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Abstract. The vast majority of 3D medical images lacks detailed image-
based expert annotations. The ongoing advances of deep convolutional
neural networks clearly demonstrate the benefit of supervised learning
to successfully extract relevant anatomical information and aid image-
based analysis and interventions, but it heavily relies on labeled data.
Self-supervised learning, that requires no expert labels, provides an ap-
pealing way to discover data-inherent patterns and leverage anatomi-
cal information freely available from medical images themselves. In this
work, we propose a new approach to train effective convolutional feature
extractors based on a new concept of image-intrinsic spatial offset re-
lations with an auxiliary heatmap regression loss. The learned features
successfully capture semantic, anatomical information and enable state-
of-the-art accuracy for a k-NN based one-shot segmentation task without
any subsequent fine-tuning.
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1 Introduction and Related Work

Deep learning with convolutional networks (DCNN) has become a powerful and
versatile tool for a large variety of medical image analysis tasks. DCNNs stand
out with their ability to learn informative features that are robust to artifacts
or noise and which do not rely on hand-crafted feature engineering and explicit
domain knowledge. However, up to date, nearly all deep networks require large
datasets with strong supervision through expert annotations. In contrast to com-
puter vision, tasks where layman can cost-effectively label abundantly available
images at low cost are rare in medical imaging [7].

Thus, a large fully-annotated high-quality training corpus is rarely available
in medical imaging, which triggered research to relax this assumption in various
ways. Weak labels can enable registration tasks [4], noisy labels allow for clas-
sification tasks [9], a few labels suffice for segmentation tasks [10] and transfer
learning on data from a different domain [11] can be used to detect lung nodules.

In the quest to – ultimately – use unlabeled data for learning, the com-
puter vision community recently explored self-supervision, a form of unsuper-
vised learning, where auxiliary tasks are derived from unlabeled data enabling a
machine to extract visual knowledge. These auxiliary tasks are usually easy to
verify but require a certain degree of image understanding. Prominent examples
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are hole filling (inpainting), the prediction of spatial neighborhood relations of
image patches [2], the colorization of grayscale images [15] or a combination of
a number of them [3].

Applications of self-supervision to medical imaging range from leveraging
follow up scans in spine MRI [6] over surrogate supervision used for segmentation
from only a fraction of the labels [12] to unsupervised learning employed for
image registration [14]. Our work is closely related to the context prediction of
neighbouring patches introduced by Doersch et al. [2], which demonstrated the
capabilities of using spatial relations (e.g. top/bottom, left/right) that already
are inherently given as auxiliary task to pretrain feature extractors in natural,
two-dimensional images. The large variety of details and presence of multiple
relational objects in natural 2D images enabled them to learn CNNs that extract
semantically meaningful descriptors. To ensure a sufficiently demanding self-
supervision task, the image patches cannot have any overlap and must also
contain recognizable object parts. When considering volumetric medical scans
(CT, MRI) there exists a conflicting relation between an increasing size of the
patch for the CNN (equivalently its receptive field), which is necessary to capture
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Fig. 1. Top left: inspired by [2] and extended to 3D, Doersch uses a cubic recep-
tive field, while our proposed method uses three intersecting planar volumes (2.5D).
Top right: Doersch � predicts the spatial arrangement of two cubic image sub-
volumes inside a 6 neighborhood as auxiliary task to pretrain Descriptor 3D CNN.
Bottom left - our approach: per axis predict small continuous-valued offsets (∆1,∆2)
between the centers of disjoint planar volumes that are ∆0 apart in order to pretrain
Descriptor 2D CNN. Bottom right: Different ways to implement the auxiliary offset
prediction task. 1) Reg2D �: Direct regression of both parameters with fully con-
nected layers in 2 Param CNN. 2) Heatmap �: Regressing (∆1,∆2)-heatmaps using
transposed convolutions in Heatmap CNN.
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enough spatial information for an expressive feature learning and a suitable
difficulty of the auxiliary task: i.e. the learning task can become too easy, when
the receptive field grows, because neighboring subvolumes are likely to contain
easily identifiable structures, e.g. body borders.

As illustrated in the upper part of Fig. 1, the Doersch-inspired pre-training
scheme randomly extracts two 3D subvolumes (red box and green box) from
within a six neighbourhood of a considered scan. Both intensity patches are
fed into a Siamese convolutional network that yields one feature vector each.
These are concatenated and used within a conventional fully-connected network
to predict the spatial relation of the two patches as a categorical six-class task.

2 Methods

We strongly believe that a simple extension of a spatial patch-based context pre-
diction to 3D does not fully exploit the potential of self-supervised pre-training
for medical scans. Consequently, we introduce a novel method that is inspired
by the work of Doersch et al. [2], but aims to overcome the trade-off between
the receptive field limitations imposed by unsuitable pretext problems.

Contributions: 1) We propose a new scheme to appropriately leverage spa-
tial information in 3D scans by predicting orthogonal offsets of two large planar
patches that are extracted with a small intermediate gap and enables the use
of more flexible auxiliary tasks. 2) We use an auxiliary decoder network for 2D
heatmap regression that increases the robustness of this offset computation.

2.1 Self-supervised feature learning

The lower part of Fig. 1 illustrates the basic ideas of our work that introduces a
new unsupervised pre-training scheme based on spatial cues. Instead of relying
on cubical patches (as done in [2]), we propose to extract two nearly planar 2.5D
subvolumes along the main imaging axis (e.g. the coronal plane in Fig. 1, approx.
117x97x9mm) with a fixed spatial offset of ∆0, chosen large enough so that
no overlap exists. The anchor patch (green box) is extracted around the voxel
of interest in the first slice, while the second patch (yellow box) is randomly
shifted in its position along the normal (inplane) direction with continuously
drawn offsets (∆1, ∆2) (purple and blue) that can be small enough to avoid
the ‘body border problem’. Since the second slice shares no obvious spatial
hints (e.g. continuing lines) with the anchor patch, we are no longer limited to
few discrete neighbourhood relations and can consider a greater variability of
displaced patches. As before a Siamese convolutional architecture (denoted as
Descriptor 2D CNN (D2D-CNN)) is trained to extract vector-valued descriptors
for both patches individually. While the cross entropy (CE-loss) for a six-class
prediction was a natural choice as loss function for the Doersch-inspired 3D pre-
training method, we propose to combine our continuous offset approach with
two different auxiliary learning tasks:
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CNN D2D 2 Param Heatmap D3D 6 Neighbor
Input image data D2D features D2D features image data D3D features

Layer 1 Conv(3,32,3,1) Conv(128,128,1,1) Conv(128,64,1,1) Conv(1,16,5,1) Conv(384,64,1,1)
MP(2,2),GN,LR GN,LR GN,LR GN,LR GN,LR

Layer 2 Conv(32,32,3,1) Conv(128,64,1,1) Conv(64,32,1,1) Conv(16,32,3,2) Conv(64,64,1,1)
MP(2,2),GN,LR GN,LR GN,LR GN,LR GN,LR

Layer 3 Conv(32,32,3,1) Conv(64,32,1,1) Conv(32,16,1,1) Conv(32,32,3,2) Conv(64,32,1,1)
GN,LR GN,LR GN,LR GN,LR GN,LR

Layer 4 Conv(32,64,3,1) Conv(32,2,1,1) ConvTP(16,16,5,1) Conv(32,32,3,2) Conv(32,6,1,1)
GN,LR — GN,LR GN,LR —

Conv(16,16,3,1)
GN,LR

interp(11x11)

Layer 5 Conv(64,64,3,1) ConvTP(16,16,5,1) Conv(32,32,3,1)
GN,LR GN,LR GN,LR

Conv(16,8,3,1)
GN,LR

Layer 6 Conv(64,64,3,1) ConvTP(8,4,5,1) Conv(32,32,5,1)
GN,LR GN,LR GN,LR

interp(19x19)

Layer 7 Conv(64,64,3,1) Conv(4,1,1,1) Conv(32,192,3,1)
GN,LR — GN,LR

(x,y,z,c)-in (42,42,1,3) (1,1,1,128) (1,1,1,128) (25,25,25,1) (1,1,1,192)

(x,y,z,c)-out (1,1,1,64) (1,1,1,2) (19,19,1,1) (1,1,1,192) (1,1,1,6)

# params 139.744 27.138 28.189 393.392 31.238

Table 1. Network Architectures. Building blocks of our architectures are abbrevi-
ated as follows: 1.) Conv〈TP〉(cin, cout, kernel, dilation) =̂ 〈Transposed〉Convolution,
2.) MP(kernel, stride) =̂ MaxPooling, 3.) GN =̂ GroupNorm, 4.) LR =̂ LeakyReLU,
5.) interp(width, height) =̂ upscaling to the specified dimensionality

1. a direct regression of the two offset parameters (∆1, ∆2) by an auxiliary
network with two outputs 2 Param CNN

2. a heatmap regression seen to provide a more informative gradient flow [8]
using an expanding decoder network with transposed convolutions to predict
2D heatmaps based on our 1D feature representations Heatmap CNN

The proposed planar patch offset prediction is not limited to a certain axis
of a 3D volume and hence three separate D2D-CNN networks are trained in
parallel. The final descriptor for a voxel positioned at the intersection of each of
the three planar subvolumes is obtained by simply concatenating the output of
all three D2D-CNNs. For the sake of a clear notation, we assume all image axes
to be normalized to [−1, 1], i.e. with a side length of 2 in the following.

Architectural details of Reg2D � & Heatmap � networks1: We train
our proposed 2.5D feature extractor D2D-CNNs on two different auxiliary tasks.
First, for Reg2D, we combine one D2D-CNN per axis with a 2 Param CNN and
secondly, for Heatmap, D2D-CNNs are paired with one Heatmap CNN each.
Following the scheme visually presented in the lower part of Fig. 1, we sample a
near planar subvolume represented as a 3-channel 2D image for each axis in both
approaches. These slices have dimensions of 3×422 with side lengths 0.8, a depth
of 0.05 in the normal direction and form the input of the feature CNN. The an-
chor slice’s central position within the scan is uniformly drawn from [−0.5, 0.5]3.
The second subvolume is sampled so that it is displaced by at least ∆0 = 0.125

1 We will release code and pre-trained networks as well as detailed data preprocessing
steps to enable reproducibility.
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and up to ∆0 = 0.25 in normal direction. This perpendicular offset is not used
during the training process. The inplane offset parameters (∆1, ∆2) that are the
target of the auxiliary learning task are uniformly drawn from ±[0.25, 0.3]2 in
the beginning and up to ±[0, 0.7]2 at the end of the training process. Enforcing
offsets of at least ±0.25 initially accelerates the context learning. The L1-Loss
between the network’s prediction and (∆1, ∆2) was used as penalty for Reg2D,
and the MSE-loss between its predicted heatmap and the ground truth serves
as metric for Heatmap. The heatmap is obtained from the offsets using

heatgt(i, j,∆1, ∆2) = 10 · e−15·[(i/9−∆1)
2+(j/9−∆2)

2]

with (i, j) ∈ {−9,−8, ...,+8,+9}2, yielding 19×19 sized images. The final 2.5D
descriptors for both methods result from the concatenation of all 3 D2D-CNNs
(axial, coronal and sagittal axes).

Implementation of the comparitive 3D Doersch � approach: We
combine a 3D convolutional network (D3D-CNN) as feature extractor with a six-
class prediction network 6 Neighbor CNN as a straight-forward 3D extension of
[2]. The 6 possible neighbouring relations define the auxiliary task trained with
a CE-loss. We extract an anchor 3D subvolume of 253 voxels as cubes with
sidelength 0.4 - its center is again uniformly sampled in [−0.5, 0.5]3 within the
image volume in order to be positioned inside the patient’s body. As partner,
we randomly sample one of its 6 neighboring subvolumes and add jitter to its
center coordinates to avoid e.g. line continuation hints [2].

3 Experiments & Results

To evaluate our contributions, we compare the three self-supervised pre-training
schemes on a few-shot CT segmentation task with respect to Dice scores.

Dataset: We perform experiments on the VISCERAL Anatomy3 data [13]
using the contrast-enhanced thoracoabdominal scans (training: 63 unlabeled sil-
vercorpus scans, testing: 19 expert labeled scans; leaving out corrupted scans).
After resampling to isotropic voxels of size 1.5mm3, we crop all images to roughly
the same region containing 6 target structures (liver, spleen, left/right kidney,
left/right psoas major muscle) - yielding image sizes of 243x176x293 (LR-AP-SI).

Training: In general, we share the same setting for the three compared
self-supervision pre-training schemes. Using an Adam optimizer with an initial
learning rate of 5 · 10−5 and a batchsize of 8, we train each method on 800,000
random batches. Each method outputs a feature descriptor of length 192 per
position. Details with respect to the network architectures of the different ap-
proaches can be found in Table 1. Note that all CNN for descriptor extraction
have ≈ 400k parameters, have comparably powerful auxiliary task CNNs and
are trained as Siamese networks.

In addition to the three self-supervised learning approaches presented in
Sec. 2 we consider two additional baselines in our experiments.

Xavier2D: In order to assess the necessity to train the D2D-CNNs in the
first place, we also extract 2.5D descriptors with network weights initialized by
the Xavier method and without any subsequent training.
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Fig. 2. Left : Mean Dice scores for different methods over an increasingly number of
labeled testdata. Right : t-SNE plots visualizing the more clearly separated feature
descriptor clusters for our proposed Heatmap � method compared to Doersch �.

GVDiff �: As comparison to ‘classical’ hand-crafted methods, we extract
greyvalue difference features (cf. [1]) with a 3D random pattern sampled from
a Gaussian distribution with standard deviation 0.4 - i.e. comparable to the
receptive fields of the CNN-based methods.

3.1 Results

We evaluate all 5 extracted descriptors on 19 datasets, with manual expert an-
notations. We perform two-fold cross validation (splits: 1-10, 11-19) and examine
the influence of an increasing number of labeled datasets (one-shot,2,3,...,9). We
predict the organ label at every 4th voxel (192,720 positions per image) - based
on an approximate k-Nearest Neighbor (kNN) search using the Vantage Point
Forest Method introduced in [5] with k = 21 and 15 trees - and compute the
resulting Dice as indirect measure of descriptor expressiveness. Note, that we
do not employ any finetuning strategies to this segmentation task that would
require additional GPU-DCNN-training hours - instead building & evaluating
the kNN-Forests takes only a few seconds per scan.

Table 2 provides the mean scores for all 6 considered organ structures given
a labeled patient database of size 9. Qualitative results with respect to the organ
segmentation task are shown in Fig. 3 for a 2D slice of a patient. Fig. 2 (left)
shows the mean Dice scores over all organ structures for all patients and folds
with an increasing number of available labeled datasets for the kNN classifica-
tion. Overall, our proposed the Heatmap-approach performs best and achieves
a one-shot segmentation accuracy of ≈ 55% average Dice score. Our alternative
approach Reg2D achieves the second highest accuracy and also outperforms
Doersch, the straight-forward 3D extension of [2]. With both auxiliary tasks,
our proposed new 2.5D scheme demonstrates its usefulness as self-supervised
pre-training scheme for 3D image data. Interestingly, we also outperform [10],
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(a) Expert (b) Heatmap (c) Reg2D (d) Doersch (e) GVDiff

Fig. 3. Segmentation visualization of different approaches for a 2D slice of a patient.

which proposed a sophisticated dual CNN architecture specifically designed for
one-shot segmentation and achieved 52.6% Dice accuracy on the same dataset.

Visualizing the extracted features using an unsupervised t-SNE embedding
from the same foreground positions in Fig. 2 (right) (no labels provided during
training) shows the discovery of very clean and separable clusters for individual
structures using our Heatmap method compared to Doersch - supporting
our hypothesis that leveraging a larger context is of great importance in self-
supervised learning.

4 Conclusion

We have presented a novel self-supervised pre-training strategy to effectively
leverage inherent 3D information from abundant unlabeled medical volumes. In-
spired by the method proposed in [2] for 2D natural images, we designed a new
context prediction task that takes explicit advantage of the third image dimen-
sion and uses nearly planar subvolumes to train an auxiliary task for continuous
and small axial offset prediction between patches. This process, which is repeated
for all three orientations enables the convolutional network to intrinsically en-
code anatomical cues into expressive, pre-trained descriptors. When evaluating
our scheme with its extracted features within a few-shot kNN-based organ seg-
mentation task and without any supervised refinement, we obtain a large increase
of Dice scores from 55.2% to 65.6% compared to the 3D extension of [2]. Despite
the fact that we only trained with spatial relations and perform no fine-tuning,

Experiment Liver Spleen LKidney RKidney LPsoas RPsoas Mean

Heatmap (ours) 85.3 65.7 66.3 53.5 50.4 65.6 64.2 ± 2.9
Reg2D (ours) 81.4 54.0 63.4 51.0 49.0 60.9 60.0± 2.9

Doersch 76.9 43.0 59.0 51.2 49.1 52.3 55.2± 3.1
GVDiff 80.7 58.2 54.5 43.0 29.0 37.1 50.4± 5.0
Xavier 70.1 28.3 17.2 3.3 24.5 27.1 28.4± 1.0

Table 2. Mean Dice scores in % over all folds with 9 labeled test images.
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we also achieve state-of-the-art results in accuracy for one-shot-segmentation on
a public abdominal CT dataset. In future work a more extensive investigation
of the influence of network architectures, including convolution filter hyperpa-
rameters will be considered. In addition the use of arbitrarily oriented 2D stacks
could further enhance the method and many more medical applications, e.g.
image registration could benefit from these pre-trained descriptors.

References

1. Calonder, M., Lepetit, V., Strecha, C., Fua, P.: BRIEF: Binary robust independent
elementary features. In: ECCV (2010)

2. Doersch, C., Gupta, A., Efros, A.A.: Unsupervised visual representation learning
by context prediction. In: ICCV (2015)

3. Doersch, C., Zisserman, A.: Multi-task self-supervised visual learning. In: ICCV
(2017)

4. Ferrante, E., Dokania, P.K., Silva, R.M., Paragios, N.: Weakly-supervised learning
of metric aggregations for deformable image registration. IEEE Journal of Biomed-
ical and Health Informatics (2018)

5. Heinrich, M.P., Blendowski, M.: Multi-organ segmentation using vantage point
forests and binary context features. In: MICCAI (2016)

6. Jamaludin, A., Kadir, T., Zisserman, A.: Self-supervised learning for spinal MRIs.
In: DLMIA (2017)
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