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ABSTRACT

We propose two multimodal deep learning architectures that allow for cross-
modal dataflow (XFlow) between several feature extractors, deriving more in-
terpretable features and obtaining a better representation than through unimodal
learning. These models can usefully exploit correlations between audio and vi-
sual data, which have a different dimensionality and are nontrivially exchange-
able. Our work improves on existing multimodal research in two essential ways:
(1) it presents a novel method for performing cross-modality (which could eas-
ily be generalised to other kinds of data) and (2) extends the previously proposed
cross-connections which only transfer information between streams that process
compatible data. We also illustrate some of the representations learned by the
connections and present Digits, a new dataset consisting of three audiovisual data
types. Both architectures outperformed their baselines and achieved state-of-the-
art results on AVletters and CUAVE.

1 INTRODUCTION

An interesting extension of unimodal learning consists of deep models which “fuse” several modal-
ities (for example, sound, image or text) and learn a shared representation, outperforming previous
architectures on discriminative tasks. However, the cross-modality in existing models— (Ngiam
et al., 2011), (Srivastava & Salakhutdinov, 2012) and (Aytar et al., 2017)—only occurs after fea-
tures are learned. This prevents the unimodal feature extractors from exploiting any information
contained within other modalities.

Our work has focused on facilitating this information exchange, which poses a highly nontrivial
problem as it takes place between data of varying dimensionality (for example, 1D/2D for audiovi-
sual data). We have generalised cross-connections (Veličković et al., 2016) to exploit the correlations
between audio and image; our models have surpassed current state-of-the-art results. We also in-
troduce Digits—a novel, open dataset of superior quality to other existing benchmark audiovisual
datasets 1. Finally, we analyse the representations learned by cross-connections, deriving useful con-
clusions about their mutual constructiveness for the classification task—a step towards addressing
the “black box” problem encountered in deep learning.

2 XFLOW MODELS

2.1 CNN × MLP, {CNN × MLP}–LSTM

The first multimodal architecture (Figure 1a) takes as input fixed-size image and audio data. Our
cross-connection design easily allows including residual cross-modal connections (adapted from the
work of He et al. (2016)) that enable the raw input of one modality to directly interact with another
modality’s intermediate representation, potentially correcting any unwanted effects. Figure 1b il-
lustrates both cross-modal and residual connections, which are constructed in a similar manner to
∗www.cst.cam.ac.uk/˜{ccc53,pv273,pl219}
1The dataset will be publicly released upon publication.
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(a) CNN × MLP model with
cross- and residual connec-
tions, denoted by X-conn (thick
dashes) and Res-conn (thin
dashes).

Conv

Flatten

FC

Max pool

Flatten

FC

FC

Reshape

Deconv

(b) (Upper left:) 2D↝1D
cross-connection. (Upper
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(c) {CNN × MLP}–LSTM macro-
scale: sequential processing across
time steps. Input modalities are de-
noted by x⃗img and x⃗mfcc, while y⃗t is the
output of the LSTM layer at time t.

Figure 1: Overview of the two cross-modal architectures

the former. The second architecture (Figure 1c) has the advantage of not averaging the data across
frames, thereby maintaining a richer source of features from both modalities. The feature extrac-
tor for a single frame is weight-shared across frames and corresponds to the model from Figure 1a
without the last two layers. Additionally, all connections are designed as for the CNN × MLP
architecture, but only operate within the single-frame feature extractor.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

We evaluated our models on the AVletters (Matthews et al., 2002) and CUAVE (Patterson et al.,
2002) datasets. Both architectures were trained using the Adam SGD optimiser for 300 epochs,
with hyperparameters as described by Kingma & Ba (2014) and a batch size of 128 for the CNN
× MLP and 32 for the {CNN × MLP}–LSTM. The plots in Figures 2a and 2b show the evolution
of validation accuracy and cross-entropy loss, respectively. A significant improvement over the
baseline (same model, without cross-modal connections) can be seen in both plots.

For AVletters, the data was split into k = 10 folds—each fold corresponds to a different person in
the dataset. For CUAVE, we used the pre-processing described by Ngiam et al. (2011) and k = 9.
Additionally, we have curated a new dataset Digits showing 15 people saying the digits 0–9 in a
low, normal and loud voice, slowly and quickly. We extracted two modalities: image data (2D video
frames) and audio data (either 1D mel-frequency cepstral coefficients or 2D spectrograms).

3.2 RESULTS

The results for all classifiers are shown in Table 1, with p-values indicating that the XFlow models
improve on their respective baselines with statistical significance. The most impressive overall result
was achieved by the {CNN × MLP}–LSTM architecture, showing remarkable benefits to temporal
sequence modelling, as the corresponding baseline performed better than the CNN × MLP while
using more than 5 times fewer parameters. Influenced by the previous results, we only used the
recurrent model for comparison against CorrRNN (Yang et al., 2017), the latest published state-
of-the-art result on AVletters and CUAVE (to the best of our knowledge), and the same train/test
partition (Ngiam et al., 2011) seen in all previous published approaches. Both the baseline and
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(a) Plot of the accuracy of the {CNN × MLP}–LSTM
model on the first AVletters cross-validation fold.
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(b) Plot of the cross-entropy loss of the {CNN ×
MLP}–LSTM model on the same fold.

Figure 2: Model optimisation, with a sliding averaging window of 5 epochs on the accuracy values,
to emphasise the model capabilities during training.

XFlow models outperform CorrRNN, with a relative error improvement of 67.5% on AVletters and
of 24.4% on CUAVE.

Table 1: k-fold cross-validation and comparative evaluation against the state-of-the-art approach.
We used the paired t-test across fold results, with a significance threshold of p ≤ 0.05.

AVletters Digits CUAVE
Baseline XFlow CorrRNN p-value Baseline XFlow p-value Baseline XFlow CorrRNN p-value

CNN ×MLP 73.1% 74.0% – 0.65 78.3% 86.7% 2 ×10−3 90.3% 93.5% – 0.05
{CNN ×MLP}–LSTM (CV) 78.1% 85.6% – 0.02 88.7% 93.0% 1.2 ×10−3 96.9% 98.8% – 0.01
{CNN ×MLP}–LSTM (holdout) 91.5% 94.6% 83.4% – – – – 96.1% 96.9% 95.9% –

3.3 INTERPRETABILITY OF CROSS-CONNECTIONS

The visualisations in Figure 3 prove that each modality can be helpfully converted to the other one.
In the 2D-1D direction, the outputs visibly produce clustering according to the classes (Figure 3a),
whereas the 1D-2D transformation preserves dynamics across time steps for an entire video se-
quence (Figure 3b), presenting these dynamics in a structured 2D manner (Figure 3c). While these
analyses represent a small step towards the general problem of neural network interpretability (Lip-
ton, 2016), the results observed are largely encouraging. In particular, residual cross-connections
pave the way for a methodology that lets us almost directly assess the way in which raw inputs
of one kind relate to higher-level features of another kind, potentially allowing us to draw useful
conclusions about cross-modal systems in general.

(a) Best viewed in colour. Two-
dimensional t-SNE plot of the out-
puts of the second 2D↝1D cross-
connection within the CNN ×MLP
model. Each colour corresponds
to a different class from the Digits
dataset.

(b) Differences for 4 kernels in the
final layer of the first {CNN ×
MLP}–LSTM residual connection.
Horizontal axis: time, vertical axis:
L2 norm. (Top:) Differences be-
tween the 2D outputs. (Bottom:)
Corresponding differences for the
1D inputs.

(c) Example outputs of the first
{CNN × MLP}–LSTM residual
connection corresponding to the
same kernels as in Figure 3b.

Figure 3: Interpretability of cross-modal transformations (pre-trained on Digits)
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P. Veličković, D. Wang, N. D. Lane, and P. Liò. X-CNN: Cross-modal Convolutional Neural Net-
works for Sparse Datasets. ArXiv e-prints, October 2016.

Xitong Yang, Palghat Ramesh, Radha Chitta, Sriganesh Madhvanath, Edgar A. Bernal, and Jiebo
Luo. Deep Multimodal Representation Learning from Temporal Data. CoRR, abs/1704.03152,
2017. URL http://arxiv.org/abs/1704.03152.

A MODEL ARCHITECTURES

Tables 4a and 4b summarise the two models in terms of the number of parameters and cross-
connections (residual connections can be then inferred from the shape of their target). All con-
volutional and fully-connected layers in the architectures have ReLU activations. In the CNN ×
MLP model, batch normalisation (Ioffe & Szegedy, 2015) is applied after the input, convolutional,
first fully-connected (MLP stream) and the merge layers. We also applied dropout (Srivastava et al.,
2014) with p = 0.25 after every max-pooling layer and with p = 0.5 after the first fully-connected
(MLP stream), merge and final fully-connected layers. The {CNN × MLP}–LSTM model only
employs batch normalisation after the input layer and merge layer, followed in the latter case by
dropout (p = 0.5). We have taken steps to ensure integrity of the information and used the more
general PReLU activation function (He et al., 2015) inside cross-modal connections.
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Figure 4: Description of architectures (baselines and models with cross-connections, whose param-
eters are described in bold).

(a) CNN ×MLP

Output size CNN stream MLP stream

([80 × 60, 16], 128) [3 × 3,16] Conv × 2 Fully-connected 128-D
([40 × 30, 16], 128) 2 × 2 Max-Pool, stride 2

([40 × 30,32], 192) [1 × 1,16] Conv Fully-connected 759-D
Fully-connected 64-D¯ ¦ [8 × 8,16] Deconv

([40 × 30, 32], 128) [3 × 3,32] Conv × 2 Fully-connected 128-D
([20 × 15, 32], 128) 2 × 2 Max-Pool, stride 2

([20 × 15,64], 256) [1 × 1,32] Conv Fully-connected 204-D
Fully-connected 128-D¯ ¦ [4 × 4,32] Deconv

(256, 128) Fully-connected 256-D
512 Fully-connected 512-D

26-way softmax

(b) {CNN ×MLP}–LSTM

Output size CNN stream MLP stream

([80 × 60, 8], 32) [3 × 3,8] Conv Fully-connected 32-D
([40 × 30, 8], 32) 2 × 2 Max-Pool, stride 2

([40 × 30,8], 64) [1 × 1,8] Conv Fully-connected 375-D
Fully-connected 32-D¯ ¦ [16 × 16,8] Deconv

([40 × 30, 16], 32) [3 × 3,16] Conv Fully-connected 32-D
([20 × 15, 16], 32) 2 × 2 Max-Pool, stride 2

([20 × 15,64], 96) [1 × 1,16] Conv Fully-connected 104-D
Fully-connected 64-D¯ ¦ [8 × 8,16] Deconv

(64, 32) Fully-connected 64-D
64 LSTM

26-way softmax

Some of the architectures we developed contain a large number of parameters (underlined in Ta-
ble 2 2). In such circumstances, initialisation heavily influences the representation learned during
training in low-data scenarios (AVletters and Digits, which had approximately half as much training
data as CUAVE). Consequently, the accuracies obtained might not always reflect the best perfor-
mance that the classifier has the potential to obtain on a particular validation fold. Because of this,
we trained each model underlined in Table 2 five times per validation fold, for the two datasets, and
recorded the maximum result. The final accuracy for an architecture was then computed as the av-
erage over all folds. For statistical significance testing, we used the paired t-test across fold results,
with a significance threshold of p ≤ 0.05.

Table 2: Number of trainable parameters in each considered model, for the AVletters and Dig-
its/CUAVE datasets.

AVletters Digits/CUAVE
Baseline

CNN ×MLP 2,740,512 5,664,054
{CNN ×MLP}–LSTM 353,650 721,170

XFlow
CNN ×MLP 8,852,962 17,764,002

{CNN ×MLP}–LSTM 1,387,488 2,967,388

2Depending on the dataset, the cross-connected models differ in the number of parameters. This is due to
the cross-connections encompassing operations such as transposed convolution, which requires its output data
to be in a specific shape for concatenation with the other stream.
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