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ABSTRACT

Deep networks often perform well on the data distribution on which they are
trained, yet give incorrect (and often very confident) answers when evaluated on
points from off of the training distribution. This is exemplified by the adversar-
ial examples phenomenon but can also be seen in terms of model generalization
and domain shift. Ideally, a model would assign lower confidence to points unlike
those from the training distribution. We propose a regularizer which addresses this
issue by training with interpolated hidden states and encouraging the classifier to
be less confident at these points. Because the hidden states are learned, this has an
important effect of encouraging the hidden states for a class to be concentrated in
such a way so that interpolations within the same class or between two different
classes do not intersect with the real data points from other classes. This has a ma-
jor advantage in that it avoids the underfitting which can result from interpolating
in the input space. We prove that the exact condition for this problem of under-
fitting to be avoided by Manifold Mixup is that the dimensionality of the hidden
states exceeds the number of classes, which is often the case in practice. Addition-
ally, this concentration can be seen as making the features in earlier layers more
discriminative. We show that despite requiring no significant additional compu-
tation, Manifold Mixup achieves large improvements over strong baselines in su-
pervised learning, robustness to single-step adversarial attacks, semi-supervised
learning, and Negative Log-Likelihood on held out samples.

1 INTRODUCTION

Machine learning systems have been enormously successful in domains such as vision, speech, and
language and are now widely used both in research and industry. Modern machine learning systems
typically only perform well when evaluated on the same distribution that they were trained on. How-
ever machine learning systems are increasingly being deployed in settings where the environment
is noisy, subject to domain shifts, or even adversarial attacks. In many cases, deep neural networks
which perform extremely well when evaluated on points on the data manifold give incorrect answers
when evaluated on points off the training distribution, and with strikingly high confidence.

This manifests itself in several failure cases for deep learning. One is the problem of adversarial
examples (Szegedy et al., 2014), in which deep neural networks with nearly perfect test accuracy
can produce incorrect classifications with very high confidence when evaluated on data points with
small (imperceptible to human vision) adversarial perturbations. These adversarial examples could
present serious security risks for machine learning systems. Another failure case involves the train-
ing and testing distributions differing significantly. With deep neural networks, this can often result
in dramatically reduced performance.

To address these problems, our Manifold Mixup approach builds on following assumptions and moti-
vations: (1) we adopt the manifold hypothesis, that is, data is concentrated near a lower-dimensional
non-linear manifold (this is the only required assumption on the data generating distribution for
Manifold Mixup to work); (2) a neural net can learn to transform the data non-linearly so that the
transformed data distribution now lies on a nearly flat manifold; (3) as a consequence, linear inter-
polations between examples in the hidden space also correspond to valid data points, thus providing
novel training examples.
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Figure 1: The top row (a,b,c) shows the decision boundary on the 2d spirals dataset trained with
a baseline model (a fully connected neural network with nine layers where middle layer is a 2D
bottleneck layer), Input Mixup with α = 1.0, and Manifold Mixup applied only to the 2D bottleneck
layer. As seen in (b), Input Mixup can suffer from underfitting since the interpolations between
two samples may intersect with a real sample. Whereas Manifold Mixup (c), fits the training data
perfectly (more intuitive example of how Manifold Mixup avoids underfitting is given in Appendix
H). The bottom row (d,e,f) shows the hidden states for the baseline, Input Mixup, and manifold
mixup respectively. Manifold Mixup concentrates the labeled points from each class to a very tight
region, as predicted by our theory (Section 3) and assigns lower confidence classifications to broad
regions in the hidden space. The black points in the bottom row are the hidden states of the points
sampled uniformly in x-space and it can be seen that manifold mixup does a better job of giving low
confidence to these points. Additional results in Figure 6 of Appendix B show that the way Manifold
Mixup changes the representations is not accomplished by other well-studied regularizers (weight
decay, dropout, batch normalization, and adding noise to the hidden states).

Manifold Mixup performs training on the convex combinations of the hidden state representations
of data samples. Previous work, including the study of analogies through word embeddings (e.g.
king - man + woman ≈ queen), has shown that such linear interpolation between hidden states is
an effective way of combining factors (Mikolov et al., 2013). Combining such factors in the higher
level representations has the advantage that it is typically lower dimensional, so a simple procedure
like linear interpolation between pairs of data points explores more of the space and with more of
the points having meaningful semantics. When we combine the hidden representations of training
examples, we also perform the same linear interpolation in the labels (seen as one-hot vectors or
categorical distributions), producing new soft targets for the mixed examples.

In practice, deep networks often learn representations such that there are few strong constraints on
how the states can be distributed in the hidden space, because of which the states can be widely
distributed through the space, (as seen in Figure 1d). As well as, nearly all points in hidden space
correspond to high confidence classifications even if they correspond to off-the-training distribution
samples (seen as black points in Figure 1d). In contrast, the consequence of our Manifold Mixup
approach is that the hidden states from real examples of a particular class are concentrated in local
regions and the majority of the hidden space corresponds to lower confidence classifications. This
concentration of the hidden states of the examples of a particular class into a local regions enables
learning more discriminative features. A low-dimensional example of this can be seen in Figure 1
and a more detailed analytical discussion for what “concentrating into local regions” means is in
Section 3.

Our method provides the following contributions:
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• The introduction of a novel regularizer which outperforms competitive alternatives such as
Cutout (Devries & Taylor, 2017), Mixup (Zhang et al., 2018), AdaMix (Guo et al., 2016),
and Dropout (Hinton et al., 2012). On CIFAR-10, this includes a 50% reduction in test
Negative Log-Likelihood (NLL) from 0.1945 to 0.0957.

• Manifold Mixup achieves significant robustness to single step adversarial attacks.

• A new method for semi-supervised learning which uses a Manifold Mixup based consis-
tency loss. This method reduces error relative to Virtual Adversarial Training (VAT) (Miy-
ato et al., 2018a) by 21.86% on CIFAR-10, and unlike VAT does not involve any additional
significant computation.

• An analysis of Manifold Mixup and exact sufficient conditions for Manifold Mixup to
achieve consistent interpolations. Unlike Input Mixup, this doesn’t require strong assump-
tions about the data distribution (see the failure case of Input Mixup in Figure 1): only that
the number of hidden units exceeds the number of classes, which is easily satisfied in many
applications.

2 MANIFOLD MIXUP

The Manifold Mixup algorithm consists of selecting a random layer (from a set of eligible layers
including the input layer) k. We then process the batch without any mixup until reaching that
layer, and we perform mixup at that hidden layer, and then continue processing the network starting
from the mixed hidden state, changing the target vector according to the mixup interpolation. More
formally, we can redefine our neural network function y = f(x) in terms of k: f(x) = fk(gk(x)).
Here gk is a function which runs a neural network from the input hidden state k to the output y, and
hk is a function which computes the k-th hidden layer activation from the input x.

For the linear interpolation between factors, we define a variable λ and we sample from p(λ). Fol-
lowing (Zhang et al., 2018), we always use a beta distribution p(λ) = Beta(α, α). With α = 1.0,
this is equivalent to sampling from U(0, 1).

We consider interpolation in the set of layers Sk and minimize the expected Manifold Mixup loss.

L = E(xi,yi),(xj ,yj)∼p(x,y),λ∼p(λ),k∼Sk
`(fk(λgk(xi) + (1− λ)gk(xj))), λyi + (1− λ)yj) (1)

We backpropagate gradients through the entire computational graph, including to layers before the
mixup process is applied (Section 5.1 and appendix Section B explore this issue directly). In the case
where k = 0 is the input layer and Sk = 0, Manifold Mixup reduces to the mixup algorithm of Zhang
et al. (2018). With α = 2.0, about 5% of the time λ is within 5% of 0 or 1, which essentially means
that an ordinary example is presented. In the more general case, we can optimize the expectation in
the Manifold Mixup objective by sampling a different layer to perform mixup in on each update. We
could also select a new random layer as well as a new lambda for each example in the minibatch. In
theory this should reduce the variance in the updates introduced by these random variables. However
in practice we found that this didn’t have a significant effect on the results, so we decided to sample
a single lambda and a randomly chosen layer per minibatch.

In comparison to Input Mixup, the results in the Figure 2 demonstrate that Manifold Mixup reduces
the loss calculated along hidden interpolations significantly better than Input Mixup, without signif-
icantly changing the loss calculated along visible space interpolations.

3 HOW MANIFOLD MIXUP CHANGES REPRESENTATIONS

Our goal is to show that if one does mixup in a sufficiently deep hidden layer in a deep network,
then a mixup loss of zero can be achieved so long the dimensionality of that hidden layer dim (H)
is greater than the number of classes d. More specifically the resulting representations for that class
must fall onto a subspace of dimension dim (H)− d.

Assume X and H to denote the input and representation spaces, respectively. We denote the label-
set by Y and let Z , X ×Y . Also, let us denote the set of all probability measures on Z by M (Z).
Assume G ⊆ HX to be the set of all possible functions that can be generated by the neural network
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mapping input to the representation space. In this regard, each g ∈ G represents a mapping from
input to the representation units. A similar definition can be made for F ⊆ YH, as the space of all
possible functions from the representation space to the output.

We are interested in the solution of the following problem, at least in some specific asymptotic
regimes:

J (L,P ) , inf
g∈G, f∈F

Eλ

{∫
Z2

L (f ◦Mixλ (g (X1) , g (X2)) ,Mixλ (y1,y2))

2∏
i=1

dP (Xi, yi)

}
,

(2)
where

Mixλ (a, b) , λa+ (1− λ) b, λ ∈ [0, 1] , (3)
for any a and b defined on the same domain.

We analyze the above-mentioned minimization when the probability measure P = PD is chosen
as the empirical distribution over a finite dataset of size n, denoted by D = {(Xi,yi)}

n
i=1. Let

f∗ ∈ F and g∗ ∈ G be the minimizers in (2) with P = PD.

In particular, we are interested in the case where G = HX , F = YH, andH is a vector space; These
conditions simply state that the two respective neural networks which map input into representation
space, and representation space to the output are being extended asymptotically1. In this regard, we
show that the minimizer f∗ is a linear function from H to Y . This way, it is easy to show that the
following equality holds:

J (L,PD) = inf
h1,...,hn∈H

1

n (n− 1)

n∑
i,j=1
i6=j

{
inf
f∈F

∫ 1

0

L
(
f ◦Mixλ (hi,hj) ,Mixλ

(
yi,yj

))
dλ

}
,

(4)

where hi , g (Xi) is the representation of Xi.

Theorem 1. Assume H to be a vector space with dimension dim (H), and let d ∈ N to represent
the number of distinct classes in dataset D. Then, if dim (H) ≥ d − 1, J (L,PD) = 0 and the
minimizer function f∗ is a linear map fromH to Rd.

Proof. With basic linear algebra, one can confirm that the following argument is true as long as
dim (H) ≥ d− 1:

∃A,H ∈ Rdim(H)×d, b ∈ Rd such that ATH + b1Td = Id×d, (5)
where Id×d and 1d are the d-dimensional identity matrix and all-one vector, respectively. In fact,
b1Td is a rank-one matrix, while the rank of identity matrix is d. Therefore, ATH only needs to be
rank d− 1.

Let f∗ (h) , Ah+ b, for all h ∈ H. Also, let g∗ (Xi) = hζi , where hi here means the ith column
of matrix H , and ζi ∈ {1, . . . , d} is the class-index of the ith sample. We show that such selections
will make the objective in (2) equal to zero (which is the minimum possible value). More precisely,
the following relations hold:

1

n (n− 1)

n∑
i,j=1
i6=j

{∫ 1

0

L
(
f∗ ◦Mixλ (g

∗ (Xi) , g
∗ (Xj)) ,Mixλ

(
yi,yj

))
dλ

}
,

=
1

n (n− 1)

n∑
i,j=1
i6=j

{∫ 1

0

L
(
AT

(
λhζi + (1− λ)hζj

)
+ b, λyζi + (1− λ)yζj

)
dλ

}
,

=
1

n (n− 1)

n∑
i,j=1
i6=j

{∫ 1

0

L (u (λ) , u (λ)) dλ

}
= 0. (6)

1Due to the consistency theorem that proves neural networks with nonlinear activation functions are dense
in the function space
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The final equality is a direct result of AThζi + b = yζi for i = 1, . . . , n.

Also, it can be shown that as long as dim (H) > d− 1, then data points in the representation space
H have some degrees of freedom to move independently.

Corollary 1. Consider the setting in Theorem 1, and assume dim (H) > d − 1. Let g∗ ∈ G to be
the true minimizer of (2) for a given dataset D. Then, data-points in the representation space, i.e.
g∗ (Xi), fall on a (dim (H)− d+ 1)-dimensional subspace.

Proof. In the proof of Theorem 1, we have

ATH = Id×d − b1Td . (7)

The r.h.s. of (7) can become a rank-(d− 1) matrix as long as vector b is chosen properly. Thus, A is
free to have a null-space of dimension dim (H)−d+1. This way, one can assign g∗ (Xi) = hζi+ei,
where hj and ζi (for j = 1, . . . , d and i = 1, . . . , n) are defined in the same way as in Theorem 1,
and eis can are arbitrary vectors in the null-space of A, i.e. ei ∈ ker (A) for all i.

This result implies that if the Manifold Mixup loss is minimized, then the representation for each
class will lie on a subspace of dimension dim (H)−d+1. In the most extreme case where dim (H) =
d − 1, each hidden state from the same class will be driven to a single point, so the change in the
hidden states following any direction on the class-conditional manifold will be zero. In the more
general case with a larger dim (H), a majority of directions inH-space will not change as we move
along the class-conditional manifold.

Why are these properties desirable? First, it can be seen as a flattening 2. of the class-conditional
manifold which encourages learning effective representations earlier in the network. Second, it
means that the region in hidden space occupied by data points from the true manifold has nearly
zero measure. So a randomly sampled hidden state within the convex hull spanned by the data
is more likely to have a classification score that is not fully confident (non-zero entropy). Thus
it encourages the network to learn discriminative features in all layers of the network and to also
assign low-confidence classification decisions to broad regions in the hidden space (this can be seen
in Figure 1 and Figure 6).

4 RELATED WORK

Regularization is a major area of research in machine learning. Manifold Mixup closely builds on
two threads of research. The first is the idea of linearly interpolating between different randomly
drawn examples and similarly interpolating the labels (Zhang et al., 2018; Tokozume et al., 2018).
These methods encourage the output of the entire network to change linearly between two randomly
drawn training samples, which can result in underfitting. In contrast, for a particular layer at which
mixing is done, Manifold Mixup allows lower layers to learn more concentrated features in such a
way that it makes it easier for the output of the upper layers to change linearly between hidden states
of two random samples, achieving better results (section 5.1 and Appendix B).

Another line of research closely related to Manifold Mixup involves regularizing deep networks
by perturbing the hidden states of the network. These methods include dropout (Hinton et al.,
2012), batch normalization (Ioffe & Szegedy, 2015), and the information bottleneck (Alemi et al.,
2017). Notably Hinton et al. (2012) and Ioffe & Szegedy (2015) both demonstrated that regularizers
already demonstrated to work well in the input space (salt and pepper noise and input normalization
respectively) could also be adapted to improve results when applied to the hidden layers of a deep
network. We believe that the regularization effect of Manifold Mixup would be complementary to
that of these algorithms.

Zhao & Cho (2018) explored improving adversarial robustness by classifying points using a function
of the nearest neighbors in a fixed feature space. This involved applying mixup between each set
of nearest neighbor examples in that feature space. The similarity between Zhao & Cho (2018) and

2 Please refer to Appendix I for the meaning of flattening and further analysis
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Table 1: Supervised Classification Results on CIFAR-10 (a) and CIFAR-100 (b). We note significant
improvement with Manifold Mixup especially in terms of Negative log-likelihood (NLL). Please
refer to Appendix C for details on the implementation of Manifold Mixup and Manifold Mixup All
layers and results on SVHN. † and ‡ refer to the results reported in (Zhang et al., 2018) and (Guo
et al., 2016) respectively.

Model
Test
Error

Test
NLL

PreActResNet18

No Mixup 5.12 0.2646
Input Mixup (α = 1.0) † 3.90 n/a
AdaMix ‡ 3.52 n/a
Input Mixup (α = 1.0) 3.50 0.1945
Manifold Mixup (α = 2.0) 2.89 0.1407
PreActResNet152

No Mixup 4.20 0.1994
Input Mixup (α = 1.0) 3.15 0.2312
Manifold Mixup (α = 2.0) 2.76 0.1419
Manifold Mixup
all layers (α = 6.0) 2.38 0.0957

(a) CIFAR-10

Model
Test
Error

Test
NLL

PreActResNet18

No Mixup † 25.60 n/a
No Mixup 24.68 1.284
Input Mixup (α = 1.0) † 21.10 n/a
AdaMix ‡ 20.97 n/a
Manifold Mixup (α = 2.0) 21.05 0.913
PreActResNet34

Input Mixup (α = 1.0) 22.79 1.085
Manifold Mixup (α = 2.0) 20.39 0.930

(b) CIFAR-100

Manifold Mixup is that both consider linear interpolations in hidden states with the same interpola-
tion applied to the labels. However an important difference is that Manifold Mixup backpropagates
gradients through the earlier parts of the network (the layers before where mixup is applied) unlike
Zhao & Cho (2018). As discussed in Section 5.1 and Appendix B this was found to significantly
change the learning process.

AdaMix (Guo et al., 2018a) is another related method which attempted to learn better mixing distri-
butions to avoid overlap. AdaMix reported 3.52% error on CIFAR-10 and 20.97% error on CIFAR-
100. We report 2.38% error on CIFAR-10 and 20.39% error on CIFAR-100. AdaMix only interpo-
lated in the input space, and they report that their method hurt results significantly when they tried
to apply it to the hidden layers. Thus this method likely works for different reasons from Manifold
Mixup and might be complementary.

AgrLearn (Guo et al., 2018b) is a method which adds a new information bottleneck layer to the end
of deep neural networks. This achieved substantial improvements, and was used together with Input
Mixup (Zhang et al., 2018) to achieve 2.45% test error on CIFAR-10. As their method was com-
plimentary with Input Mixup, it’s possible that their method is also complimentary with Manifold
Mixup, and this could be an interesting area for future work.

5 EXPERIMENTS

5.1 REGULARIZATION ON SUPERVISED LEARNING

We present results on Manifold Mixup based regularization of networks using the PreActResNet
architecture (He et al., 2016). We closely followed the procedure of (Zhang et al., 2018) as a way
of providing direct comparisons with the Input Mixup algorithm. We used weight decay of 0.0001
and trained with SGD with momentum and multiplied the learning rate by 0.1 at regularly scheduled
epochs. These results for CIFAR-10 and CIFAR-100 are in Table 1a and 1b. We also ran experiments
where we took PreActResNet34 models trained on the normal CIFAR-100 data and evaluated them
on test sets with artificial deformations (shearing, rotation, and zooming) and showed that Manifold
Mixup demonstrated significant improvements (Appendix C Table 5), which suggests that Manifold
Mixup performs better on the variations in the input space not seen during the training. We also
show that the number of epochs needed to reach good results is not significantly affected by using
Manifold Mixup in Figure 8.
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To better understand why the method works, we performed an experiment where we trained with
Manifold Mixup but blocked gradients immediately after the layer where we perform mixup. On
CIFAR-10 PreActResNet18, this caused us to achieve 4.86% test error when trained on 400 epochs
and 4.33% test error when trained on 1200 epochs. This is better than the baseline, but worse than
Manifold Mixup or Input Mixup in both cases. Because we randomly select the layer to mix, each
layer of the network is still being trained, although not on every update. This demonstrates that the
Manifold Mixup method improves results by changing the layers both before and after the mixup
operation is applied.

We also compared Manifold Mixup against other strong regularizers. We selected the best perform-
ing hyperparameters for each of the following models using a validation set. Using each model’s
best performing hyperparameters, test error averages and standard deviations for five trials (in %)
for CIFAR-10 using PreResNet50 trained for 600 epochs are: vanilla PreResNet50 (4.96 ± 0.19),
Dropout (5.09 ± 0.09), Cutout (Devries & Taylor, 2017) (4.77 ± 0.38), Mixup (4.25 ± 0.11) and
Manifold Mixup (3.77 ± 0.18). This clearly shows that Manifold Mixup has strong regularizing
effects. (Note that the results in Table 1 were run for 1200 epochs and thus these results are not
directly comparable.)

We also evaluate the quality of the representations learned by Manifold Mixup by applying K-Nearest
Neighbour classifier on the feature extracted from the top layer of PreResNet18 for CIFAR-10.
We achieved test errors of 6.09% (Vanilla PreResNet18), 5.54% (Mixup) and 5.16% (Manifold
Mixup). It suggests that Manifold Mixup helps learning better representations. Further analysis of
how Manifold Mixup changes the representations is given in Appendix B

There are a couple of important questions to ask: how sensitive is the performance of Manifold
Mixup with respect to the hyperparameter α and in which layers the mixing should be performed.
We found that Manifold Mixup works well for a wide range of α values. Please refer to Appendix
J for more details. Furthermore, the results in Appendix K suggests that mixing should not be
performed in the layers very close to the output layer.

5.2 SEMI-SUPERVISED LEARNING

Semi-supervised learning is concerned with building models which can take advantage of both la-
beled and unlabeled data. It is particularly useful in domains where obtaining labels is challenging,
but unlabeled data is plentiful.

Table 2: Results on semi-supervised learning (SSL) on CIFAR-10 (4k
labels) and SVHN (1k labels) (in test error %). All results use the
same standardized architecture (WideResNet-28-2). Each experiment
was run for 5 trials. † refers to the results reported in Oliver et al. (2018)

SSL Approach CIFAR-10 SVHN

Supervised † 20.26± 0.38 12.83± 0.47
Mean-Teacher † 15.87± 0.28 5.65± 0.47
VAT † 13.86± 0.27 5.63± 0.20
VAT-EM † 13.13± 0.39 5.35± 0.19
Semi-supervised Input Mixup 10.71± 0.44 6.54± 0.62
Semi-supervised Manifold Mixup 10.26± 0.32 5.70± 0.48

The Manifold Mixup
approach to semi-
supervised learning is
closely related to the con-
sistency regularization
approach reviewed by
Oliver et al. (2018). It
involves minimizing loss
on labelled samples as
well as unlabeled samples
by controlling the trade-
off between these two
losses via a consistency
coefficient. In the Man-
ifold Mixup approach for
semi-supervised learning,
the loss from labeled examples is computed as normal. For computing loss from unlabelled samples,
the model’s predictions are evaluated on a random batch of unlabeled data points. Then the normal
manifold mixup procedure is used, but the targets to be mixed are the soft target outputs from the
classifier. The detailed algorithm for both Manifold Mixup and Input Mixup with semi-supervised
learning are given in appendix D.

Oliver et al. (2018) performed a systematic study of semi-supervised algorithms using a fixed wide
resnet architecture "WRN-28-2" (Zagoruyko & Komodakis, 2016). We evaluate Manifold Mixup
using this same setup and achieve improvements for CIFAR-10 over the previously best performing
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algorithm, Virtual Adversarial Training (VAT) (Miyato et al., 2018a) and Mean-Teachers (Tarvainen
& Valpola, 2017). For SVHN, Manifold Mixup is competitive with VAT and Mean-Teachers. See
Table 2. While VAT requires an additional calculation of the gradient and Mean-Teachers requires
repeated model parameters averaging, Manifold Mixup requires no additional (non-trivial) compu-
tation.

In addition, we also explore the regularization ability of Manifold Mixup in a fully-supervised low-
data regime by training a PreResnet-152 model on 4000 labeled images from CIFAR-10. We ob-
tained 13.64 % test error which is comparable with the fully-supervised regularized baseline ac-
cording to results reported in Oliver et al. (2018). Interestingly, we do not use a combination of two
powerful regularizers (“Shake-Shake” and “Cut-out”) and the more complex ResNext architecture
as in Oliver et al. (2018) and still achieve the same level of test accuracy, while doing much better
than the fully supervised baseline not regularized with state-of-the-art regularizers (20.26% error).

Figure 2: Study of test Negative Log-likelihood (NLL) using the interpolated target values (lower is
better) on interpolated points under models trained with the baseline, mixup, and Manifold Mixup.
Manifold Mixup dramatically improves performance when interpolating in the hidden states, and
very slightly reduces performance when interpolating in the visible space. Y-axis denotes NLL and
X-axis denotes the interpolation coefficient

5.3 ADVERSARIAL EXAMPLES

Adversarial examples in some sense are the “worst case” scenario for models failing to perform
well when evaluated with data off the manifold3. Because Manifold Mixup only considers a sub-
set of directions around data points (namely, those corresponding to interpolations), we would not
expect the model to be robust to adversarial attacks which can consider any direction within an
epsilon-ball of each example. At the same time, Manifold Mixup expands the set of points seen
during training, so an intriguing hypothesis is that these overlap somewhat with the set of possible
adversarial examples, which would force adversarial attacks to consider a wider set of directions,
and potentially be more computationally expensive. To explore this we considered the Fast Gradient
Sign Method (FGSM, Goodfellow et al., 2015) which only requires a single gradient update and
considers a relatively small subset of adversarial directions. The resulting performance of Manifold
Mixup against FGSM are given in Table 3. A challenge in evaluating adversarial examples comes
from the gradient masking problem in which a defense succeeds solely due to reducing the quality
of the gradient signal. Athalye et al. (2018) explored this issue in depth and proposed running an
unbounded search for a large number of iterations to confirm the quality of the gradient signal. Our
Manifold Mixup passed this sanity check (see Appendix F). While we found that Manifold Mixup
greatly improved robustness to the FGSM attack, especially over Input Mixup (Zhang et al., 2018),
we found that Manifold Mixup did not significantly improve robustness against the stronger iterative
projected gradient descent (PGD) attack (Madry et al., 2018).

6 VISUALIZATION OF INTERPOLATED STATES

An important question is what kinds of feature combinations are being explored when we perform
mixup in the hidden layers as opposed to linear interpolation in visible space. To provide a qualita-

3See the adversarial spheres (Gilmer et al., 2018) paper for a discussion of what it means to be off of the
manifold.
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Table 3: CIFAR-10 Test Accuracy Results on white-box FGSM (Goodfellow et al., 2015) adversarial
attack (higher is better) using PreActResNet18 (left). SVHN Test Accuracy Results on white-box
FGSM using WideResNet20-10 (Zagoruyko & Komodakis, 2016). Note that our method achieves
some degree of adversarial robustness, against the FGSM attack, despite not requiring any additional
(significant) computation. † refers to results reported in (Madry et al., 2018)

CIFAR-10 Models FGSM

Adv. Training (PGD 7-step) † 56.10
Adversarial Training
+ Fortified Networks 81.80
Baseline (Vanilla Training) 36.32
Input Mixup (α = 1.0) 71.51
Manifold Mixup (α = 2.0) 77.50

CIFAR-100 Models FGSM

Input Mixup (α = 1.0) 40.7
Manifold Mixup (α = 2.0) 44.96

SVHN Models FGSM

Baseline 21.49
Input Mixup
(α = 1.0) 56.98
Manifold Mixup
(α = 2.0) 65.91
Adv. Training
(PGD 7-step) 72.80

tive study of this, we trained a small decoder convnet (with upsampling layers) to predict an image
from the Manifold Mixup classifier’s hidden representation (using a simple squared error loss in the
visible space). We then performed mixup on the hidden states between two random examples, and
ran this interpolated hidden state through the convnet to get an estimate of what the point would
look like in input space. Similarly to earlier results on auto-encoders (Bengio et al., 2013), we found
that these interpolated h points corresponded to images with a blend of the features from the two
images, as opposed to the less-semantic pixel-wise blending resulting from Input Mixup as shown
in Figure 3 and Figure 4. Furthermore, this justifies the training objective for examples mixed-up
in the hidden layers: (1) most of the interpolated points correspond to combinations of semantically
meaningful factors, thus leading to the more training samples; and (2) none of the interpolated points
between objects of two different categories A and B correspond to a third category C, thus justifying
a training target which gives 0 probability on all the classes except A and B.

7 CONCLUSION

Deep neural networks often give incorrect yet extremely confident predictions on data points which
are unlike those seen during training. This problem is one of the most central challenges in deep
learning both in theory and in practice. We have investigated this from the perspective of the repre-
sentations learned by deep networks. In general, deep neural networks can learn representations such
that real data points are widely distributed through the space and most of the area corresponds to
high confidence classifications. This has major downsides in that it may be too easy for the network
to provide high confidence classification on points which are off of the data manifold and also that
it may not provide enough incentive for the network to learn highly discriminative representations.
We have presented Manifold Mixup, a new algorithm which aims to improve the representations
learned by deep networks by encouraging most of the hidden space to correspond to low confidence
classifications while concentrating the hidden states for real examples onto a lower dimensional sub-
space. We applied Manifold Mixup to several tasks and demonstrated improved test accuracy and
dramatically improved test likelihood on classification, better robustness to adversarial examples
from FGSM attack, and improved semi-supervised learning. Manifold Mixup incurs virtually no
additional computational cost, making it appealing for practitioners.
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Figure 3: Interpolations in the input space with a mixing rate varied from 0.0 to 1.0.

Figure 4: Interpolations in the hidden states (using a small convolutional network trained to pre-
dict the input from the output of the second resblock). The interpolations in the hidden states show
a better blending of semantically relevant features, and more of the images are visually consistent.
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A SYNTHETIC EXPERIMENTS ANALYSIS

We conducted experiments using a generated synthetic dataset where each image is deterministically rendered
from a set of independent factors. The goal of this experiment is to study the impact of input mixup and
an idealized version of Manifold Mixup where we know the true factors of variation in the data and we can
do mixup in exactly the space of those factors. This is not meant to be a fair evaluation or representation of
how Manifold Mixup actually performs - rather it’s meant to illustrate how generating relevant and semantically
meaningful augmented data points can be much better than generating points which are far off the data manifold.

We considered three tasks. In Task A, we train on images with angles uniformly sampled between (-70◦, -50◦)
(label 0) with 50% probability and uniformly between (50◦, 80◦) (label 1) with 50% probability. At test time
we sampled uniformly between (-30◦, -10◦) (label 0) with 50% probability and uniformly between (10◦, 30◦)
(label 1) with 50% probability. Task B used the same setup as Task A for training, but the test instead used
(-30◦, -20◦) as label 0 and (-10◦, 30◦) as label 1. In Task C we made the label whether the digit was a “1” or a
“7”, and our training images were uniformly sampled between (-70◦, -50◦) with 50% probability and uniformly
between (50◦, 80◦) with 50% probability. The test data for Task C were uniformly sampled with angles from
(-30◦, 30◦).

The examples of the data are in figure 5 and results are in table 4. In all cases we found that Input Mixup gave
some improvements in likelihood but limited improvements in accuracy - suggesting that the even generating
nonsensical points can help a classifier trained with Input Mixup to be better calibrated. Nonetheless the
improvements were much smaller than those achieved with mixing in the ground truth attribute space.

Figure 5: Synthetic task where the underlying factors are known exactly. Training images (left),
images from input mixup (center), and images from mixing in the ground truth factor space (right).

Table 4: Results on synthetic data generalization task with an idealized Manifold Mixup (mixing in
the true latent generative factors space). Note that in all cases visible mixup significantly improved
likelihood, but not to the same degree as factor mixup.

Task Model Test Accuracy Test NLL

No Mixup 1.6 8.8310
Task A Input Mixup (1.0) 0.0 6.0601

Ground Truth Factor Mixup (1.0) 94.77 0.4940

No Mixup 21.25 7.0026
Task B Input Mixup (1.0) 18.40 4.3149

Ground Truth Factor Mixup (1.0) 84.02 0.4572

No Mixup 63.05 4.2871
Task C Input Mixup 66.09 1.4181

Ground Truth Factor Mixup 99.06 0.1279
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B ANALYSIS OF HOW Manifold Mixup CHANGES LEARNED
REPRESENTATIONS

Figure 6: An experiment on a network trained on the 2D spiral dataset with a 2D bottleneck hidden
state in the middle of the network (the same setup as 1). Noise refers to gaussian noise in the
bottleneck layer, dropout refers to dropout of 50% in all layers except the bottleneck itself (due to its
low dimensionality), and batch normalization refers to batch normalization in all layers. This shows
that the effect of concentrating the hidden states for each class and providing a broad region of low
confidence between the regions is not accomplished by the other regularizers.

We have found significant improvements from using Manifold Mixup, but a key question is whether the im-
provements come from changing the behavior of the layers before the mixup operation is applied or the layers
after the mixup operation is applied. This is a place where Manifold Mixup and Input Mixup are clearly dif-
ferentiated, as Input Mixup has no “layers before the mixup operation” to change. We conducted analytical
experimented where the representations are low-dimensional enough to visualize. More concretely, we trained
a fully connected network on MNIST with two fully-connected leaky relu layers of 1024 units, followed by a
2-dimensional bottleneck layer, followed by two more fully-connected leaky-relu layers with 1024 units.

We then considered training with no mixup, training with mixup in the input space, and training only with mixup
directly following the 2D bottleneck. We consistently found that Manifold Mixup has the effect of making the
representations much tighter, with the real data occupying more specific points, and with a more well separated
margin between the classes, as shown in Figure 7

C SUPERVISED REGULARIZATION

For supervised regularization we considered architectures within the PreActResNet family: PreActResNet18,
PreActResNet34, and PreActResNet152. When using Manifold Mixup, we selected the layer to perform mixing
uniformly at random from a set of eligible layers. In our experiments on PreActResNets in Table 1a, Table 1b,
Table 6, Table 3 and Table 5, for Manifold Mixup, our eligible layers for mixing were : the input layer, the output
from the first resblock, and the output from the second resblock. For PreActResNet18, the first resblock has four
layers and the second resblock has four layers. For PreActResNet34, the first resblock has six layers and the
second resblock has eight layers. For PreActResNet152, the first resblock has 9 layers and the second resblock
has 24 layers. Thus the mixing is often done fairly deep in the network, for example in PreActResNet152 the
output of the second resblock is preceded by a total of 34 layers (including the initial convolution which is
not in a resblock). For Manifold Mixup All layers in Table 1a, our eligible layers for mixing were : the input
layer, the output from the first resblock, and the output from the second resblock, and the output from the third
resblock. We trained all models for 1200 epochs and dropped the learning rates by a factor of 0.1 at 400 epochs
and 800 epochs.

Table 6 presents results for SVHN dataset with PreActResNet18 architecture.

In Figure 9 and Figure 10, we present the training loss (Binary cross entropy) for Cifar10 and Cifar100 datasets
respectively. We observe that performing Manifold Mixup in higher layers allows the train loss to go down
faster as compared against the Input Mixup. This is consistent with the demonstration in Figure 1: Input mixup
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Figure 7: Representations from a classifier on MNIST (top is trained on digits 0-4, bottom is trained
on all digits) with a 2D bottleneck representation in the middle layer. No Mixup Baseline (left),
Input Mixup (center), Manifold Mixup (right).

Figure 8: CIFAR-10 test set Negative Log-Likelihood (Y-axis) on PreActResNet152, wrt training
epochs (X-axis).

can suffer from underfitting since the interpolation between two examples can intersect with a real example. In
Manifold Mixup the hidden states in which the interpolation is performed, are learned, hence during the course
of training they can evolve in such a way that the aforementioned intersection issue is avoided.

D SEMI-SUPERVISED MANIFOLD MIXUP AND INPUT MIXUP ALGORITHM

We present the procedure for Semi-supervised Manifold Mixup and Semi-supervised Input Mixup in Algo-
rithms 1 and 3 respectively.
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Algorithm 1 Semi-supervised Manifold Mixup. fθ: Neural Network; ManifoldMixup: Manifold
Mixup Algorithm 2; DL: set of labelled samples; DUL: set of unlabelled samples; π : consistency
coefficient (weight of unlabeled loss, which is ramped up to increase from zero to its max value over
the course of training); N : number of updates; ỹi: Mixedup labels of labelled samples; ŷi: predicted
label of the labelled samples mixed at a hidden layer; yj : Psuedolabels for unlabelled samples; ỹj :
Mixedup Psuedolabels of unlabelled samples; ŷj predicted label of the unlabelled samples mixed at
a hidden layer

1: k ← 0
2: while k ≤ N do
3: Sample (xi, yi) ∼ DL . Sample labeled batch
4: ŷi, ỹi =ManifoldMixup(xi, yi, θ)
5: LS = Loss(ŷi, ỹi) . Cross Entropy loss
6: Sample xj ∼ DUL . Sample unlabeled batch
7: yj = fθ(xj) . Compute Pseudolabels
8: ŷj , ỹj =ManifoldMixup(xj , yj , θ)
9: LUS = Loss(ŷj , ỹj) . MSE Loss

10: L = LS + π(k)LUS . Total Loss
11: g ← ∇θL (Gradients of the minibatch Loss )
12: θ ← Update parameters using gradients g (e.g. SGD )
13: end while

Algorithm 2 Manifold Mixup. fθ: Neural Network; D : dataset

1: Sample (xi, yi) ∼ D . Sample a batch
2: hi ←hidden state representation of Neural Network fθ at a layer k . the layer k is chosen

randomly
3: (hmixedi , ymixedi )←Mixup(hi, yi)
4: ŷi ← Forward Pass the hmixedi from layer k to the output layer of fθ
5: return ŷi, ỹi

Algorithm 3 Semi-supervised Input Mixup. fθ: Neural Network. InputMixup: Mixup process of
(Zhang et al., 2018); DL: set of labelled samples; DUL: set of unlabelled samples; π : consistency
coefficient (weight of unlabeled loss, which is ramped up to increase from zero to its max value over
the course of training); N : number of updates; xmixedupi : mixed up sample; ymixedupi : mixed up
label; ŷmixedupi : mixed up predicted label

1: k ← 0
2: while k ≤ N do
3: Sample (xi, yi) ∼ DL

4: . Sample labeled batch
5: (xmixedupi , ymixedupi ) = InputMixup(xi, yi)
6: LS = Loss(fθ(xi

mixedup), yi
mixedup) . CrossEntropy Loss

7: Sample xj ∼ DUL . Sample unlabeled batch
8: ŷj = fθ(xj) . Compute Pseudolabels
9: (xj

mixedup, ŷj
mixedup) = InputMixup(xj , ŷj)

10: LUS = Loss(fθ(xj
mixedup), ŷi

mixedup) . MSE Loss
11: L = LS + π(k) ∗ LUS . Total Loss
12: g ← ∇θL . Gradients of the minibatch Loss
13: θ ← Update parameters using gradients g (e.g. SGD )
14: end while
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Table 5: Models trained on the normal CIFAR-100 and evaluated on a test set with novel deforma-
tions. Manifold Mixup (ours) consistently allows the model to be more robust to random shearing,
rescaling, and rotation even though these deformations were not observed during training. For the
rotation experiment, each image is rotated with an angle uniformly sampled from the given range.
Likewise the shearing is performed with uniformly sampled angles. Zooming-in refers to take a
bounding box at the center of the image with k% of the length and k% of the width of the original
image, and then expanding this image to fit the original size. Likewise zooming-out refers to draw-
ing a bounding box with k% of the height and k% of the width, and then taking this larger area and
scaling it down to the original size of the image (the padding outside of the image is black).

Test Set Deformation
No Mixup
Baseline

Input Mixup
α=1.0

Input Mixup
α=2.0

Manifold Mixup
α=2.0

Rotation U(−20◦,20◦) 52.96 55.55 56.48 60.08
Rotation U(−40◦,40◦) 33.82 37.73 36.78 42.13
Rotation U(−60◦,60◦) 26.77 28.47 27.53 33.78
Rotation U(−80◦,80◦) 24.19 26.72 25.34 29.95
Shearing U(−28.6◦, 28.6◦) 55.92 58.16 60.01 62.85
Shearing U(−57.3◦, 57.3◦) 35.66 39.34 39.7 44.27
Shearing U(−114.6◦, 114.6◦) 19.57 22.94 22.8 24.69
Shearing U(−143.2◦, 143.2◦) 17.55 21.66 21.22 23.56
Shearing U(−171.9◦, 171.9◦) 22.38 25.53 25.27 28.02
Zoom In (20% rescale) 2.43 1.9 2.45 2.03
Zoom In (40% rescale) 4.97 4.47 5.23 4.17
Zoom In (60% rescale) 12.68 13.75 13.12 11.49
Zoom In (80% rescale) 47.95 52.18 50.47 52.7
Zoom Out (120% rescale) 43.18 60.02 61.62 63.59
Zoom Out (140% rescale) 19.34 41.81 42.02 45.29
Zoom Out (160% rescale) 11.12 25.48 25.85 27.02
Zoom Out (180% rescale) 7.98 18.11 18.02 15.68

Table 6: Results on SVHN dataset with PreActResNet18 architecture

Model Test Error ( in %)

PreActResNet18

No Mixup 2.22
Input Mixup (α = 0.01) 2.30
Input Mixup (α = 0.05) 2.28
Input Mixup (α = 0.2) 2.29
Input Mixup (α = 0.5) 2.26
Input Mixup (α = 1.0) 2.37
Input Mixup (α = 1.5) 2.41
Manifold Mixup (α = 1.5) 1.92
Manifold Mixup (α = 2.0) 1.90

17



Under review as a conference paper at ICLR 2019

Figure 9: CIFAR-10 train set Binary Cross Entropy Loss (BCE) on Y-axis using PreActResNet18,
with respect to training epochs (X-axis). The numbers in {} refer to the resblock after which Mani-
fold Mixup is performed. The ordering of the losses is consistent over the course of training: Mani-
fold Mixup with gradient blocked before the mixing layer has the highest training loss, followed by
Input Mixup. The lowest training loss is achieved by mixing in the deepest layer, which is highly
consistent with Section 3 which suggests that having more hidden units can help to prevent under-
fitting.
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Figure 10: CIFAR-100 train set Binary Cross Entropy Loss (BCE) on Y-axis using PreActRes-
Net50, with respect to training epochs (X-axis). The numbers in {} refer to the resblock after which
Manifold Mixup is performed. The lowest training loss is achieved by mixing in the deepest layer.
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E SEMI-SUPERVISED EXPERIMENTAL DETAILS

We use the WideResNet28-2 architecture used in (Oliver et al., 2018) and closely follow their experimental
setup for fair comparison with other Semi-supervised learning algorithms. We used SGD with momentum
optimizer in our experiments. For Cifar10, we run the experiments for 1000 epochs with initial learning rate
is 0.1 and it is annealed by a factor of 0.1 at epoch 500, 750 and 875. For SVHN, we run the experiments
for 200 epochs with initial learning rate is 0.1 and it is annealed by a factor of 0.1 at epoch 100, 150 and 175.
The momentum parameter was set to 0.9. We used L2 regularization coefficient 0.0005 and L1 regularization
coefficient 0.001 in our experiments. We use the batch-size of 100.

The data pre-processing and augmentation in exactly the same as in (Oliver et al., 2018). For CIFAR-10, we use
the standard train/validation split of 45,000 and 5000 images for training and validation respectively. We use
4000 images out of 45,000 train images as labelled images for semi-supervised learning. For SVHN, we use
the standard train/validation split with 65932 and 7325 images for training and validation respectively. We use
1000 images out of 65932 images as labelled images for semi-supervised learning. We report the test accuracy
of the model selected based on best validation accuracy.

For supervised loss, we used α (of λ ∼ Beta(α, α)) from the set { 0.1, 0.2, 0.3... 1.0} and found 0.1 to be the
best. For unsupervised loss, we used α from the set {0.1, 0.5, 1.0, 1.5, 2.0. 3.0, 4.0} and found 2.0 to be the
best.

The consistency coefficient is ramped up from its initial value 0.0 to its maximum value at 0.4 factor of total
number of iterations using the same sigmoid schedule of (Tarvainen & Valpola, 2017). For CIFAR-10, we
found max consistency coefficient = 1.0 to be the best. For SVHN, we found max consistency coefficient = 2.0
to be the best.

When using Manifold Mixup, we selected the layer to perform mixing uniformly at random from a set of eligible
layers. In our experiments on WideResNet28-2 in Table 2, our eligible layers for mixing were : the input layer,
the output from the first resblock, and the output from the second resblock.

F ADVERSARIAL EXAMPLES

We ran the unbounded projected gradient descent (PGD) (Madry et al., 2018) sanity check suggested in (Atha-
lye et al., 2018). We took our trained models for the input mixup baseline and manifold mixup and we ran
PGD for 200 iterations with a step size of 0.01 which reduced the mixup model’s accuracy to 1% and reduced
the Manifold Mixup model’s accuracy to 0%. This is direct evidence that our defense did not improve results
primarily as a result of gradient masking.

The Fast Gradient Sign Method (FGSM) Goodfellow et al. (2015) is a simple one-step attack that produces
x̃ = x+ ε sgn(∇xL(θ, x, y)).

G GENERATIVE ADVERSARIAL NETWORKS

The recent literature has suggested that regularizing the discriminator is beneficial for training GANs (Salimans
et al., 2016; Arjovsky et al., 2017; Gulrajani et al., 2017; Miyato et al., 2018b). In a similar vein, one could
add mixup to the original GAN training objective such that the extra data augmentation acts as a beneficial
regularization to the discriminator, which is what was proposed in Zhang et al. (2018). Mixup proposes the
following objective4:

max
g

min
d

Ex,z,λ `(d(λx1 + (1− λ)x2), y(λ;x1, x2)), (8)

where x1, x2 can be either real or fake samples, and λ is sampled from a Uniform(0, α). Note that we have
used a function y(λ;x1, x2) to denote the label since there are four possibilities depending on x1 and x2:

y(λ;x1, x2) =


λ, if x1 is real and x2 is fake
1− λ, if x1 is fake and x2 is real
0, if both are fake
1, if both are real

(9)

In practice however, we find that it did not make sense to create mixes between real and real where the label is
set to 1, (as shown in equation 9), since the mixup of two real examples in input space is not a real example.

4The formulation written is based on the official code provided with the paper, rather than the description in
the paper. The discrepancy between the two is that the formulation in the paper only considers mixes between
real and fake.
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So we only create mixes that are either real-fake, fake-real, or fake-fake. Secondly, instead of using just the
equation in 8, we optimize it in addition to the regular minimax GAN equations:

max
g

min
d

Ex `(d(x), 1) + Eg(z) `(d(g(z)), 0) + GAN mixup term (Equation 8) (10)

Using similar notation to earlier in the paper, we present the manifold mixup version of our GAN objective in
which we mix in the hidden space of the discriminator:

min
d

Ex,z,k `(d(x), 1) + `(d(g(z), 0) + `(dk(λhk(x1) + (1− λ)hk(x2), y(λ;x1, x2)), (11)

where hk(·) is a function denoting the intermediate output of the discriminator at layer k, and dk(·) the output
of the discriminator given input from layer k.

The layer k we choose the sample can be arbitrary combinations of the input layer (i.e., input mixup), or the
first or second resblocks of the discriminator, all with equal probability of selection.

We run some experiments evaluating the quality of generated images on CIFAR10, using as a baseline JSGAN
with spectral normalization (Miyato et al., 2018b) (our configuration is almost identical to theirs). Results are
averaged over at least three runs5. From these results, the best-performing mixup experiments (both input and
Manifold Mixup) is with α = 0.5, with mixing in all layers (both resblocks and input) achieving an average
Inception / FID of 8.04 ± 0.08 / 21.2 ± 0.47, input mixup achieving 8.03 ± 0.08 / 21.4 ± 0.56, for the
baseline experiment 7.97± 0.07 / 21.9± 0.62. This suggests that mixup acts as a useful regularization on the
discriminator, which is even further improved by Manifold Mixup. See Figure 11 for the full set of experimental
results
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Figure 11: We test out various values of α in conjunction with either: input mixup ( pixel) (Zhang
et al., 2018), mixing in the output of the first resblock (h1), mixing in either the output of the first
resblock or the output of the second resblock (h1,2), and mixing in the input or the output of the
first resblock or the output of the second resblock (1,2,pixel). The dotted line indicates the
baseline Inception / FID score. Higher scores are better for Inception, while lower is better for FID.

H INTUITIVE EXPLANATION OF HOW MANIFOLD MIXUP AVOIDS
INCONSISTENT INTERPOLATIONS

An essential motivation behind manifold mixup is that because the network learns the hidden states, it can do
so in such a way that the interpolations between points are consistent. Section 3 characterized this for hidden
states with any number of dimensions and Figure 1 showed how this can occur on the 2d spiral dataset.

Our goal here is to discuss concrete examples to illustrate what it means for the interpolations to be consistent.
If we consider any two points, the interpolated point between them is based on a sampled λ and the soft-target

5Inception scores are typically reported with a mean and variance, though this is across multiple splits of
samples across a single model. Since we run multiple experiments, we average their respective means and
variances.
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for that interpolated point is the targets interpolated with the same λ. So if we consider two points A,B which
have the same label, it is apparent that every point on the line between A and B should have that same label
with 100% confidence. If we consider two points A,B with different labels, then the point which is halfway
between them will be given the soft-label of 50% the label of A and 50% the label of B (and so on for other λ
values).

It is clear that for many arrangements of data points, it is possible for a point in the space to be reached through
distinct interpolations between different pairs of examples, and reached with different λ values. Because the
learned model tries to capture the distribution p(y|h), it can only assign a single distribution over the label
values to a single particular point (for example it could say that a point is 100% label A, or it could say that
a point is 50% label A and 50% label B). Intuitively, these inconsistent soft-labels at interpolated points can
be avoided if the states for each class are more concentrated and classes vary along distinct dimensions in
the hidden space. The theory in Section 3 characterizes exactly what this concentration needs to be: that the
representations for each class need to lie on a subspace of dimension equal to “number of hidden dimensions”
- “number of classes” + 1.

Figure 12: We consider a binary classification task with four data points represented in a 2D hidden
space. If we perform mixup in that hidden space, we can see that if the points are laid out in a certain
way, two different interpolations can give inconsistent soft-labels (left and middle). This leads
to underfitting and high loss. When training with manifold mixup, this can be explicitly avoided
because the states are learned, so the model can learn to produce states for which all interpolations
give consistent labels, an example of which is seen on the right side of the figure.

I SPECTRAL ANALYSIS OF LEARNED REPRESENTATIONS

When we refer to flattening, we mean that the class-specific representations have reduced variability in some
directions. Our analysis in this section makes this more concrete.

We trained an MNIST classifier with a hidden state bottleneck in the middle with 12 units (intentionally selected
to be just slightly greater than the number of classes). We then took the representation for each class and
computed a singular value decomposition (Figure 13 and Figure 14) and we also computed an SVD over all
of the representations together (Figure 16). Our architecture contained three hidden layers with 1024 units
and LeakyReLU activation, followed by a bottleneck representation layer (with either 12 or 30 hidden units),
followed by an additional four hidden layers each with 1024 units and LeakyReLU activation. When we
performed Manifold Mixup for our analysis, we only performed mixing in the bottleneck layer, and used a beta
distribution with an alpha of 2.0. Additionally we performed another experiment (Figure 15 where we placed
the bottleneck representation layer with 30 units immediately following the first hidden layer with 1024 units
and LeakyReLU activation.

We found that Manifold Mixup had a striking effect on the singular values, with most of the singular values
becoming much smaller. Effectively, this means that the representations for each class have variance in fewer
directions. While our theory in Section 3 showed that this flattening must force each classes representations
onto a lower-dimensional subspace (and hence an upper bound on the number of singular values) but this
explores how this occurs empirically and does not require the number of hidden dimensions to be so small that
it can be manually visualized. In our experiments we tried using 12 hidden units in the bottleneck Figure 13 as
well as 30 hidden units Figure 14 in the bottleneck.
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Our results from this experiment are unequivocal: Manifold Mixup dramatically reduces the size of the smaller
singular values for each classes representations. This indicates a flattening of the class-specific representations.
At the same time, the singular values over all the representations are not changed in a clear way (Figure 16),
which suggests that this flattening occurs in directions which are distinct from the directions occupied by
representations from other classes, which is the same intuition behind our theory. Moreover, Figure 15 shows
that when the mixing is performed earlier in the network, there is still a flattening effect, though it is weaker
than in the later layers, and again Input Mixup has an inconsistent effect.

Figure 13: SVD on the class-specific representations in a bottleneck layer with 12 units following
3 hidden layers. For the first singular value, the value (averaged across the plots) is 50.08 for the
baseline, 37.17 for Input Mixup, and 43.44 for Manifold Mixup (these are the values at x=0 which
are cutoff). We can see that the class-specific SVD leads to singular values which are dramatically
more concentrated when using Manifold Mixup with Input Mixup not having a consistent effect.
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Figure 14: SVD on the class-specific representations in a bottleneck layer with 30 units following
3 hidden layers. For the first singular value, the value (averaged across the plots) is 14.68 for the
baseline, 12.49 for Input Mixup, and 14.43 for Manifold Mixup (these are the values at x=0 which
are cutoff).

Figure 15: SVD on the class-specific representations in a bottleneck layer with 30 units following a
single hidden layer. For the first singular value, the value (averaged across the plots) is 33.64 for the
baseline, 27.60 for Input Mixup, and 24.60 for Manifold Mixup (these are the values at x=0 which
are cutoff). We see that with the bottleneck layer placed earlier, the reduction in the singular values
from Manifold Mixup is smaller but still clearly visible. This makes sense, as it is not possible for
this early layer to be perfectly discriminative.
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Figure 16: When we run SVD on all of the classes together (in the setup with 12 units in the
bottleneck layer following 3 hidden layers), we see no clear difference in the singular values for
the Baseline, Input Mixup, and Manifold Mixup models (ran on the model with a bottleneck hidden
state of 12 dimensions). Thus we can see that the flattening effect of manifold mixup is entirely
class-specific, and does not appear overall, which is consistent with what our theory has predicted.

J SENSITIVITY TO HYPER-PARAMETER α

We compare the performance of Manifold Mixup using different values of hyper-parameter α by training a
PreActResNet18 network on Cifar10 dataset, as shown in Table 7.

Table 7: Test accuracy (in %) of Manifold Mixup for a range of values for hyperparameter α for
Cifar10 dataset on PreActReseNet18

α Input Mixup Manifold Mixup

0.5 95.75 96.12
1.0 95.84 96.10
1.2 96.09 96.29
1.5 96.06 96.35
1.8 95.97 96.45
2.0 95.83 96.73

Manifold Mixup outperformed Input Mixup for all alphas in the set (0.5, 1.0, 1.2, 1.5, 1.8, 2.0) - indeed the
lowest result for Manifold Mixup is better than the worst result with Input Mixup. Note that Input Mixup’s
results deteriorate when using an alpha that is too large, which is not seen with manifold mixup.

K ABLATION STUDY FOR WHICH LAYER TO DO THE MIXING ON

In this section, we discuss which layers are a good candidate for mixing in the Manifold Mixup algorithm. We
evaluated PreActResNet18 models on CIFAR-10 and considered mixing in a subset of the layers, we ran for
fewer epochs than in the Section 5.1 (making the accuracies slightly lower across the board), and we decided to
fix the alpha to 2.0 as we did in the the Section 5.1. We considered different subsets of layers to mix in, with 0
referring to the input layer, 1/2/3 referring to the output of the 1st/2nd/3rd resblocks respectively. For example
0,2 refers to mixing in the input layer and the output of the 2nd resblock. {} refers to no mixing. The results
are presented in Table 8

Essentially, it helps to mix in more layers, except for the later layers which hurts the test accuracy to some
extent - which is consistent with our theory in Section 3 : the theory in Section 3 assumes that the part of the
network after mixing is a universal approximator, hence, there is a sensible case to be made for not mixing in
the very last layers.
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Table 8: Test accuracy (in %) of Manifold Mixup when the mixing is performed in different subsets
of layers, for PreActReseNet18 on Cifar10 dataset.

Layers Test Accuracy

0,1,2 96.73
0,1 96.40
0,1,2,3 96.23
1,2 96.14
0 95.83
1,2,3 95.66
1 95.59
2,3 94.63
2 94.31
3 93.96
{} 93.21
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