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ABSTRACT

We propose two multimodal deep learning architectures that allow for cross-
modal dataflow (XFlow) between several feature extractors, deriving more in-
terpretable features and obtaining a better representation than through unimodal
learning. These models can usefully exploit correlations between audio and vi-
sual data, which have a different dimensionality and are nontrivially exchange-
able. Our work improves on existing multimodal research in two essential ways:
(1) it presents a novel method for performing cross-modality (which could eas-
ily be generalised to other kinds of data) and (2) extends the previously proposed
cross-connections which only transfer information between streams that process
compatible data. We also illustrate some of the representations learned by the
connections and present Digits, a new dataset consisting of three audiovisual data
types. Both architectures outperformed their baselines and achieved state-of-the-
art results on AVletters and CUAVE.

1 INTRODUCTION

An interesting extension of unimodal learning consists of deep models which “fuse” several modal-
ities (for example, sound, image or text) and learn a shared representation, outperforming previous
architectures on discriminative tasks. However, the cross-modality in existing models— (Ngiam
et al., |2011), (Srivastava & Salakhutdinov, [2012) and (Aytar et al., 2017)—only occurs after fea-
tures are learned. This prevents the unimodal feature extractors from exploiting any information
contained within other modalities.

Our work has focused on facilitating this information exchange, which poses a highly nontrivial
problem as it takes place between data of varying dimensionality (for example, 1D/2D for audiovi-
sual data). We have generalised cross-connections (Velickovi€ et al.,[2016)) to exploit the correlations
between audio and image; our models have surpassed current state-of-the-art results. We also in-
troduce Digits—a novel, open dataset of superior quality to other existing benchmark audiovisual
datasets[j Finally, we analyse the representations learned by cross-connections, deriving useful con-
clusions about their mutual constructiveness for the classification task—a step towards addressing
the “black box” problem encountered in deep learning.

2  XFLOW MODELS

2.1 CNN x MLP, {CNN x MLP}-LSTM

The first multimodal architecture (Figure takes as input fixed-size image and audio data. Our
cross-connection design easily allows including residual cross-modal connections (adapted from the
work of He et al.|(2016)) that enable the raw input of one modality to directly interact with another
modality’s intermediate representation, potentially correcting any unwanted effects. Figure |1b)il-
lustrates both cross-modal and residual connections, which are constructed in a similar manner to

*www.cst.cam.ac.uk/{ccc53,pv273,pl219}
!The dataset will be publicly released upon publication.
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(a) CNN x MLP model with (b) (Upper left:) 2D~1D (c¢) {CNN x MLP}-LSTM macro-
cross- and residual connec- cross-connection. (Upper scale: sequential processing across
tions, denoted by X-conn (thick right:) 2D~»1D residual con- time steps. Input modalities are de-
dashes) and Res-conn (thin nection. (Bottom:) 1D~2D noted by Zimg and Zmscc, While 3y is the
dashes). cross-/residual connection. output of the LSTM layer at time ¢.

Figure 1: Overview of the two cross-modal architectures

the former. The second architecture (Figure has the advantage of not averaging the data across
frames, thereby maintaining a richer source of features from both modalities. The feature extrac-
tor for a single frame is weight-shared across frames and corresponds to the model from Figure
without the last two layers. Additionally, all connections are designed as for the CNN x MLP
architecture, but only operate within the single-frame feature extractor.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We evaluated our models on the AVletters (Matthews et al., [2002) and CUAVE (Patterson et al.,
2002) datasets. Both architectures were trained using the Adam SGD optimiser for 300 epochs,
with hyperparameters as described by Kingma & Ba| (2014) and a batch size of 128 for the CNN
x MLP and 32 for the {CNN x MLP}-LSTM. The plots in Figures [2al and [2b| show the evolution
of validation accuracy and cross-entropy loss, respectively. A significant improvement over the
baseline (same model, without cross-modal connections) can be seen in both plots.

For AVletters, the data was split into £ = 10 folds—each fold corresponds to a different person in
the dataset. For CUAVE, we used the pre-processing described by Ngiam et al|(2011) and k£ = 9.
Additionally, we have curated a new dataset Digits showing 15 people saying the digits 0-9 in a
low, normal and loud voice, slowly and quickly. We extracted two modalities: image data (2D video
frames) and audio data (either 1D mel-frequency cepstral coefficients or 2D spectrograms).

3.2 RESULTS

The results for all classifiers are shown in Table[I] with p-values indicating that the XFlow models
improve on their respective baselines with statistical significance. The most impressive overall result
was achieved by the {CNN x MLP}-LSTM architecture, showing remarkable benefits to temporal
sequence modelling, as the corresponding baseline performed better than the CNN x MLP while
using more than 5 times fewer parameters. Influenced by the previous results, we only used the
recurrent model for comparison against CorrRNN (Yang et al., [2017), the latest published state-
of-the-art result on AVletters and CUAVE (to the best of our knowledge), and the same train/test
partition (Ngiam et al., 2011) seen in all previous published approaches. Both the baseline and
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(a) Plot of the accuracy of the {CNN x MLP}-LSTM (b) Plot of the cross-entropy loss of the {CNN x
model on the first AVletters cross-validation fold. MLP}-LSTM model on the same fold.

Figure 2: Model optimisation, with a sliding averaging window of 5 epochs on the accuracy values,
to emphasise the model capabilities during training.

XFlow models outperform CorrRNN, with a relative error improvement of 67.5% on AVletters and
of 24.4% on CUAVE.

Table 1: k-fold cross-validation and comparative evaluation against the state-of-the-art approach.
We used the paired ¢-test across fold results, with a significance threshold of p < 0.05.

AVletters Digits CUAVE
Baseline XFlow CorfRNN  p-value Baseline XFlow p-value Baseline XFlow CorrRNN  p-value
CNN x MLP 731%  74.0% - 0.65 783% 86.7%  2x107° 90.3%  93.5% - 0.05
{CNN x MLP}-LSTM (CV) 781%  85.6% - 0.02 88.7% 93.0% 12x10° 969%  98.8% - 0.01
{CNN x MLP}-LSTM (holdout) ~ 91.5%  94.6% 83.4% - - - - 96.1%  96.9% 95.9% -

3.3 INTERPRETABILITY OF CROSS-CONNECTIONS

The visualisations in Figure [3|prove that each modality can be helpfully converted to the other one.
In the 2D-1D direction, the outputs visibly produce clustering according to the classes (Figure [3a),
whereas the 1D-2D transformation preserves dynamics across time steps for an entire video se-
quence (Figure [3b)), presenting these dynamics in a structured 2D manner (Figure[3c). While these
analyses represent a small step towards the general problem of neural network interpretability (Lip-
ton, 2016), the results observed are largely encouraging. In particular, residual cross-connections
pave the way for a methodology that lets us almost directly assess the way in which raw inputs
of one kind relate to higher-level features of another kind, potentially allowing us to draw useful
conclusions about cross-modal systems in general.

(b) Differences for 4 kernels in the (c) Example outputs of the first
final layer of the first {CNN x {CNN x MLP}-LSTM residual
MLP}-LSTM residual connection. connection corresponding to the
Horizontal axis: time, vertical axis: same kernels as in Figure

L? norm. ( Top:) Differences be-

tween the 2D outputs. (Bottom:)

Corresponding differences for the

1D inputs.

(a) Best viewed in colour. Two-
dimensional ¢-SNE plot of the out-
puts of the second 2D~~1D cross-
connection within the CNN x MLP
model. Each colour corresponds
to a different class from the Digits
dataset.

Figure 3: Interpretability of cross-modal transformations (pre-trained on Digits)
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A MODEL ARCHITECTURES

Tables and summarise the two models in terms of the number of parameters and cross-
connections (residual connections can be then inferred from the shape of their target). All con-
volutional and fully-connected layers in the architectures have ReLU activations. In the CNN x
MLP model, batch normalisation (loffe & Szegedy), [2015)) is applied after the input, convolutional,
first fully-connected (MLP stream) and the merge layers. We also applied dropout (Srivastava et al.,
2014) with p = 0.25 after every max-pooling layer and with p = 0.5 after the first fully-connected
(MLP stream), merge and final fully-connected layers. The {CNN x MLP}-LSTM model only
employs batch normalisation after the input layer and merge layer, followed in the latter case by
dropout (p = 0.5). We have taken steps to ensure integrity of the information and used the more
general PReLU activation function (He et al.,|2015)) inside cross-modal connections.
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Figure 4: Description of architectures (baselines and models with cross-connections, whose param-
eters are described in bold).

(a) CNN x MLP (b) {CNN x MLP}-LSTM
Output size CNN stream MLP stream Output size CNN stream MLP stream
([80 x 60, 16], 128) [3x3,16] Conv x 2  Fully-connected 128-D  ([80 x 60, 8], 32) [3 x 3,8] Conv Fully-connected 32-D
([40 x 30, 16], 128) 2 x 2 Max-Pool, stride 2 ([40 x 30, 8], 32) 2 x 2 Max-Pool, stride 2
[1x1,16] Conv Fully-connected 759-D [1 x 1,8] Conv Fully-connected 375-D
40 x 30, 32], 192 )
([40>30.32L, 192) by connected 64-D =+ [8x 8,16] Decony (40X 30,81 64) i ot fed 32D < » [16 x 16, 8] Deconv
([40x 30,32],128)  [3x3,32] Conv x 2 Fully-connected 128-D  ([40 x 30, 16], 32) [3x3,16] Conv Fully-connected 32-D
([20x 15, 32], 128) 2x2 Max-Pool,Cstnde 2 ([20 x 15, 16], 32) 2 x 2 Max-Pool, stride 2
[1x1,32] Conv Fully-connected 204-D 1x1,16] Conv Fully-connected 104-D
(2015, 641 256) puiy.connected 128-D .~ [4x 4,32] Deconv (120 x 15,641, 96) Fuu[y-conﬁect]ed 64D < [8x 8. 16] Decony
(256, 128) Fully-connected 256-D (64,32) Fully-connected 64-D '
512 Fully-connected 512-D 64 LSTM

26-way softmax 26-way softmax

Some of the architectures we developed contain a large number of parameters (underlined in Ta-
ble E]) In such circumstances, initialisation heavily influences the representation learned during
training in low-data scenarios (AVletters and Digits, which had approximately half as much training
data as CUAVE). Consequently, the accuracies obtained might not always reflect the best perfor-
mance that the classifier has the potential to obtain on a particular validation fold. Because of this,
we trained each model underlined in Table [2|five times per validation fold, for the two datasets, and
recorded the maximum result. The final accuracy for an architecture was then computed as the av-
erage over all folds. For statistical significance testing, we used the paired ¢-test across fold results,
with a significance threshold of p < 0.05.

Table 2: Number of trainable parameters in each considered model, for the AVletters and Dig-
its/CUAVE datasets.

AVletters Digits/CUAVE

Baseline
CNN x MLP 2,740,512 5,664,054
{CNN x MLP}-LSTM 353,650 721,170
XFlow
CNN x MLP 8,852,962 17,764,002

{CNN x MLP}-LSTM 1,387,488 2,967,388

’Depending on the dataset, the cross-connected models differ in the number of parameters. This is due to
the cross-connections encompassing operations such as transposed convolution, which requires its output data
to be in a specific shape for concatenation with the other stream.
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