 43, 45].

In practice, however, exact GP inference can be intractable for large datasets, as it naïvely requires
O(n3) computations and O(n2) storage for n training points [32]. Many approximate methods
have been introduced to improve scalability, relying on mixture-of-experts models [7], inducing
points [12, 37, 39, 42], random feature expansions [20, 30, 47], or stochastic variational optimization
[2, 16, 17, 36, 46]. However, due to the historical intractability of training exact GPs on large datasets,
it has been an open question how approximate methods compare to an exact approach when much
more data is available.

In this paper, we develop a methodology to scale exact GP inference well beyond what has previously
been achieved: we train a Gaussian process on over a million data points, performing predictions
without approximations. Such a result would be intractable with standard implementations which
rely on the Cholesky decomposition. The scalability we demonstrate is made feasible by the
recent Blackbox Matrix-Matrix multiplication (BBMM) inference procedure of Gardner et al. [11],
which uses conjugate gradients and related methods to reduce GP inference to iterations of matrix
multiplication. Gardner et al. [11] show that this procedure (1) achieves exponential convergence
using a pivoted Cholesky preconditioner under certain conditions, (2) requires relatively few number
of conjugate gradient steps to convergence for typical datasets, and (3) can more accurately solve
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linear systems than Cholesky-based approaches. Using BBMM, our approach is generally applicable
without constraints to input grids or specific kernel families.

By partitioning and distributing kernel matrix multiplications across GPUs, we reduce the memory
requirement for GP training to O(n) on an individual GPU, permitting scaling beyond n ≈ 104

samples. Additionally, we introduce a number of practical heuristics to accelerate training and
maximally utilize parallelization. With 8 GPUs, GPs can be trained in seconds for n ≈ 104, hours
for n ≈ 105, and a few days for n ≈ 106. In addition, we show that the training time can be further
reduced by using better hyperparameter initializations. Nevertheless, all trained models can make
exact GP predictions in less than 1 second on 1 GPU using a simple caching strategy.

We benchmark on regression datasets from the UCI repository [1]. We find exact GPs offer notably
better performance on these datasets, often exceeding a two-fold reduction in root-mean-squared
error. The results show how non-parametric representations continue to significantly benefit from the
addition of new training points, a valuable conceptual finding in favor of non-parametric approaches.
These results clarify the relative performance of popular GP approximations against exact GPs in
an unexplored data size regime and enable future comparisons against other GP approximations.
Further, they serve as a signpost to practitioners using GPs on big data and set the stage for theorists
to propose better approximations to address this gap in performance.

2 Background

Gaussian processes (GPs) are non-parametric machine learning models that place a distribution over
functions f ∼ GP . The function distribution is defined by a prior mean function µ : Rd → R, a prior
covariance function or kernel k : Rd × Rd → R, and observed (training) data (X,y). The choice
of µ and k encode prior information about the data. µ is typically chosen to be a constant function.
Popular kernels include the RBF kernel and the Matérn kernels [32].

Notation: Throughout this paper we will use the following notation: given training inputs X ∈ Rn×d,
KXX is the n× n kernel matrix containing covariance terms for all pairs of entries. The vector kXx∗

is a vector formed by evaluating the kernel between a test point x∗ and all training points. K̂XX is a
kernel matrix with added Gaussian observational noise (i.e. K̂XX = KXX + σ2I).

Training: Most kernels include hyperparameters θ, such as the lengthscale, which must be fit to the
training data. In regression, θ are typically learned by maximizing the GP’s log marginal likelihood
with gradient descent:

L = log p(y |X, θ) ∝ −y>K̂−1XXy − log |K̂XX |, (1)

∂L
∂θ
∝y>K̂XX

∂K̂−1XX
∂θ

K̂XXy−tr

{
K̂−1XX

∂K̂XX

∂θ

}
. (2)

A typical GP has very few hyperparameters to optimize and therefore requires fewer iterations of
training than most parametric models.

Predictions: For a test point x∗, the GP predictive posterior distribution p(f(x∗) | X,y) with a
Gaussian likelihood is Gaussian with moments:

E [f(x∗) |X,y] = µ(x∗) + k>Xx∗K̂−1XXy (3)

Var [f(x∗) |X,y] = k(x∗,x∗)− k>Xx∗K̂−1XXkXx∗ (4)

Portions of these equations can be precomputed as part of training to reduce the test-time computation.
In particular, (3) is reduced to an O(n) matrix-vector multiplication once K̂−1XXy is computed and
cached. Similar caching techniques can reduce the asymptotic time complexity of (4) as well [28].

The Cholesky decomposition is used in many GP implementations to compute K̂−1XXy, log |K̂XX |,
and tr

{
K̂−1XX

(
∂K̂XX/∂θ

)}
in (1) and (2). The positive definite kernel matrix K̂XX can be factor-

ized into LL>, where L is lower triangular. Computing L requires O(n3) time and O(n2) memory.
After computing this factorization, matrix solves and log determinants take O(n2) and O(n) time
respectively. The columns of L =

[
l(1) . . . l(k)

]
are computed recursively [14]. Although concur-

rent work by [26] used the Cholesky decomposition for large scale GP inference through distributed
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computing, it requires quadratic communication costs and quadratic memory. Furthermore, its
recursive nature makes the Cholesky algorithm less amenable to GPU acceleration since GPUs are
designed to parallelize matrix-vector multiplications.

Conjugate gradients (CG) is an alternative method for computing K̂−1XXy. CG frames K̂−1XXy as the
solution to an optimization problem: v∗ = argminv

1
2v
>K̂XXv − v>y, which is convex by the

positive-definiteness of K̂XX . The optimization is performed iteratively, with each step requiring
a matrix-vector multiplication with K̂XX . For a specified tolerance ε of the relative residual norm
‖K̂XXv∗ − y‖/‖y‖, the solution can be found in tε iterations. The exact number of iterations
depends on the conditioning and eigenvalue distribution of K̂XX , but tε � n for reasonable values
of ε. A preconditioner is commonly used to accelerate convergence [14]. In this paper, we refer to
preconditioned CG as PCG. Gardner et al. [11] demonstrate that a modified version of PCG can be
used to compute all terms in (1) and (2) simultaneously. This results in an algorithm for training
and predicting with GPs that requires only a routine for performing matrix-vector products with the
kernel matrix.

3 Method

To perform exact Gaussian process inference on large datasets, we must overcome the time and space
requirements of solving linear systems. Most GP implementations use the Cholesky decomposition
to solve linear systems required for inference [32]. TheO

(
n3
)

time complexity of the decomposition
makes it difficult to perform exact GP inference on datasets with n > 104 data points without
distributed computing and its associated communication overhead. In addition to this limitation, the
Cholesky decomposition requires O

(
n2
)

memory to store the lower-triangular factor L in addition to
the kernel matrix itself. At n = 500,000, the decomposition requires a full terabyte of memory and a
prohibitively large amount of computational resources. Concurrent work by Nguyen et al. [26] was
limited to exact GPs with n ≤ 120,000 due to these drawbacks.

To address the above challenges, we build on Gardner et al. [11] and use preconditioned conjugate
gradients (PCG) to solve linear systems. We overcome the memory limitations by partitioning the
kernel matrix to perform all matrix-vector multiplications (MVMs) without ever forming the kernel
matrix explicitly, reducing the memory requirement to O(n). In addition, we parallelize partitioned
MVMs across multiple GPUs to further accelerate the computations, making training possible and
timely even for datasets with n > 106.
O(n) memory MVM-based inference. The primary input to the modified PCG algorithm of Gardner
et al. [11] is mvm_K̂XX , a black-box function that performs MVMs using the kernel matrix K̂XX .

Besides the storage cost associated with mvm_K̂XX , each iteration of PCG updates four vectors: u
(the current solution), r (the current error), p (the “search” direction for the next solution), and z (a
preconditioned error term). Storing these vectors requires exactly 4n space. The quadratic space cost
associated with PCG-based GP inference only comes from computing mvm_K̂XX .

Typically in the full GP setting, mvm_K̂XX is implemented by first computing the full n× n kernel
matrix K̂XX , then computing the matrix-vector product with the full matrix. However, this would
have the sameO(n2) memory requirement as Cholesky-based GP inference. Although forming K̂XX

requires O(n2) memory, the result of the MVM K̂XXv requires only O(n) memory. Therefore, we
reduce the memory requirement to O(n) by computing K̂XXv in separate constant-sized pieces.

Partitioned kernel MVMs. To compute K̂XXv in pieces, we partition the kernel matrix K̂XX such
that we only store a constant number of rows at any given time. With the 4n memory requirement of
storing the PCG vectors, our approach requires only O(n) memory.

We first partition the data matrix with n points in d dimensions, X ∈ Rn×d, into p partitions each of
which contains roughly n/p data points:

X =
[
X(1); · · · ;X(p)

]
where we use “;” to denote row-wise concatenation. For each X(l), we can compute K̂X(l)X , which
is a roughly (n/p)× n kernel matrix between the partition X(l) and the full data X . By partitioning
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the kernel matrix this way, we rewrite it as a concatenation of the p partitions:

K̂XX =
[
K̂X(1)X ; · · · ; K̂X(p)X

]
.

Computing each partition requires access to the full training set X , which we assume fits in memory.
However, each partition K̂X(l)X contains only 1/p of the entries of the full kernel matrix. Rewriting
the matrix-vector product K̂XXv in terms of these partitions,

K̂XXv =
[
K̂X(1)Xv; · · · ; K̂X(p)Xv

]
,

we see that this matrix-vector product can be computed in smaller components by separately com-
puting each K̂X(l)Xv and concatenating the results. We discard each kernel partition K̂X(l)X once
its MVM has been computed. This partitioning requires access to the training data X and vector
v already in memory and only allocates new memory to temporarily store the output vector z and
a (n/p)× n kernel matrix partition K̂X(l)X . This algorithm allows us to reduce memory usage in
exchange for sequential but easily parallelizable computations. If p = 1 then we have the naïve
O(n2) memory MVM procedure. As p→ n, PCG will only require O(n) memory. In practice, we
set a constant number of rows per partition according to the amount of memory available rather than
number of partitions p. By keeping a partition in memory only until its component of the MVM has
been computed, we can train GPs with an O(n) memory requirement.
Distributed MVMs in Parallel. MVM-based inference can easily take advantage of multiple
GPUs or distributed computational resources because each MVM K̂X(l)Xv can be performed on a
different device. Thus we can compute multiple such MVMs in parallel to attain wall-clock speedups
proportional to the number of devices available on large data sets where computation time exceeds
the distributed computing overhead. Although O(n) memory is achievable by setting p = O(n), in
practice one may preferO

(
n2/p

)
memory to more effectively accelerate MVMs on parallel hardware

with the necessary memory resources.

Additionally, we note that distributed parallel MVMs require only O(n) communication. Each
partitioned matrix multiplication only has to supply each device with a new right-hand-side vector v.
Finally, if w devices are used, the output from each device will be a vector of length n/pw. Thus only
O(n) data are copied to or from the devices. In contrast, distributing the Cholesky decomposition
across multiple devices would require O(n2) communication [15] [26].

Distributed computations have been utilized for approximate GP inference through mixture-of-experts
GP models [7]. Concurrent with the Cholesky-based approach by Nguyen et al. [26], our method is
the first to parallelize exact Gaussian process inference through distributed computing.
Predictions. At inference time, we must compute the predictive mean and variance given in (3) and
(4). Although the predictive mean contains a linear solve K̂−1XXy, this solve depends only on the
training data. The result of this solve can be stored in a linear vector a and used for subsequent
predictions. Therefore, computing the predictive mean requires computing K̂x∗Xa. Because this
equation involves no linear solves, it can be computed efficiently on a single GPU.

Similarly, a training data dependent cache can be computed for the predictive variance using the
method of Pleiss et al. [28] with a satisfactorily tight convergence tolerance. On exact GPs, this
approach affords O(n) predictive variance computations,2 removing the need to perform a linear
solve at test time. In practice, we observe that both the predictive mean and variance can be computed
in less than a second on a single GPU, even if the full model required days to train on multiple GPUs.
Because predictions are fast after these precomputations, we can afford to use more stringent criteria
for CG convergence for these one-time precomputations.
Preconditioning. To accelerate the convergence of CG, Gardner et al. [11] introduced a precondi-
tioner for K̂XX derived from its partial pivoted Cholesky decomposition. Preconditioning works by
modifying CG to solve the related linear system P−1KXXv = P−1y instead of solving the original
system KXXv = y. These linear systems have the same solution v∗. However, the number of CG
iterations required depends on the eigenvalue distribution of P−1KXX rather than that of KXX .

Computing a rank k pivoted Cholesky preconditioner requires only k kernel matrix rows: an already
O(n) space dependence. While each iteration of CG requires computing each kernel matrix partition

2We do not achieve constant-time predictions as described in [28]. Reducing the O(n) prediction time to
O(1) requires using structure kernel interpolation [42] to approximate the kernel matrix.
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from scratch, the preconditioner is computed once before any iterations of CG are performed.
Therefore, it can be efficient to increase the size of the preconditioner to an extent if it reduces the
number of CG iterations. While in Gardner et al. [11] the preconditioner size is typically limited to
under 20 by default, in our use case we found that preconditioners of up to size k = 100 provide a
noticeable improvement to wall-clock speed for large datasets.
PCG Convergence Criteria. Importantly, Conjugate gradients is not an approximate method for
performing linear solves. Rather, it is a method that consumes time to perform solves to a specified
tolerance. If this tolerance is low, the solve is exact. Thus, it is analogous to using gradient descent to
solve a convex optimization problem (and is in fact largely what is happening). This gives us the
ability to investigate how the performance of exact GPs change with different degrees of convergence.

At test time, we find that an accurate solve K̂−1XXy (with tolerance ε ≤ 0.01) is critical for good
predictive performance; we therefore find that GP predictions require exact solves. For hyperparame-
ter training, however, we find that, interestingly, less strict convergence criteria suffice, and even a
looser convergence criterion of up to ε = 1 has little impact on final model performance. Given that
predictions using our approach are highly efficient (see Table 2), it may be interesting to investigate
alternative approximate methods for finding good hyperparameters, and then using the techniques in
this paper for exact inference and predicitons.

4 Related Work

MVM-based GP inference. Conjugate gradients and related MVM-based algorithms [9, 13, 40]
have been used in certain settings throughout the GP literature. However, these methods have
typically been used when the kernel matrix is structured and affords fast matrix-vector multiplications.
Cunningham et al. [3] note that CG reduces asymptotic complexity when the data lie on a regularly-
spaced grid because the kernel matrix is structured and affords O(n log n) MVMs. This idea was
extended to multi-dimensional grids by Saatçi [34]. Wilson and Nickisch [42] introduce a general-
purpose GP approximation specifically designed for CG. They combine a structured inducing point
matrix with sparse interpolation for approximate kernel matrices with nearly-linear MVMs.

More recently, there has been a push to use MVM-based methods on exact GPs. Cutajar et al.
[4] use conjugate gradients to train exact GPs on datasets with up to 50,000 points. The authors
investigate using off-the-shelf preconditioners and develop new ones based on inducing-point kernel
approximations.
Approximate GP methods. There are several approximations to GP inference that require ≤ O(n2)
memory and scale to large datasets. Perhaps the most common class of approaches are inducing
point methods [29, 37], which introduce a set of m � n data points Z to form a low-rank kernel
approximation:

KXX ≈ KXZK
−1
ZZKZX .

Training and predictions with this approximation take O(nm2) time and O(nm) space. Here we
highlight some notable variants of the basic approach, though it is by no means an exhaustive list
– see [22] for a more thorough review. Sparse Gaussian process regression (SGPR) [39] selects
the inducing points Z through a regularized objective. Structured kernel interpolation (SKI) [42]
and its variants [12] place the inducing points on a grid, in combination with sparse interpolation,
for O(n + g(m)) computations and memory, where g(m) ≈ m. Stochastic variational Gaussian
processes (SVGP) [16] introduce a set of variational parameters that can be optimized using minibatch
training. Recent work has investigated how to scale up the number of inducing points using tensor
decompositions [10, 18].

5 Results

We compare the performance of exact Gaussian processes against widely-used scalable GP ap-
proximation methods on a range of large-scale datasets from the UCI dataset repository [1]. Our
experiments demonstrate that exact GPs: (1) outperform popular approximate GPs methods on nearly
all benchmarking datasets in our study; (2) compute thousands of test-point predictions in less than
a second, even when n > 106; (3) utilize all available data when making predictions, even when
n > 105; and (4) achieve linear training speedups on large datasets by adding additional GPU devices.
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Baselines. We compare against two scalable GP approximations: Sparse Gaussian Process Regression
(SGPR) [23, 39], and Stochastic Variational Gaussian Processes (SVGP) [16]. We choose these
methods due to their popularity and general applicability, enabling a comparison over a wide range
of datasets. SGPR is an inducing point method where the inducing points are learned through a
variational objective. We use m = 512 for SGPR and m = 1,024 for SVGP, which are common
values used for these methods [24]. We later experiment with varying the number of inducing points.
Experiment details. We extend the GPyTorch library [11] to perform all experiments. Each dataset
is randomly split into 4/9 training, 2/9 validating, and 3/9 testing sets. We use the validation set for
tuning parameters like the CG training tolerance. The data is whitened to be mean 0 and standard
deviation 1 as measured by the training set. We use a constant prior mean and a Matérn 3/2 kernel.
We benchmark GPs with shared lengthscales across the input dimension in Table 1 as well as GPs
with independent lengthscales in the appendix.
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Figure 1: A comparison of exact GPs trained using our initialization procedure against exact GPs
trained for 100 iterations using Adam. Better initializatoin allows exact GPs to achieve similar
RMSEs while requiring drastically less training time on large datasets.

We learn model hyperparameters and variational parameters by optimizing the log marginal likelihood.
For SGPR, we perform 100 iterations of Adam with a learning rate of 0.1. For SVGP, we perform
100 epochs of Adam with a minibatch size of 1,024 and a learning rate of 0.01, which we found to
perform better than 0.1. For exact GPs, the number of optimization steps has the greatest effect on
the training time for large datasets. To reduce the training time for exact GPs, we first randomly
subset 10,000 training points from the full training set to fit an exact GP whose hyperparameters will
be used as initialization. We pretrain on this subset with 10 steps of L-BFGS [21] and 10 steps of
Adam [19] with 0.1 step size before using the learned hyperaparameters to take 3 steps of Adam on
the full training dataset. Figure 1 shows that this initialization plus fine-tuning procedure achieves
comparable test performance to running Adam for the full 100 iterations without pretraining. We do
not pretrain the SGPR and SVGP models because we found that they required a significant number
of fine-tuning steps after pretraining due to their increased number of model parameters. We show
additional training statistics for exact GPs trained with 100 steps of Adam in the appendix.

For all experiments, we use a rank-100 partial pivoted-Cholesky preconditioner and run PCG with
a tolerance of ε = 1 during training. We perform all training on a single machine with 8 NVIDIA
Tesla V100-SXM2-32GB-LS GPUs. Code to reproduce the experiments is available at https:
//gpytorch.ai.
Accuracy. Table 1 displays the accuracy and negative log likelihoods of exact GPs and approximate
methods on several large-scale datasets using a single lengthscale across dimensions. The results for
independent lengthscale GPs can be found in the appendix. We find that exact GPs achieve lower
error than approximate methods on nearly every dataset. Notably, on certain datasets like Kin40K and
CTslice, exact GPs achieve a half or even a quarter of the error of some approximate methods, and
consistently outperform the approximate methods even on datasets with up to over 1M data points.
Although Nguyen et al. [26] show results for exact GPs on n < 120,000, this is the first set of results
comparing exact GPs to approximate GPs on n� 105.
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Table 1: Root-mean-square-error (RMSE) and negative log-likelihood (NLL) of exact GPs and
approximate GPs on UCI regression datasets using a constant prior mean and a Matérn 3/2 kernel
with a shared lengthscale across all dimensions. Except for †, all trials were averaged over 3 trials
with different splits. n and d are the size and dimensionality of the training dataset, respectively. The
number of GPUs used and the number of kernel partions are reported in Table 2. We were unable to
scale SGPR to HouseElectric due to its memory requirements when m = 512.

RMSE NLL

Dataset n d
Exact GP
(BBMM)

SGPR
(m=512)

SVGP
(m=1,024)

Exact GP
(BBMM)

SGPR
(m=512)

SVGP
(m=1,024)

PoleTele 9,600 26 0.151± 0.012 0.217± 0.002 0.215± 0.002 −0.180± 0.036 −0.094± 0.008 −0.001± 0.008
Elevators 10,623 18 0.394± 0.006 0.437± 0.018 0.399± 0.009 0.619± 0.054 0.580± 0.060 0.519± 0.022

Bike 11,122 17 0.220± 0.002 0.362± 0.004 0.303± 0.004 0.119± 0.044 0.291± 0.032 0.272± 0.018
Kin40K 25,600 8 0.099± 0.001 0.273± 0.025 0.268± 0.022 −0.258± 0.084 0.087± 0.067 0.236± 0.077
Protein 29,267 9 0.536± 0.012 0.656± 0.010 0.668± 0.005 1.018± 0.056 0.970± 0.010 1.035± 0.006

KeggDirected 31,248 20 0.086± 0.005 0.104± 0.003 0.096± 0.001 −0.199± 0.381 −1.123± 0.016 −0.940± 0.020
CTslice 34,240 385 0.262± 0.448 0.218± 0.011 1.003± 0.005 −0.894± 0.188 −0.073± 0.097 1.422± 0.005
KEGGU 40,708 27 0.118± 0.000 0.130± 0.001 0.124± 0.002 −0.419± 0.027 −0.984± 0.012 −0.666± 0.007
3DRoad 278,319 3 0.101± 0.007 0.661± 0.010 0.481± 0.002 0.909± 0.001 0.943± 0.002 0.697± 0.002

Song 329,820 90 0.807± 0.024 0.803± 0.002 0.998± 0.000 1.206± 0.024 1.213± 0.003 1.417± 0.000
Buzz 373,280 77 0.288± 0.018 0.300± 0.004 0.304± 0.012 0.267± 0.028 0.106± 0.008 0.224± 0.050

HouseElectric† 1,311,539 9 0.0482 —– 0.084± 0.005 −1.085 —– −1.010± 0.039

Table 2: Timing results for training and prediction for exact GPs and approximate GPs. Training
times were recorded using the same hardware and other experimental details as in Table 1. Except for
†, all trials were averaged over 3 trials with different splits. Note that † was trained using 100 steps
of Adam instead of the fine-tuning procedure which would greatly reduce the training time. p is the
number of kernel partitions used to train the exact GP. Prediction times were measured by computing
1,000 predictive means and variances on 1 NVIDIA RTX 2080 Ti GPU An asterisk (*) indicates the
one-time pre-computed cache was calculated using 8 V100 GPUs. Best results are in bold (lower is
better).

Training Precomputation Prediction

Dataset
Exact GP
(BBMM)

SGPR
(m=512)

SVGP
(m=1,024) #GPUs p

Exact GP
(BBMM)

Exact GP
(BBMM)

SGPR
(m=512)

SVGP
(m=1,024)

PoleTele 41.5s± 1.1 69.5s± 20.5 68.7s± 4.1 1 1 5.14 s 6 ms 6 ms 273 ms
Elevators 41.0s± 0.7 69.7s± 22.5 76.5s± 5.5 1 1 0.95 s 7 ms 7 ms 212 ms

Bike 41.2s± 0.9 70.0s± 22.9 77.1s± 5.6 1 1 0.38 s 7 ms 9 ms 182 ms
Kin40K 42.7s± 2.7 97.3s± 57.9 195.4s± 14.0 1 1 12.3 s 11 ms 12 ms 220 ms
Protein 47.9s± 10.1 136.5s± 53.8 198.3s± 15.9 1 1 7.53 s 14 ms 9 ms 146 ms

KeggDirected 51.0s± 6.3 132.0s± 65.6 228.2s± 22.9 1 1 8.06 s 15 ms 16 ms 143 ms
CTslice 199.0s± 299.9 129.6s± 59.2 232.1s± 20.5 1 1 7.57 s 22 ms 14 ms 133 ms
KEGGU 47.4s± 8.6 133.4s± 62.7 287.0s± 24.1 8 1 18.9 s 18 ms 13 ms 211 ms
3DRoad 947.8s± 443.8 720.5s± 330.4 2045.1s± 191.4 8 16 118 m* 119 ms 68 ms 130 ms

Song 253.4s± 221.7 473.3s± 187.5 2373.3s± 184.9 8 16 22.2 m* 123 ms 99 ms 134 ms
Buzz 4283.6s± 1407.2 1754.8s± 1099.6 2780.8s± 175.6 8 19 42.6 m* 131 ms 114 ms 142 ms

HouseElectric† 3.29 days —– 22062.6s± 282.0 8 218 7.20 hr* 958 ms —– 166 ms

Interestingly, the size or the dimensionality of the dataset does not seem to influence the relative
performance of the approximate methods. For example, though Protein and Kin40K are similar in
size and have almost the same dimensionality, the approximate methods perform worse on Kin40K
(relative to the RMSE of exact GPs). Moreover, we also see that the choice of approximate method
affects performance, with neither approximate method consistently outperforming the other.
Training time. Table 2 displays the training time for exact and approximate GPs. On datasets with
n < 35,000, an exact GP fits on a single 32GB GPU without any partitioning and can be trained in
less than a minute. For n ≥ 100,000, we must use kernel partitioning as discussed above, which
significantly increases the training time for exact GPs. However, if the necessary computational
resources are available, these experiments show that it may be preferable to train an exact GP to make
more accurate predictions in exchange for longer training times.
Training acceleration with multiple GPUs. Because we use matrix-multiplication-based ap-
proaches to train exact GPs, the computations can be easily parallelized and distributed. Moreover,
matrix multiplication is one of the most commonly distributed routines, so parallelized GP imple-
mentations can be built using readily-available routines in libraries like PyTorch [27]. Figure 2 plots
the speedup as more GPUs are used for training on the KEGGU, 3DRoad, Song, and Buzz datasets.
Each of these datasets achieve a nearly linear speedup when adding up to 4 GPUs. The speedup is
more pronounced for the two large datasets (3DRoad and Song) that require kernel partitioning. The
training time can be further improved by using more GPUs to reduce the number of kernel partitions.

7



1 2 3 4 5 6 7 8

# GPUs

2

4

6

8

S
p

ee
d

u
p

ov
er

1
G

P
U

KEGGU (n=40708)

1 2 3 4 5 6 7 8

# GPUs

2

4

6

8

3DRoad (n=278319)

1 2 3 4 5 6 7 8

# GPUs

2

4

6

8

Song (n=329820)

1 2 3 4 5 6 7 8

# GPUs

2

4

6

8

Buzz (n=373280)

Figure 2: Training speedup from using additional GPUs at training time. Since our exact GPs
use matrix-multiplication based inference, they achieve a near linear speedup with more computing
resources on large datasets.
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Figure 4: Test root-mean-square error (RMSE) as a function of subsampled dataset size (lower is
better). Subsampled exact GPs outperform approximate GPs even with a quarter of the training set.
Exact GP error continues to decrease as data is added until the full dataset is used.

Prediction time. Although exact GPs take longer to train, we find that their speed is comparable
to approximate methods at test time. After training various GPs, we follow the common practice of
precomputing the work required for GP predictions [28].

Table 2 displays the time to compute 1,000 predictive means and variances at test time before and
after precomputation. All predictions are made on one NVIDIA RTX 2080 Ti GPU. We see exact
GPs take less than a second for all predictions across all dataset sizes used.

5.1 Ablation Studies
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Figure 3: Error of SVGP and SGPR methods
as a function of the number of inducing points
(m). Both methods scale cubically with m. We
were unable to run SGPR with more than 1,024
inducing points on a single GPU. Exact GPs have
lower error than both methods.

With our method, we can better understand how
exact GPs and approximate GPs scale to datasets
with n � 104. Here, we demonstrate how the
amount of data affects exact GP performance,
and how the number of inducing points affects
the performance of approximate GPs. Do GPs
need the entire dataset? As a non-parametric
model, Gaussian processes naturally adapt to the
amount of training data available [44]. Figure 4
shows an increase in accuracy as we increase
the amount of training data on the KEGGU,
3DRoad, and Song datasets. For each dataset,
we subsample a fraction of the training data and
plot the resulting root-mean-square error on the
test-set as a function of subsampled training set
size. We use the same 1/3 holdout of the full
dataset to test in each case. As expected, the test
RMSE decreases monotonically as we increase
the subsample size. Figure 4 also shows the per-
formance of exact GP, SGPR, and SVGP trained on the entire training set. Strikingly, in all three
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cases, an exact GP with less than a quarter of the training data outperformed approximate GPs
trained on the entire training set. Furthermore, test error continues to decrease with each addition of
training data.
Would more inducing points help? In Table 1, exact GPs uniformly take substantially longer to
train on the largest datasets than the approximate methods. This naturally raises the question “can
approximate models with more inducing points recover the performance of exact methods?” We
plot test RMSE on two datasets, Bike and Protein, as a function of the number of inducing points
in Figure 3. The test RMSE of both inducing point methods saturates on both datasets well above
the test RMSE of an exact GP. Furthermore, we note that using m inducing points introduces a
m×m matrix and a O(nm2 +m3) time complexity [16, 17] which makes it difficult to train SGPR
with m � 1024 inducing points on one GPU. It is possible to combine kernel partitioning with
inducing-point methods to utilize even larger values of m. However, as Figure 3 and Table 1 show, it
may be preferable to use the extra computational resources to train an exact GP on more data rather
than to train an approximate GP with more inducing points.

6 Discussion

Historically, for Gaussian processes, “a large dataset is one that contains over a few thousand data
points” [16] which have traditionally necessitated scalable approximations. Bigger datasets have
traditionally necessitated scalable approximations. In this paper, we have extended the applicability
of exact GPs far beyond what has been thought possible — to datasets with over a million training
examples through MVM-based GP inference. Our approach uses easily parallelizable routines that
fully exploit modern parallel hardware and distributed computing. In our comparisons, we find that
exact GPs are more widely applicable than previously thought, performing significantly better than
approximate methods on large datasets, while requiring fewer design choices.
Is CG still exact? In the GP literature, exact GP inference typically refers to using the Cholesky
decomposition with exact kernels [32]. A natural question to ask is whether we can consider our
approach “exact” in light of the fact that CG perform solves only up to a pre-specified error tolerance.
However, unlike the approximate methods presented in this paper, the difference between a CG-based
model and a theoretical model with “perfect” solves can be precisely controlled by this error tolerance.
We therefore consider CG exact in a sense that is commonly used in the context of mathematical
optimization — namely that it computes solutions up to arbitrary precision. In fact, CG-based
methods can often be more precise than Cholesky based approaches in floating-point arithmetic due
to fewer round-off errors [11].
When to approximate? There are many approximate methods for scalable Gaussian processes,
with varying statistical properties, advantages, and application regimes. We chose to compare
exact GPs to approximation methods SVGP and SGPR for their popularity and available GPU
implementations. There may be some regimes where other approximate methods or combinations of
methods outperform these two approximations. Our objective is not to perform an exhaustive study
of approximate methods and their relative strengths but to highlight that such comparisons are now
possible with modern hardware.

Indeed, there are cases where an approximate GP method might still be preferable. Examples may
include training on large datasets with limited computational resources. In certain regimes, such
as low dimensional spaces, there are approximations that are designed to achieve high degrees of
accuracy in less time than exact GPs. Additionally, GP inference with non-Gaussian likelihoods
(such as for classification) requires an approximate inference strategy. Some approximate inference
methods, such as Laplace and MCMC [25, 32], may be amenable to the parallelisation approaches
discussed here for approximate inference with exact kernels.

Nonetheless, with efficient utilization of modern hardware, exact Gaussian processes are now an
appealing option on substantially larger datasets than previously thought possible. Exact GPs are
powerful yet simple – achieving remarkable accuracy without requiring much expert intervention. We
expect exact GPs to become ever more scalable and accessible with continued advances in hardware
design.
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