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ABSTRACT

Many machine learning systems today are trained on large amounts of human-
annotated data. Annotation tasks that require a high level of competency make data
acquisition expensive, while the resulting labels are often subjective, inconsistent,
and may contain a variety of human biases. To improve data quality, practitioners
often need to collect multiple annotations per example and aggregate them before
training models. Such a multi-stage approach results in redundant annotations
and may often produce imperfect “ground truth” labels that limit the potential
of training supervised machine learning models. We propose a new end-to-end
framework that enables us to: (i) merge the aggregation step with model training,
thus allowing deep learning systems to learn to predict ground truth estimates
directly from the available data, and (ii) model difficulties of examples and learn
representations of the annotators that allow us to estimate and take into account
their competencies. Our approach is general and has many applications, including
training more accurate models on crowdsourced data, ensemble learning, as well
as classifier accuracy estimation from unlabeled data. We conduct an extensive
experimental evaluation of our method on 5 crowdsourcing datasets of varied
difficulty and show accuracy gains of up to 25% over the current state-of-the-art
approaches for aggregating annotations, as well as significant reductions in the
required annotation redundancy. We further conduct an ablation study to evaluate
the effect of both end-to-end learning and instance features and show that both
contribute to the performance gains achieved by the proposed method.

1 INTRODUCTION

The rising popularity and recent success of deep learning has resulted in machine learning systems
that rely on large amounts of annotated training data (LeCun et al., [2015; Wu et al.| 2016} |(Gulshan
et al., 2016 |[Esteva et al.,|2017). The most common, scalable way to collect such large amounts
of training data is through crowdsourcing (Howe, [2006). Crowdsourcing works well in simple
settings where annotation tasks do not require domain expertise—for example, in object detection
and recognition tasks in natural images and videos (e.g., Deng et al.,|2009; Kovashka et al.| 2016).
However, annotation in specialized domains such as medical pathology requires a certain level of
competency and expertise from the annotators which makes annotation expensive. Moreover, often
times there is high rate of disagreement even between experts, which results in increasingly subjective
and inconsistent labels (Elmore et al., [2015; Hutson et al.| 2019).

A typical approach to dealing with subjectivity is to treat each annotation as simply noisy, collect
multiple redundant labels per example (e.g., from different annotators), and then aggregate them
using majority voting or other more advanced techniques (e.g.,|Dawid & Skene, 1979} |Carpenter,
2008 [Liu et al.l 2012; [Bachrach et al.| 2012;|Zhou et al., 2015} [Zhou & Hel 2016) to obtain a single
“ground truth” label. At the expense of redundancy, this results in better data quality and more
accurate estimates of the ground truth. More recently, the emerging systems for data programming
and weak supervision also internally rely on label aggregation techniques similar to methods used
for solving the crowdsourcing problem. Snorkel (Ratner et al., 2017} [Bach et al.}[2019) is a popular
such system and was designed for efficient and low-cost creation of large-scale labeled datasets using
programmatically generated, so-called weak labels. However, as we show in our empirical evaluation
none of these systems solve label aggregation effectively in the presence of high subjectivity. We
argue that to become more effective, these methods need to make use of meta-data and other types of
information that may be available about the data instances and the annotators labeling them.
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Figure 1: Overview of the proposed algorithm and probabilistic model.

To this end, we propose a novel approach that allows us to train accurate predictive models of the
ground truth directly on the non-aggregated imperfectly labeled data. Our method merges the two
steps of: (i) aggregating subjective, weak, or noisy annotations, and (ii) training machine learning
models. At training time, along with learning a model that predicts the ground truth, we also learn
models of the difficulty of each example and the competence of each annotator in a generalizable
manner (i.e., these models can make predictions for previously unseen examples and annotators).
Our approach can be effectively used for training on crowdsourced data as well as on weakly labeled
data, and also be used within frameworks such as Snorkel (Ratner et al.,[2017;|Bach et al., 2019) and
significantly improve their performance. We propose a method that can:

1. Learn truth estimators: Learn functions representing the underlying ground truth, while impos-
ing almost no constraints (as opposed to prior work). In fact, we are able to leverage the capacity
of deep neural networks along with the interpretability provided by Bayesian models, in order to
obtain highly expressive estimators of the underlying truth.

2. Learn quality estimators: Learn functions that estimate the quality of each annotator. When
annotators can be described by some features (e.g., age, gender, location, etc. of an Amazon
Mechanical Turk annotator, instead of just an ID), our quality estimators are able to generalize
to new, previously unseen, predictors. Previous work only considered estimating accuracies of
a fixed set of predictors, without being able to leverage any information we might have about
them. Furthermore, in contrast to previous work, we are also able to predict the per-instance
predictor comptencies (i.e., our method can determine whether a human annotator is an expert
for a subset of queries, instead of just estimating his/her overall accuracy), which is done by
learning dependencies between the instances and the annotators. Finally, our approach is able to
distinguish between multiple different types of errors by estimating the full confusion matrix for
each instance-predictor pair.

3. Be easily extended: The truth and quality estimators can take arbitrary functional forms and
fully leverage the expressivity of deep neural networks.

Both human annotators and machine learning classifiers may sometimes be unable to make predictions
about certain aspects of the ground truth (e.g., human annotators may be unsure about what the
correct answer to a question). The proposed method is formulated in a way that allows it to be
extended such that it can also learn decision function estimators for the annotators (i.e., estimators
that predict whether an annotator will be able to provide a prediction for a given data instance). These
estimators can have significant implications for data annotation systems where the cost of querying
annotators is high (e.g., when these annotators are highly qualified, such as doctors or other kinds of
domain experts). This is because it allows for better matching annotators to instances, thus reducing
the required amount of annotation redundancy. An overview of the proposed approach and model is
shown in Figure [T} and a detailed description is provided in Section 3]
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2 RELATED WORK

Research on label aggregation and crowdsourcing dates back to the early 1970s, when |Dawid &
Skene| (1979) proposed a probabilistic model to estimate ground truth labels using the expectation
maximization (EM) algorithm. Since then, a variety of generalizations and improvements upon the
original method have been proposed (Whitehill et al., 2009; [Welinder et al.,[2010; [Liu et al., [2012;
Zhou et al.,|2015; Zhou & He, [2016). One of the central parts of the label aggregation algorithms is
estimation of the accuracy of the annotators (or predictors) without having access to the ground truth.
This problem has been of independent interest to the machine learning community, was termed as
estimating accuracy from unlabeled data and studied by [Collins & Singer]| (1999), [Dasgupta et al.
(2001), Bengio & Chapados| (2003), Madani et al.| (2004), Schuurmans et al.| (2006), Balcan et al.
(2013)), and [Parisi et al.[(2014), among others. Almost none of the previous approaches explicitly
considered modeling the ground truth, but rather assumed either some form of independence or
knowledge of the true label distribution.

Collins & Huynh| (2014} reviewed many methods that were proposed for estimating the accuracy
of medical tests in the absence of a gold standard. Platanios et al.|(2014)) proposed formulating the
problem as an optimization problem that uses agreement rates between multiple noisy annotators.
Platanios et al.[(2017)) improved upon agreement-based accuracy estimation using logical constraints
between the noisy labels. [Tian & Zhu| (2015) proposed a max-margin majority voting scheme applied
to crowdsourcing. More recently, Khetan et al.|(2017) proposed to use a parametric function to model
the ground truth and showed that the approach can sometimes be functional even in the limit of a
single noisy label per example. Among recent approaches, Zhou et al.|(2015) formulated the problem
as a form of regularized minimax conditional entropy and established one of the most competitive
baselines on many public crowdsourcing datasets.

Our proposed method generalizes the approaches of Zhou et al.| (2015)), [Platanios et al.| (2016),
and |Khetan et al.| (2017). Similar to [Platanios et al.| (2016)), we define a generative process for our
observations. However, our model is able to handle categorical labels, as opposed to just binary.
Similar to Zhou et al.|(2015)), we define the confusion matrix for each instance-predictor pair as a
function of instance difficulty and predictor competenceﬂ However, we explicitly learn the difficulty
and competence as functions, which allows us to generalize to previously unseen instances and
annotators. Interestingly, the inference algorithm for our generative probabilistic model has a similar
form to that of |[Zhou et al.| (2015) (except for the explicit learning of the ground truth, difficulty, and
competence functions). Thus, we also show that the algorithm of[Zhou et al.|(2015) can be re-derived
as an EM inference algorithm for a generative model, simplifying the argument of the original paper.
Finally, similar to|Khetan et al.[|(2017), we use a parametric function to model the ground truth, and
also go a step further and propose to use parametric functions to model the instance difficulties and
predictor competences. Thus, our approach enables estimation of which annotators are likely to
perform better on which instances, potentially enabling more optimal allocation of annotators and
thus annotation cost reductions.

In contrast to prior work, our method also allows for end-to-end learning. Prior methods do not
allow for this as they (implicitly) separate ground truth inference (i.e., label aggregation) from model
training. More specifically, previously one would have to train a machine learning model in two
stages: (i) infer the ground truth labels from the provided annotations, and (ii) train a machine learning
model on the inferred labels. Our approach merges these two stages and allows us to train machine
learning models directly on the imperfect annotations. In Section[#.3] we conduct an ablation study
that showcases the performance gains obtained by employing end-to-end learning in this fashion.

3 PROPOSED METHOD

We denote the observed data by D = {x;, V;} Y ;, where J; = {M;, {i; }jem, }, M is the set of
predictors that made predictions for instance x;, and ¥;; is the output of predictor f; for instance x;.
Our goal is to learn functions representing the underlying ground truth and predictor qualities, given
our observations D.

!The idea of modeling instance difficulties and annotator competencies has been studied before by (Carpenter
(2008)) and |Bachrach et al.|(2012), among others.
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Ground Truth. We define the ground truth as a function hy(x;) that is parameterized by 6 and
that approximates the true distribution of the label given ;. In our setting, hg(x;) € Rgo and
>_jlho(=i)]; = 1, where C'is number of values the label can take (i.e., assuming categorical Tabels).
More specifically, [hg(x;)]r = P(y; = k | x;), where we use square brackets and subscripts to denote
indexing of vectors, matrices, and tensors. For example, hy could be a deep neural network that
would normally be trained in isolation using the cross-entropy loss function. In our method the
network is trained using the Expectation-Maximization algorithm, as described in the next section.

Predictor Qualities. We define the predictor qualities as the confusion matrices Q;; € RSy, for

each instance x; and predictor fj, where ), [Q;jli = 1, forall k € {1,...,C}. [Qqj]w represents
the probability that predictor f; outputs label [ given that the true label of instance x; is k. We define
these confusion matrix in a way that generalizes the successful approach of |Zhou et al. (2015):E]

Qij =D, e3C;, (D

where o; represents an inner product along the i dimension of the two tensors, and:

— D, = dy(x;) represents the difficulty tensor for instance ;, where d is a function parameterized
by ¢,D; € REXCXL and L is a latent dimension (it is a hyperparameter of our model). [D;]x;—
is an L-dimensional embedding representing the likelihood of confusing x; as having label [
instead of k, when £ is its true label. .

— C; = ¢y (r;) represents the competence tensor for predictor f;, where c is a function parameter-
ized by %, r; is some representation of f; (e.g., could be a one-hot encoding of the predictor, in
the simplest case), and C; € RE*“*L_[C,]y;— is an L-dimensional embedding representing
the likelihood that predictor f; confuses label k for [, when £ is the true label.

Using L > 1 allows the instance difficulties and predictor competences to encode more information.
An intuitive way to think about this is that we are embedding difficulties and competencies in a
common latent space, which can be thought of as jointly clustering them. This is in fact very similar
to how matrix factorization methods are used for collaborative filtering in recommender systems.

Our goal is to learn functions hg, dy, and ¢, given observations D. In order to do that, we propose
the following generative process for our observations. For ¢ = 1,..., N, we first sample the
true label for x;, y; ~ Categorical(hg(x;)). Then, for j € M;, we sample the predictor output
7;; ~ Categorical([Qi;]y,— ), where [Q;;],,— represents the y;™ row of Q;;. In the next section, we
propose an algorithm learning the parameters 6, ¢, and ).

3.1 LEARNING

A widespread approach for performing learning with probabilistic generative models, is to maximize
the likelihood of the observed data with respect to the model parameters. Let y = {y;}2 ;. The
complete likelihood of a single observation, j;;, can be derived as follows:

N

p(Dy) = [[pw) T pis 1 vi), )

=1 JEM;

where p(yi; | v;) depends on Q;;. There are two main approaches in which we can use the likelihood
function of Equation [2]for learning: (i) marginalize out the y; latent variables and then maximize with
respect to 6, ¢, and 1), or (ii) use the expectation maximization (EM) algorithm originally proposed
by Dempster et al.| (1977). It has previously been observed that the EM algorithm can perform much
better than approach (i) for mixture models (Bishop, 2006), as the latter tends to get stuck in bad local
optima. Since our model resembles a Bernoulli mixture model with the latent assignments being
defined by the y;’s, we decided to use the EM algorithmE] The steps of the EM algorithm for our
model are as follows:

*We also perform a normalization step such that all elements of Q;; are non-negative and such that each row
sums to 1 (thus making each row a valid probability distribution).
3In fact, we also experimented with the marginalization approach and it consistently underperformed EM.



Under review as a conference paper at ICLR 2020

E-Step. We need to compute the expectation of y; given D and y\; (which denotes all of y except
for y;), forallt =1,..., N, and we know that:

N
p(yi | Do) o< p(D,y) = [ [p(ws) [T p(ss | 9s)- 3)
s=1 JEM,

Therefore, by removing all terms that do not depend on y; and normalizing, we obtain the following
expectation (which we compute during this step, while keeping 6, ¢, and ¢ ﬁxed)ﬂ

Y k [Qijlkg.,
Eyip {1jy,=x1} =0y =k | D, y\) = , where \j' = [ho(z;)]k Py GAr—
v SN jel_A[4 S Qi
4)

For brevity, in what follows, we use the following notation ¥ := Eyp{ Ly, =1 }-

M-Step. We maximize the following log-likelihood function with respect to 6, ¢, and ), while using
the values of /¥ computed in the last E-step:

N
c=1Irwi=a) I1 »@i v =5 = (5)

i=1 JEM;
N N

log £="Y logp(yi = i) + > Y logp(fij | v = §:) = (6)
i=1 i=1 je/vlj

10g£ = Z Z log hg $l k+ Z Zyl Z log [ 1jlkgi; ‘| (7)
i=1 k=1 i=1k=1 jeM; Zl 1[Qw]1yu

The training procedure for learning the parameters 6, ¢, and 1 consists of iterating over the E-step
and the M-step shown above, until convergence, where convergence can be measured by computing
the change in the parameter values across learning iterations. It is important to note that EM finds
local optima of the likelihood function, and so the starting point can play an important role. Also,
as [Platanios et al.| (2016) mention, there exists an inherent symmetry in our model that can be
problematic. The likelihood of any observed data is the same if we flip the true underlying labels and
the predictor qualities (i.e., set yﬂ]pp ®d—1—y, and Qi flipped _ 1 _ Q;;). We would like to somehow
encode the prior assumption that most of the predlctors are correct most of the time. One way to do
this is by choosing the starting point of the EM algorithm carefully.

Initialization. In the E-step shown in Equation 4] we compute the expected values of the true
underlying labels, y;. We can encode the assumption mentioned in the previous paragraph by
replacing the first E-step with a majority vote among the predictors:

. > e Ligiy=k)
Eyip {1jy,=n} = ]\TI ®)

where | M| denotes the size of set M. We initialize the EM algorithm by replacing the first E-step
with this majority vote approximation. As we show in our experiments, this helps us avoid the
aforementioned symmetry, and thus we refer to this initialization scheme as symmetry-breaking
initialization. Note also that in the case where the predictors provide us with P(g;; = k), instead
of a single categorical value, we can still use this initialization scheme by replacing 1y, —x with

P(j;; = k), in Equation|8]

Marginal Likelihood Fine-Tuning. In our experiments we found that maximizing the marginal
likelihood function after EM converges tends to improve performance. We refer to this step as
marginal likelihood fine-tuning. More specifically, after the values of the parameters 6, ¢, and v,
converge to fixed values across multiple EM steps, we solve the following maximization problem
using these fixed values as the initial point:

s pPy) @ oS Y s S =2 )

i=1jeEM; k=1 Zl 1[sz]lym

“Note that Q;; depends on ¢ and .
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3.2 INSTANCE AND PREDICTOR REPRESENTATIONS

A major advantage of the proposed approach over prior work is that we learn models of the ground
truth and the predictor qualities as functions of some representations (i.e., representations of the
data instances, x;, and of the annotators, ;). It is thus important to define these representations.
For many problems, the representations of the data instances can be defined in the same manner
as was previously done when performing supervised learning (e.g., we can directly use raw pixel
values representing images). However, predictor representations are introduced here for the first
timeE] A simple approach would be to use a one-hot encoding of the predictors. However, this would
not allow for any amount of information sharing across predictor (e.g., what if two predictors are
very similar). We know from prior work that modeling dependencies between the predictors can be
very important (e.g., Platanios et al.|[2016). One way to allow for that is to learn vector embedding
representations for the predictors, which would be implicitly equivalent to clustering them. Ideally,
one would want to use any available information about these predictors (e.g., Amazon Mechanical
Turk annotators could be described by their age, location, etc.). Unfortunately, we could not find any
public datasets that provide such information about the predictors/annotators, and hence we used
embedding representations in our empirical study.

3.3 DISCUSSION

The approach we have proposed in this section can be thought of as introducing a new loss function
for training the model hy using multiple imperfect labels per training instance, each coming from a
different sources. This new loss function introduces latent variables representing the ground truth
labels, as well as a couple of auxiliary models that are learned, and which represent the instance
difficulties and predictor competences. We also proposed an EM-based algorithm to minimize this
new loss function as well as an initialization scheme. Perhaps most interestingly, a key difference
between this approach and previous work is that we are able to explicitly learn functions that output
the likelihood that a predictor will label a specific instance correctly. This enables using this approach
to perform crowdsourcing more actively by assigning annotators to instances they are more likely to
label correctly, thus helping reduce redundancy and drive costs down.

3.4 EXTENDING TO MULTI-LABEL SETTINGS

Our method can easily be extended to handle settings where we have multiple categorical labels that
can be assigned to each instance. In that case, the model per label is defined in the same way as
previously, except that now the functions hg, dg, and c,, also take as input a representation for the
label (e.g., a label embedding). This allows us to share information across labels and can be thought
of as a generalization of the approach by |Platanios et al.| (2016)), where information is shared by
clustering the labels. Furthermore, it allows us to use the proposed method in extreme classification
settings (e.g.,|Prabhu & Varmal 2014) or settings where the number of labels is not fixed and known
a priori and can keep increasing (e.g., face recognition; Weinberger & Saul, 2009; Liu et al., [2016).
This is made possible by learning label representations and then letting the difficulty and competence
functions also take as input a pairs of labels and return a vector instead of a three-dimensional
tensor. In the next section, we show how learning label representations can significantly enhance the
robustness and performance of our approach.

4 EXPERIMENTS

We evaluate the proposed approach on multiple datasets from the crowdsourcing domain, all of which
have ground truth labels, (multiple) subjective annotations for each example, as well as information
on who provided each annotation (i.e., the annotator ID):

1. Blue Birds (BB) (Welinder et al., 2010): Bird photos labeled as Indigo Bunting or Blue Grosbeak.

2. Word Similarity (WS) (Snow et al.,[2008)): Pairs of words labeled as similar or dissimilar.

3. RTE (Snow et al.,[2008)): Pairs of sentences labeled as whether the first entails the second.

4. Medical Causes (MC) (Dumitrache et al., 2018)): Sentences that contain 2 medical terms labeled if
one of the terms causes the other (e.g., pancreatic adenocarcinoma causes weight loss).

>We note that learning representations of the agent behaviors has been recently explored in the context of
imitation and reinforcement learning (e.g.,|Grover et al.| 2018).
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Table 1: Statistics for the datasets we used in our experiments. “#Predictors” refers to the total number of
predictors in the dataset, ““Average Redundancy” refers to the average number of predictions provided for each
instance, “Average Accuracy’’ refers to the average predictor accuracy, and “Random Accuracy” refers to the accuracy
obtained of a completely random predictor.

. Average Average Random
Dataset #Instances  #Predictors Redundancy Accuracy (%) Accuracy (%
BLUE BIRDS (Welinder et al.| 2010) 108 39 39 63.56 50.00
WORD SIMILARITY (Snow et al.l[2008) 30 10 10 81.33 50.00
RTE (Snow et al.}[2008) 800 164 10 84.13 50.00
MEDICAL CAUSES (Dumitrache et al}[2018) 3,984 408 15 32.40 7.00
MEDICAL TREATS (Dumitrache et al} 2018) 3,984 408 15 38.88 7.00

5. Medical Treats (MT) (Dumitrache et al., [2018): The same sentences with medical terms labeled if
one of the terms treats the other (e.g., aspirin treats pain).

The last two datasets are in fact part of a single dataset on medical relations, and thus we are able
to perform experiments both with the single task formulation of our algorithm and the multi-task
formulation. As we discuss at the end of this section, this allows us to show how our approach can be
used to share information across labels and improve the quality of the learned models.

Statistics for these datasets are provided in Table|l] Note that these datasets were provided without
the associated features of the annotator identifiers and thus we are unable to evaluate the usefulness of
annotator features (we instead learn embeddings for the annotators). Unfortunately we were unable
to obtain any crowdsourcing datasets with associated annotator meta-data. This is probably due to
the fact that no prior method is able to make use of such information. However, we do make use of
instance features for all of these datasets. In cases where such features were not readily available, we
manually computed them by using pre-trained machine learning models. We are making all such
features and annotator identification information publicly available in a standardized format. More
details are provided in our code and data repository which is available at http://anonymous.

4.1 EXPERIMENTAL SETUP

We perform experiments using the following two variants of our approach:

— LIA: A version of our method which uses instance and predictor features specific to each dataset.
When features are not available for the instances and/or the predictors, we learn embeddings of
size 16 which are initialized randomly and optimized along with the other model parameters
during the M-step (see Section [3.1)).

— LIA-ML: A multi-label variant of the aforementioned method. This method is only used with
the medical relations datasets. In this case, we consider all 14 medical relations included in the
dataset jointly and only evaluate on the two for which the ground truth is provided (i.e., “causes”
and “treats”). We use this method variant in order to show how our approach can effectively
share information across labels.

In both instances of LIA, hy and dg are multi-layer perceptrons (MLPs) with 4 layers of 16 hidden
units each, with the only exception being the medical relations dataset where we used 32 units for
each layer. ¢y, is always modeled as a linear function. Note that for both the embedding sizes and the
MLP sizes, we did not perform an extensive search to choose these values; we rather performed a
small grid search and selected the number that resulted in the highest validation data likelihood. We
compare against the following baselines for ground truth estimation:

— MAJ: Simple majority voting. Note that we use soft majority voting whenever possible, i.e.,
we use soft labels (probabilities or confidence scores) whenever the predictors provide them,
instead of always thresholding them to obtain discrete labels.

— MMCE: Regularized minimax conditional entropy by |Zhou et al.| (2015)), which has been shown
to outperform alternatives. We consider it the current state-of-the-art for crowdsourcing.

— Snorkel: A method originally designed for aggregating annotations of programmatic weak
predictors proposed by Ratner et al.| (2017), which is part of a popular software package that
allows for subsequent training of machine learning models on the aggregated data.

— MeTaL: Successor to Snorkel, proposed by [Ratner et al.|(2018)). For both this method and for
Snorkel we use the original implementation provided by the authorsE]

Shttps://github.com/HazyResearch/snorkell
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Table 2: Accuracy across varying levels of redundancy, for all datasets we used in our experiments. For each
experiment, we report mean accuracy and standard error over 50 runs from random initializations. The best
results are shown in red color (the best results within each sub-group are shown in bold). The methods marked
with a “x” are used for the ablation study of Section@

Accuracy (%)
MAJ  MAJ*-E_ MAJ* [ MMCE MMCE*-E MMCE* | Snorke  MeTaL | LIA-E LIA LIA-ML
2 || 63.9+0.5 64.4+05 65.1+0.7 | 66.9+0.7 63.2+04 63.2+04 | 63.8+-0.7 63.0+0.7 | 65.1+0.6 71.5+04 —
5 || 71.1+04  70.9+05 709405 | 73.9405 74.2-£0 732405 | 72.44+0.6 T71.5+06 | 73.0£04  76.24+0.5 —
2110|] 744404 759405 754405 | 765403 769404 77.0+03 | 760204 83.0-£0.3 | 78.1404  83.1+02 —
20(| 76,403 762403 76.1+02 | 78.5+04 777404 777404 | 76.0£0.3 87.0+0.1 | 77.2+03  90.0+0.3 —
. 39| 75.940.0 78.4+00 78.4+00 | 79.6+0.1 78.8+03 78.8+03 | 76.0-0.0 89.0+0.0 | 78.9+0.0 93.0+0.6 —
§ " 2 || 82.84+08 872408 87.7+07 | 80.1+05 79.3+04 80.0+04 | 76.2:0.7 76.04+1.0 | 87.7+006 88.7+0.7 —
Tlz|5]87.1£06 914404 913404 | 87.0+£03 84.4:+03 84.0+03 | 76306 851+07 | 877405 92.7+04 —
§ 10 (| 88.6+02 93.3+0.0 93.3+0.0 | 90.2+03 80.0+-0.0 80.0+0.0 | 76.3+0.1 93.1+0.0 | 87.7+0.0 96.3+0.1 —
& 2 || 72.84+02 72.8+04 74.5+03 | 753+03 77.3+02 732403 | 652+03 61.0+03 | 76.7+03 78.0+03 —
f E 5 || 84.8+0.1 84.0+0.2 84.8+0.1 | 88.5+03 88.9+02 853+02|79.1+0.1 72.4+03 | 84.3+0.1 89.1+0.1 —
z 10(] 90.0+0.1  90.4-+0.1 89.940.1 | 92.7+0.1 92.7+02 87.1-£0.1 | 90.0-£0.0 78.0+0.0 | 91.64+0.0 93.1+0.1 —
g 2 || 26.8+0.1 242402 26.5+0.1 | 29.1+02 29.3+02 22.0+02 | 27.1+0.1 253403 | 25.0+02  29.540.1  30.1+0.1
LE) 5 || 24.1+£0.1 23.6+0.1 24.2+0.1 | 24.540.1 24,608 21.3:£0.1 | 24.04+0.1  21.0+0.1 | 24.0£0.1  30.9+0.3  36.4+0.2
10 || 241401 23.6+0.1 24.1-+0.1 | 244401 24.6+0.1  20.1+0.1 | 24.0£0.0  20.0+0.0 | 23.6+0.1  30.54+02 34.1+0.3
2 || 33.8404 357+04 342+02|353+03 38.6+03 342404 | 33.3+£0.1 22.1+03 | 34.0+03 38.6+04 40.84+03
E 5| 34.2+03 34.1+£03 33.6+0.1 | 36.8£02 37.04+02 35004 | 34.0-£03 21.0+03 | 33.0£02 383402 46.1+05
10|| 342402 343403 352402 | 38.5+0.1 383424 36.3+03 | 35.0+0.1 03.1+0.1 | 33.8402 42.1+02 454+04

Aside from these baselines, we also perform experiments using the following custom methods that
we designed for the purposes of performing an ablation study (the study is presented in Section [#.3):

— LIA-E: In order to evaluate the usefulness of instance features, we learn embeddings of size 16
for the instances instead of using their features.

— MAJ*-E: A two-step method that resembles how machine learning models are currently being
trained when using crowdsourced data. First, we estimate ground truth using MAJ. Next, we
train the hg model used in LIA-E directly on the aggregated labels.

— MAJ*: Same as MAJ*-E, except that we use the model hy of LIA (i.e., making use of instance
features instead of learning instance embeddings).

— MMCE*-E: Same as MAJ*-E, but with MMCE used for label aggregation.

— MMCE*: Same as MAJ*, but with MMCE used for label aggregation.

During each M-step we use the AMSGrad optimizer (Reddi et al., [2018) to maximize the log-
likelihood function with the learning rate set to 0.001, and we perform 1,000 optimization iterations
using a batch size of 1,024. Overall, we perform 10 EM iterations (all models did converge within
that limit) with warm starting (i.e., the model parameters are always initialized to the values obtained
during the previous M-step). When using LIA with image instances we use as image features the
activations of the last layer of a pre-trained ResNet-101 Convolutional Neural Network (CNN).
Similarly, for all text instances we use as text features the representations provided by a pre-trained
BERT model (Devlin et al.,[2018)). More details on our setup and the model hyperparameters can be
found in our code repository at http://anonymous.

We evaluate all methods by computing the accuracy of the predicted instance labels. This is a
common metric for evaluating crowdsourcing methods and it also implicitly measures the quality
of the confusion matrices predicted by our model. This is because these confusion matrices heavily
influence the supervision provided to the ground truth model, hy, while training. Furthermore, instead
of just computing accuracy for the full datasets, we also measure how performance varies as a
function of redundancy—the maximum number of annotations provided per instance. In order to
limit the redundancy for existing datasets we randomly sample subsets of the provided annotations.
Performing well in low redundancy settings is very important because it can result in significantly
reduced crowdsourcing costs.

4.2 RESULTS

Our results are presented in Table 2] LIA methods consistently outperform alternative approaches. In
certain cases (e.g., in Blue Birds) we are able to boost accuracy over the best alternative method by
14%, thus establishing a new state-of-the-art for this dataset. In the multi-task setting, where we train
the LIA-ML model to jointly infer ground truth for both Medical Causes (MC) and Medical Treats (MT)
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while sharing the representations of instance difficulties and annotator competencies. We observe
that multi-task training boosts performance by more 8% absolute (or over 20% relative) over the
single task counterpart, outperforming the baselines by over 25% relative. Finally, our approach can
obtain the performance of the best alternative method using up to 4 times less redundancy, which
can have significant implications for the cost of crowdsourcing, especially when annotation requires
domain expertise (e.g., in healthcare). We note that Snorkel and MeTaL tend to perform well overall,
but sometimes fail entirely (often performing on par with or worse than majority voting)ﬂ MeTaL
also suffers from calibration issues, as it often achieves very low accuracy while having reasonable
mean average precision. Data programming systems could thus benefit significantly by integrating
our method in their pipeline, tying together the label aggregation and model training phases.

4.3 ABLATION STUDY

Our main contributions are: (i) end-to-end learning by fusing the label aggre- Table 3: Results
gation and model training phases, and (ii) allowing for instance and annotator for LIA without
features to inform label aggregationﬂ In this section, we show how each one of ~marginal likelihood
these contributions is important on its own by performing experiments where we fine-tuning.

introduce each one on their own, while keeping everything else constant.
End-to-End Learning. The best way to test the effectiveness of end-to-end 2 || 71.9+09
learning is to compare end-to-end approaches with two-stage approaches where: o 3| 74904
(i) we first aggregate labels, and (ii) we then train machine learning models @ |10 76905
using the aggregated labels. To this end, we introduced the baseline methods ig ;;? : t:4
marked with a “x” in Table[2} The results indicate that the two-stage approach | &[5 ss7 05
underperforms the base label aggregation method for both MAJ and MMCE. This -§ 215| 910406
is most likely due to the fact that in both these cases the model being learned |§| |i0|| 93.3+00
cannot inform the label aggregation stage. In contrast, LIA is able to outperform : o 2] 63801
all two-stage approaches because it allows for exactly that. Note that MMCE |g |& |5 || 675501
models instance difficulty and annotator competence similar to LIA, with the |§] [10}] ©.620]
exception that it does not use instance features and it does not allow for end-to- |= || > iigi:
end learning of the ground truth predictor. Also note that LIA-E does not use = 150 93,0402
instance features, but is still able to outperform MAJ*-E and MMCE*-E in many T
cases, indicating that end-to-end learning is, in fact, effective and accounts for Sls]385+02
at least part of the performance gains achieved by LIA. 10| 39.2-+0.1

Instance Features. The methods which use instance features are LIA, MAJ*-M, and MMCE*-M.
To test for the usefulness of these features, we provide variants of these methods (labeled LIA-E,
MAJ*-E, and MMCE*-E, respectively, in Table[2) that use indicator features instead and learn instance
embeddings. We observe that for MAJ and MMCE the results are inconclusive (the feature-based
methods outperform the alternative in around half of the experiments). However, in the context of
end-to-end learning, we observe that LIA consistently outperforms LIA-E by a significant margin.
This indicates that instance features are indeed useful, especially so in the context of end-to-end
learning where they can inform the label aggregation phase.

It is important to also mention that results pertinent to this ablation study for the Word Similarity
(WS) dataset were a bit unstable with many models effectively failing to learn anything meaningful
(specifically MMCE*-E, MMCE*-M, and LIA-E). Our best explanation for this is that the Word
Similarity (WS) dataset is very small with only 30 instances and is thus highly prone to overfitting.

Finally, in order to evaluate the effect of the marginal likelihood fine-tuning approach presented in
Section [3.1] we also run experiments using LIA without this fine-tuning phase. The results are shown
in Tablend it is clear that marginal likelihood fine-tuning results in better performance. Also, in
order to sanity check that LIA is able to predict the qualities of the predictors accurately, we also
performed a synthetic experiment. More specifically, we added an “always correct” and an “always
wrong” oracle to all datasets used in our experiments. It turns out the predicted qualities for the two
oracles are the highest and lowest among all predictors, respectively. This indicates that our model is
indeed capable of uncovering such highly competent and incompetent predictors.

"This behavior has also been observed by others (e.g., https://github.com/HazyResearch/
snorkel/issues/1073).

®As mentioned in the beginning of this section, we were unable to obtain any crowdsourcing datasets with
associated annotator meta-data and thus in our experiments we only use instance features.
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Figure 2: Visualization of the learned predictor embeddings. Each dot in the figures represents a predictor
projected on 2D plane using UMAP. One the left, the predictors were first clustered based on which instances
they make mistakes on and then colored and shaped based on which cluster they belong to (in the embedding
space, predictors that make similar mistakes tend to cluster together). In the middle, the predictors are colored
based on their false positive rate. On the right, they are colored based on their false negative rate.

4.4 PREDICTOR EMBEDDINGS VISUALIZATION

To evaluate whether the learned predictor embeddings are meaningful in some way, we perform
dimensionality reduction using UMAP (Mclnnes et al., [2018)), plot them in Figure |2L and color
predictors in three different ways, which lets us understand the information captured by the manifold:

1. Mistakes Cluster: To cluster predictors, we represent each with a one-hot vector that indicates
the instances it made mistakes on, and then run agglomerative clustering with L; distance metric.
On the plot, each cluster is associated with a unique shape.

2. False Positive Rate: Each predictor is colored based on its false positive rate.

3. False Negative Rate: Each predictor is colored based on its false negative rate.

We have provided figures for Blue Birds and Word Similarity datasets which are the only ones for which
all predictors annotated all instances (it is unclear how to properly compute the mistakes clustering
distance metric when some or most annotations are missing). From these plots, it is clear that the
learned predictor embeddings encode both the expertise of the corresponding predictor as well as the
likelihood of making a false positive or false negative mistake.

5 CONCLUSION

In this paper, we have introduced a learning framework for: (i) training deep models directly on
data with imperfect annotations, and (ii) modeling the processes that produced the labels. Our
approach improves upon the classical and widely used two-stage setup (first aggregate and denoise
the labels, then train the model) by merging the two stages. As a result, we are able to train models
end-to-end using multiple noisy labels, while estimating the difficulties of the examples and learning
accurate representations for the annotators that produced the labels. Experimental results on multiple
small and large scale publicly available crowdsourcing datasets indicate that our method results in
significant gains in accuracy (up to 25% relative gain over the current state-of-the-art approaches for
aggregating noisy labels). Moreover, it turns out that training the model to predict multiple related
labels simultaneously improves the learned representations and results in further gains in predictive
performance of the model. Finally, we performed an ablation study to evaluate the effect of both
end-to-end learning and instance features and showed that both contribute to the performance gains
achieved by the proposed method.
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